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Abstract 

Accurate health estimation and lifetime prediction of lithium-ion batteries are crucial for 

durable electric vehicles. Early detection of inadequate performance facilitates timely 

maintenance of battery systems. This reduces operational costs and prevents accidents and 

malfunctions. Recent advancements in “Big Data” analytics and related 

statistical/computational tools raised interest in data-driven battery health estimation. 

Here, we will review these in view of their feasibility and cost-effectiveness in dealing with 

battery health in real-world applications. We categorise these methods according to their 

underlying models/algorithms and discuss their advantages and limitations. In the final 

section we focus on challenges of real-time battery health management and discuss potential 

next-generation techniques. We are confident that this review will inform commercial 

technology choices and academic research agendas alike, thus boosting progress in data-

driven battery health estimation and prediction on all technology readiness levels. 
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Nomenclatures 

ANN Artificial Neural Network 
BOL Beginning of Life 
BMS Battery Management System 
CC Constant Current 
CV Constant Voltage 
CE Coulombic Efficiency 
DA Differential Analysis 
DV Differential Voltage 
DTV Differential Thermal Voltammetry  
DMP Differential Mechanical Parameter 
DOD Depth of Discharge 
EOL End of Life 
EIS Electrochemical Impedance Spectroscopy 
EV Electric Vehicle 
FFNN Feed Forward Neural Network 
GPR Gaussian Process Regression 
IC Incremental Capacity  
ICF Incremental Capacity Curve Based on Measured Force 
LAM Loss of Active Material 
LLI Loss of Lithium Inventory 
Li-ion Lithium-ion 
KF Kalman Filter 
LFP Lithium Iron Phosphate  
ML Machine Learning 
MA Moving Average 
NMC Lithium Nickel Manganese Cobalt Oxide 
PDF Probability Density Function 
PF Particle Filter 
RVM Relevance Vector Machine 
RUL Remaining Useful Life 
RNN Recurrent Neural Network 
SEI Solid Electrolyte Interface 
SOH State of Health 
SVM Support Vector Machine 
SVR Support Vector Regression 
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1. Introduction 

Lithium-ion (Li-ion) batteries have been widely applied as energy storage systems, 

such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) [1] . The performance 

of  Li-ion batteries deteriorates with time and use due to the degradation of their 

electrochemical constituents, resulting in capacity and power fade [2]. This is called 

battery ageing and is a consequence of multiple coupled ageing mechanisms influenced 

by different factors such as battery chemistry and manufacturing, as well as 

environmental and operating conditions. The point when the battery fails to meet the 

energy or power requirement for its application is commonly defined as the end of life 

(EOL). To ensure the safety and reliability of batteries despite ageing, health diagnostic 

and prognostic tools are required. State of health (SOH) estimation techniques have been 

developed to track the actual performance of batteries in operation. The SOH reflects the 

current capability of a battery to store and supply energy/power relative to that at the 

beginning of its life, calculated as the ratio of the actual cell capacity/resistance and its 

initial value. Generally, for applications where the available energy in the battery plays a 

fundamental role, such as in EVs, the capacity is often used for SOH characterization [3,4]. 

In applications where power is of interest, such as in HEVs, the internal resistance is 

usually employed as a SOH metric [3,4]. Typically, batteries are considered at EOL (and 

therefore sentenced to replacement) when their capacities drop below 80% of the initial 

values or when their internal resistances doubled [3]. Internal resistances can be 

measured by different methods (e.g. electrochemical impedance spectroscopy [5] and 

hybrid pulse power characterization [6]) and show high sensitivity to experimental 

conditions such as the cell state-of-charge [5], and the electrical contact resistance 

between the connectors and terminals of the cell, etc.. In contrast, capacity is a directly 

measured value by Coulomb counting method under galvanostatic charging/discharging 

conditions and thus perceived as a more straightforward descriptors for EOL and SOH 

diagnosis, although still dependent on usual control parameters such as currents and 

temperature. The existing literature on SOH estimation is rather extensive albeit focuses 

mostly on capacity estimation, which will also be our focus unless otherwise specified. 
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The prognostics of battery health concerns the battery energy/power degradation in 

the future and predicting how soon the battery performance will become unsatisfactory 

[7]. The health prediction requires the knowledge of the current and historical 

degradation signals, often obtained from the SOH estimator to forecast the future state of 

the system under certain operating conditions. The developed SOH estimation and health 

prediction algorithms are then implemented in the battery management system (BMS) 

for online monitoring. With the battery health and lifetime information, users can 

monitor the performance of the cells and can schedule any maintenance or replacements 

in advance. 

A variety of SOH estimation methods have been developed over the years. One 

common way is through the use of models simulating the behaviours of cells [8,9], 

followed by various optimization algorithms and observers, such as the Kalman filter 

family [10] and particle filter [11] to identify the parameters and SOH states [4]. A widely-

used approach is the use of electrochemical models that apply partial differential 

equations to simulate mass and charge transfer kinetics that are closely related to aging 

[12]. Also widespread are electrical models which use electrical-circuit analogs such as 

resistors and capacitors, to simulate the cell dynamics under different input currents [13]. 

This field has been particularly vivid and a number of review papers on this topic exist 

[14–16]. 

Data-driven methods for health estimation and prediction are gaining increasing 

interest in both academia and industry due to their advantages of flexibility and being 

model-free [17]. Here, we define them as the techniques requiring a large set of ageing 

data, having their effectiveness is heavily dependent on the quality and size of the dataset. 

Several technologies in this category are noteworthy. First, due to the correlation between 

the SOH and electrical, thermal and mechanical behaviours of a battery, differential 

analysis emerged as an effective tool which uses information on voltage, surface 

temperature and strain under different aging states. Next, by fitting a large amount of 

data collected under predefined experimental conditions, lifetime estimation models have 

become another popular technique with high computational efficiency and acceptable 

accuracy assuming similar operating conditions. Finally, due to their flexibility and 
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nonlinear matching ability, machine-learning methods are among the most popular data-

driven techniques for both health estimation and prediction. Specialized aging tests 

incorporating multiple factors affecting battery health are conducted to generate a 

suitable training dataset. Next, an underlying relation is synthesized by mapping these 

factors to the battery health state using different intelligent techniques. Data-driven 

methods are becoming one of the most prominent approaches to battery health 

estimation and prediction for real applications as they do not involve complex physical 

models.  

To date, a few review papers on SOH and RUL estimation have been published, 

summarized in Table 1. Some [3,18–20] focus on one aspect (SOH or RUL) alone. As SOH 

estimation is often used as an input for ageing models/RUL predictors, these two topics 

are heavily correlated, and a review paper covering both is required. In the reviews where 

both are surveyed, e.g. [7,21], data-driven approaches are still not covered in depth.  

Table 1. An overview of the published literature related to battery SOH estimation and RUL prediction 

Topic Reference Content 
 
 
 
 
 
Health 
estimation  

Xiong et al. (2018) [18] General review on SOH estimation methods  
Berecibar et al. (2016) 
[19] 

General review on SOH estimation methods and ageing 
mechanism diagnosis tools 

Farmann et al. (2015) 
[3] 

Review of SOH estimation techniques for EV and HEV 
application 

Rezvