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Abstract—The Richardson-Lucy algorithm is one of the 

most important in image deconvolution. However, a 

drawback is its slow convergence. A significant 

acceleration was obtained by the technique proposed by 

Biggs and Andrews (BA), which is implemented in the 

deconvlucy function of the Image Processing MATLAB 

toolbox. The BA method was developed heuristically 

with no proof of convergence. In this paper, we 

introduce the Heavy-Ball (H-B) method for Poisson data 

optimization and extend it to a scaled H-B method, 

which includes the BA method as a special case. The 

method has a proof of the convergence rate of  -2
O k , 

where k is the number of iterations. We demonstrate the 

superior convergence performance, by a speedup factor 

of five, of the scaled H-B method on both synthetic and 

real 3D images.  

 

Index Terms—Deconvolution, Poisson noise, 

Richardson-Lucy algorithm, Heavy-ball acceleration 

 

I. INTRODUCTION 

 

Restoration of 3D confocal microscopy images to remove 

blur and noise is an important preprocessing step for 

automated analysis and also for visualization by an end-

user. One characteristic of 3D confocal microscopy imagery 

is that it is degraded mainly by Poisson noise under low 

light conditions. Perhaps the best well-known of restoration 

techniques for Poisson data is the Richardson-Lucy (RL) 

algorithm [1, 2].  

A. Problem Formulation 

Given an object x  and its image y , which is acquired 

through an imaging system with a point-spread function 

(PSF) K  and corrupted by a Poisson noise process, then the 

image formation model is given by 

                 , (1) 

where x and y are represented as n-element vectors, and    is 

the total number of voxels or pixels in the image. The PSF 

function K is an n n  matrix. The background term   is a n-

element vector. It stands for background emission [3] and 

can be estimated by preprocessing of the raw image y [4].  

From a Bayesian viewpoint, the conditional probability of 

image y given object x is as follows  
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where 
ie  is the i

th
 canonical basis unit vector. Taking 

   logC x p y x   as a cost function, then 
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gradient of  C x  is 
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where 1 is the unit vector.  And minimizing  C x  w.r.t x, 

gives the RL iterative equation  

  1

1

n
T

k k Ti

iT k
i i

y
x x K e

e Kx b








 ,  (5) 

where kx  is the k
th

 iteration of x.  

B. Gradient projection and related work 

We begin by considering Eqn. (5) as a special case of the 

gradient projection method [3, 9]. Given the same cost 

function used for RL, the general iteration equation of the 

gradient projection method is given by 

    1
T

k k kx P x C x


   
  

 , (6) 

where P   denotes projection onto  ,the feasible set of x, 

and k  is an n-element vector denoting the k
th

 step size. The 

RL algorithm can be interpreted as follows; P  is the 



nonnegative constraint, inserting the gradient of the cost 

function, Eqn.(4), and setting k kx  , gives Eqn.(5). 

However, although the RL algorithm is very popular, it 

has drawbacks in terms of the restoration quality and 

implementation time for 3D images. To address the slow 

convergence of the RL algorithm many acceleration 

methods have been proposed, which try to select step size 
k  [5], or adjust the search direction  kC x  [6, 7]. 

Unfortunately, in many cases, a reduction in the number of 

iterations is achieved only at the expense of increased 

computational cost per iteration, resulting in an insignificant 

speed-up [3].  

There are two exceptional pieces of work that have 

achieved significant acceleration for the RL algorithm. One 

of these methods, based on extrapolation of the iterative 

point, was proposed by Biggs and Andrews (BA) in [8]. 

During each iteration of the BA technique, a predicted point 
kp , instead of kx ,  is used to calculate 1kx   in Eqn.(5), 

where 

  
T

k k k kp x h  ,  (7) 

and 1k k kh x x   . k  is the acceleration parameter, which 

can be calculated as  
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where 1k k kg x p    and 0 1k  .  A shortcoming of 

BA is that no convergence proof is available.   
In the second of these works, another method, called 

scaled gradient projection, was proposed by Bonettini in [9]. 

It achieved similar performance to the BA method and has a 

convergence proof. However, it does not have a 

convergence rate proof.   

A number of acceleration algorithms have been recently 

proposed that consider Gaussian noise instead of Poisson in 

the image formation model [10-13]. For example, the 

acceleration algorithm proposed by Nesterov [10], achieved 

a fast convergence rate of  2O k 
, and was then extended 

to problems involving a convex non-smooth regularizer by 

the fast iterative shrinkage/thresholding algorithm (FISTA) 

[12]. Unfortunately, we cannot directly apply Nesterov’s
 

acceleration algorithm, or FISTA, here, as its attractive 

convergence rate is based on the fact that the negative 

Gaussian log-likelihood has a Lipschitz-continuous gradient, 

which is not the case for the negative Poisson log-

likelihood. 
 

Previously [14], we related the BA method to an 

optimization technique, called the Heavy-Ball (H-B) method 

[15], and presented some preliminary results.  In this work, 

we present a rate of convergence proof for a new technique, 

called the scaled H-B method, which includes the BA 

method as a special case. By using the theoretical proof that 

the negative Poisson log-likelihood has a Lipschitz-

continuous gradient if the variable value is positive, and 

replacing the Lipschitz constant with a positive definite 

matrix [9, 13], we prove that the scaled H-B method does 

not just converge, but that it has a faster convergence rate, 

of  2O k 
, than that of the original RL algorithm, of 

 1O k 
. We also empirically evaluate the scaled H-B 

method through experiments with simulated and real image 

data.   

 

III. HEAVY-BALL METHOD 

 

In this section, we firstly introduce the H-B method, and 

then we propose a generalized H-B, called scaled H-B, and 

derive the BA method as a special case. Finally, we discuss 

the selection of step size and acceleration parameter. 

A. Heavy-Ball method for Poisson data 

The H-B method is a general acceleration method for 

gradient projection. It was proposed by Polyak [15], and the 

basic idea is to enhance the iterative updating by adding a 

momentum term from the previous step. The method can be 

separated into an extrapolation step, given by Eqn. (7), and a 

gradient projection step 
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k k k kx P p C p


   
  

 . (9) 

Normally, the gradient based method can only achieve a 

convergence rate of  1O k 
 [16]. However, it can be proved 

that the H-B method achieves a best convergence rate of 

 2O k 
 for the gradient based method [16] assuming: 

 the cost function  C x  is convex and 

differentiable, and x X , where X is a closed 

convex set,  

  C x  has a Lipschitz continuous gradient, 

   1 2 1 2 1 2, , ,C x C x L x x x x X       

where L is the Lipschitz constant,  
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sequence  k  satisfies  0 1 0,1   ,   
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One possible choice for the acceleration parameter is  
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Provided these are valid then we have [16]:  

 



Theorem 1.  Let   kx  be a sequence generated by the H-B 

method, described by Eqns. (7) and (9), and *x  be any 

optimal solution, then 

    
 

* 0 *

2

2
, 1,

1
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where 0x  is the initial estimate.   

Proof: Our problem definition has to fulfill the above 

assumptions.  Regarding the first assumption, the Poisson 

negative log-likelihood function is obviously convex and 

differentiable.  By selecting appropriate values for k  and 
k  the third assumption can be met.  Generally, however, 

the Poisson negative log-likelihood function does not have a 

Lipschitz continuous gradient because of the logarithm. 

Several previous works have tried to attack this problem, 

either through proposing new methods, such as the 

alternating direction optimization [17], or through 

transforming the Poisson distribution to a Gaussian [18]. 

Fortunately, in microscopy images, there always exists a 

positive background   [3], hence the T

ie Kx b  term in 

brackets in Eqn. (3) is positive.                                            ▀  

Therefore, we have the following lemma to satisfy the 

second assumption.  

 

Lemma 1. The negative Poisson log-likelihood has a 

Lipschitz-continuous gradient if T

ie Kx b  is positive. (Proof 

is omitted as a similar result can be found in [19].)  

B. Scaled Heavy-Ball and justification of BA method 

To justify the BA method, we propose a general form of 

H-B, called scaled H-B, which replaces the Lipschitz 

constant with a positive definite matrix to set the step size 
k kx  ,  thereby achieving better convergence.  A similar 

idea has been explored in previous work [9, 13], however, 

we adapt it here to generalize the H-B method. The logic is 

that the Lipschitz gradient condition (second assumption) is 

required to guarantee the following inequality [16] 

        
2

1 2 1 2 2 1 2

2

T L
C x C x x x C x x x      .  (12) 

And that the above inequality is key to the proof of Theorem 

1, which in turn leads to setting the step size 
k

L
 

1
.  

However, L  is a loose estimate. If we can find a smaller 

Lipschitz constant, then, according to inequality (12), we 

will obtain faster convergence. This can be achieved 

through setting k k   and introducing a corresponding 

positive definite matrix  kD diag x  to replace the 

Lipschitz constant.  Hence, inequality (12) generalizes to 
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where 
D

 is the weighted norm associated with the 

positive definite matrix D: T

D
x x Dx . To prove 

inequality(13), we firstly need the following lemma:  

Lemma 2. Setting the step size k kx   is an approximation 

of the inverse Hessian.  

 

Proof:  Let H be the Hessian of the cost function 

 C x . Then, the inverse of the hessian is  
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From Eqn. (6), substituting for 
1kx 

 gives 
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Setting 1H    and rearranging gives 
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The summation over j only ever takes a value when i = j to 

give 
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Rearranging once more gives 
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Finally, we have 

 
   

 

2

1

T T k T k

i i i

k T

i

e K e Kx b e Kx b

x e K b






  

 

, 

which completes the proof.                                              ▀ 



Since the Lipschitz constant   is chosen as the largest 

eigenvalue of Hessian [19], the following inequality holds 

 
k kx

L
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In a manner similar to [13], we can replace inequality (12) 

in the proof of Theorem 1 in [16], with inequality (13) to 

get the following theorem for the scaled H-B method. 

 

Theorem 2. Let  kx  be a sequence generated by the 

scaled H-B method, and *x   be any optimal solution, then 
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Theorem 3. Scaled H-B converges faster than H-B.  

 

Proof: Theorems 1 and 2 imply a convergence rate of 

 2O k  , but  
D

x L x . Therefore, scaled H-B 

converges faster.                                                                 ▀  

We now provide a theoretical basis for the BA method, 

in that we can say it is a partially scaled H-B method. This is 

because it only replaces kx  with kp  inside the gradient as 

follows 

  1k k k kx P x C p


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.  (16) 

Note that the BA method also has its special acceleration 

parameter defined by Eqn.(8), however, it is not easy to 

prove that 
1
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. We can ensure the inequality by 

modifying BA  as follows 
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Thus, we know that Theorem 2 holds for the BA method.  

C. Choosing step size and acceleration parameter 

The two parameters in the scaled H-B method are step 

size k  and acceleration parameter k . In the original H-B 

method [16], k  is either set to 1 L , which is seldom 

known in practice, or it is estimated using a backtracking 

strategy, which incurs extra computational cost. The 

advantage of scaled H-B is that it not only converges faster 

than the original version (Lemma 3), but, in practice, it is 

easily setup without additional cost by simply setting  
k kx  . 

For the purposes of the experiments in the next section, 

we will evaluate three acceleration parameters; BA   

defined by Eqn.(17) , H B  , Eqn.(10), and FISTA , which is 

from the FISTA algorithm [12], and is defined as 
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where  
2

1 1 1 4 2k kt t  
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 

.  In fact, the FISTA 

algorithm can also be shown to be a special case of the 

scaled H-B method with 1k L  . For completeness, we 

will also evaluate the two reference algorithms, RL and BA.  

 

IV. EXPERIMENTS 

 
In this section we demonstrate the performance of the 

scaled H-B method for different parameter choices on both 

synthetic and real 3D images. In all, we compare five 

algorithms; the RL algorithm (RL), the BA method, scaled 

H-B method with parameter BA ( _ BAH B  ), scaled H-B 

method with parameter H B  ( _ H BH B   ) and scaled H-

B method with parameter FISTA ( _ FISTAH B  ). All 

algorithms are implemented in Matlab 7.12.0 and the BA 

method is the implementation in the deconvlucy function of 

the Image Processing MATLAB toolbox. The experiments 

are run on a Windows 7 64-bit machine with a processor 

Intel Core i7 2.80 Ghz and 6GB RAM.   

A. Synthetic Image Results 

The synthetic dataset we use is called “hollow-bars” 

[20]. The 3D image, of size 256 256 128  voxels, consists 

of six hollow bars arranged along a diagonal slice through a 

rectangular volume. As we know the synthetic reference 

image x , the performance measure is defined as the 

Kullback–Leibler (KL) divergence between kx  and *x
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x
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To measure the speed-up factor, we let the RL algorithm run 

for 200 iterations to obtain a value for  200 *,KLD x x . We 

then determine the number of iterations and time it takes for 

the other four algorithms to obtain a value smaller than 

 200 *,KLD x x . We also run a stability measure to stop 

iterating if      1k k kC x C x C x T  , where T = 

0.00001 in all experiments.  

Figure 1 shows the variation in KL divergence value 

versus iteration for both RL and scaled H-B with H B  ,  

 



 
Fig. 1: Graph of KL divergence versus iteration number for 

both the RL algorithm and the scaled H-B with H B   and 

for two noise levels (SNR =15 and 30) on the hollowbar 

image.  

 

illustrating the faster convergence of the latter. Clearly, the 

RL algorithm takes the full 200 iterations to converge, 

whereas the scaled H-B converges to the same KL 

divergence value after only 38 iterations.  The speed-up 

results for all five variants of the algorithm are summarized 

in Table I. The acceleration parameter BA  incurs extra 

computational cost to calculate, but reduces the number of 

iterations to 34. Both FISTA  and H B   are trivial to 

calculate, but need slightly more iterations, i.e. 38. Overall, 

the three scaled H-B variants and the BA algorithm achieve 

similar speed-ups of around a factor of five. 

Whilst the main focus of our work is on accelerating 

convergence, and not on improving image quality, we 

present here for completeness the restored images obtained 

with RL and scaled H-B, Fig. 2. The upper left is the 

original reference image, and the blurred and noisy version 

is upper right.  The cause of the shadowing (or "ghost-bars") 

when blur and noise are added, is due to unfocused light 

from the adjacent horizontal bars occupying different z-

planes.  Comparison of the visual quality of the restored 

images shows that similar results are achieved with RL and 

scaled H-B.  However, closer analysis shows that scaled H-

B has reduced the shadowing of adjacent bars and has 
resolved the two edges of the in-focus bar marginally better. 

    

Algorithm Iteration Time (sec) Speed-up 

RL 200 207 1.0 

BA 29 38 5.4 

_ BAH B    34 45 4.6 

_ H BH B     38 39 5.2 

_ FISTAH B    38 40 5.2 

 

TABLE I: Speed-up of scaled H-B on synthetic data.    

 
 

Fig. 2: One z-stack view of “hollow-bars”. Original image 

(upper left); blurred noisy image (Upper right); restoration 

by RL (lower left) and scaled H-B (lower right).  

 

In both cases the noise has been significantly reduced in the 

region around the bars, with some residual noise present in 

the outer background regions of the image.  The latter is 

arguably more visible in the scaled H-B restored image. 

To provide a quantitative evaluation of the restored 

images, the peak signal-to-noise ratio (PSNR) and Structural 

SIMilarity metrics (SSIM) [21] were used. TABLE II shows 

the scores for two noise levels, SNR =15 and 30, on the 

hollowbar image. Although the restoration scores decrease 

when the noise level increases, the various algorithms gave 

similar values, suggesting that acceleration does not come at 

a cost of sacrificing image restoration quality.  

B. Real Image Results 

The convergence rates of the algorithms were then evaluated 

using two real 3D microscopy datasets.  The same test 

procedure used for the synthetic image was also used here, 

except that the performance measure in this case was  C x  

as we do not have a reference image to calculate

 200 *,KLD x x .  In addition, we discovered that for the larger 

real image datasets, the 6 GB of RAM was insufficient to 

 

Algorithm PSNR  SSIM PSNR 

 

SSIM 

 SNR=15 SNR=30 

RL 19.59 0.803 18.80 0.478 

BA 19.51 0.802 19.43 0.446 

_ BAH B    19.42 0.807 18.87 0.461 

_ H BH B     19.59 0.818 19.12 0.448 

_ FISTAH B    19.63 0.819 19.09 0.448 

 

TABLE II: PSNR (dB) and SSIM scores of the various 

algorithms on the hollowbar image with SNR =15 and 30.  
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Fig. 3: Graph of  C x  versus iteration number for both the 

RL algorithm (dotted line) and the scaled H-B with H B   

(solid line) for the C. Elegans embryo CY3, DAPI and FITC 

image channels. 

 

store the variables required for the calculation of BA .  This 

is a serious practical limitation of these algorithms, which 

we explore further in subsection C.  

The first real dataset used is the image of a C. Elegans 

embryo [20], which consists of CY3, DAPI and FITC 

channels of size 672×712×104 voxels, Fig. 4 (left-hand 

column).  Each channel contains different kinds of 

structures; extended objects (the chromosomes in the 

nuclei), filaments (the microtubules), and point-wise spots 

(a protein stained with CY3). The data was acquired with 

a100X, 1.4NA oil objective yielding an x-y image pixel size 

of 64.5 × 64.5 nm.  The z-step size was 0.2 µm. 

Figure 3 shows the convergence results for all three 

image channels of the C. Elegans embryo, with, and 

without, scaled H-B acceleration.  Once again, the faster 

convergence of the scaled H-B is obvious, particularly for  

 

Algorithm Iteration Time(sec) Speed-up 

CY3 

RL 200 1926 1.0 

_ H BH B     37 366 5.3 

_ FISTAH B 
 
 37 368 5.2 

DAPI 

RL 78 810 1.0 

_ H BH B  
 
 15 164 4.9 

_ FISTAH B 
 
 15 161 5.0 

FITC 

RL 200 2048 1.0 

_ H BH B     28 302 6.8 

_ FISTAH B 
 
 28 303 6.8 

 

TABLE III: Speed-up of scaled H-B on the C. Elegans 

image. 

  
 

Fig. 4: One z-stack view of the CY3 (top), DAPI (middle) 

and FITC (bottom) channels of a C. Elegans embryo. (Left) 

Blurred noisy image; (Middle) Restoration by RL; (Right) 

Restoration by _ H BH B   . 

the FITC channel, even though it initially tends to oscillate 

for several iterations before starting to converge. A 

quantitative summary of the speed-up results for each 

channel image are shown in Table III. We observe a similar 

speed-up for the CY3 and DAPI image channels as for the 

“hollow-bars” image. In the DAPI channel case, the RL 

algorithm only runs for 78 iterations before meeting the 

stability criteria. The speed-up for the FITC channel is 

greater than for the others, a factor of seven compared to 

five. 

Figure 4 shows the restored images for all the channels.  

Once again, the scaled H-B appears to produce a better 

quality restored image in that it reduces the halo due to 

leakage of unfocused light from adjacent z-planes more than 

RL. 

The third dataset is an image of a mouse kidney cell, Fig. 

6, which consists of PFID_488 and PFID_560 channels of 

size 1004×1002×51 voxels. The PFID_488 channel, Fig. 6 

(top-left), shows internal components and the PFID_560, 

Fig. 6 (bottom left), shows the outer component or 

membrane of the kidney.  The data was acquired using a 

Spinning Disk confocal microscope with a 100X, 1.4NA oil 

objective, PlanApochromat. This yielded an x-y pixel size of 

80 × 80 nm.  The z-slice thicknesses were 0.13 µm and 0.2 

µm for the PFID_488 and PFID_560 channels respectively.  

Figure 5 shows the convergence results for both image 

channels of the mouse kidney, with, and without, scaled H- 
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Fig. 5: Graph of   C x   versus iteration number for both the 

RL algorithm (dotted line) and the scaled H-B with _H B    

(solid line) for the mouse kidney PFID_488 and PFID_560 

image channels.   

 

B acceleration.  As before, the faster convergence of the 

scaled H-B is obvious.  The timing results for both channels 

are summarised in Table IV.  Once again, we observed a 

similar speed-up result for both image channels as for the 

“hollow-bars” image. For PFID_560, the RL algorithm only 

runs for fifty iterations before it meets the stability criteria. 

The restored images for both channels are also shown in 

Fig. 6.  In this case, for PFID_488, the degradation in image 

quality in the original image was not as severe as for the 

other datasets.  Nonetheless, the image quality has improved 

with fine internal components being resolved.  The contrast 

for the H-B image is marginally better than for the RL 

image. For PFID_560, the original image has very poor 

contrast.  Both restored images are significant improvements 

on the original, with the H-B image again having marginally 

better contrast than the RL image. 

C. Memory analysis 

The peak memory usages of RL, BA and scaled HB are 

shown in Table V for all three image datasets.  It is clear  

 

Algorithm Iteration Time(sec) Speed-up 

PFID_488 

RL 200 2951 1.0 

_ H BH B  
 
 30 459 6.4 

_ FISTAH B 
 
 29 455 6.5 

PFID_560 

RL 50 741 1.0 

_ H BH B  
 
 11 172 4.3 

_ FISTAH B 
 
 10 156 4.7 

 

TABLE IV: Speed-up of scaled H-B on the mouse kidney 

image. 

 
 

Fig. 6: One z- stack view of the PFID_488 (top) and 

PFID_560 (bottom) channels of mouse kidney. (Left) 

Blurred noisy image; (Middle) Restoration by RL; (Right) 

Restoration by _ _ H BH B   .  

  

that the memory usage for RL and _ H BH B    is roughly 

the same, whereas it is greater for BA as indicated 

previously.   For the hollowbar image, roughly 35% extra 

memory is required for BA, whilst for the real images the 

system ran out of memory. 

 

V. CONCLUSIONS 

 

In summary, the main contribution of this paper is to 

propose a novel scaled H-B method for accelerating the RL 

algorithm. We show that the method includes the BA 

method as a special case, and provide a proof that it has a 

convergence rate of  2O k  . Experiments on both synthetic 

and real images, demonstrate a speed-up factor of around 

five on average over the standard RL algorithm.  In addition, 

we would argue that there is also an associated marginal 

improvement in the quality of the restored image obtained 

using scaled H-B. In the future, we’d like to extend the 

analysis here to include a regularization term. 
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 Image size 

(voxels) 

RL _ H BH B  

 

BA 

Hollow-bar 256 256 128 
 

887 829  1152  

C. Elegans 

embryo CY3 

 

672×712×104 4729  4728  Out of 

memory 

Mouse kidney 

PFID_488 

1004×1002×51 4470  4644  Out of 

memory 

 

TABLE V: Peak memory usage, in MB, of RL, BA and 

scaled H-B.  
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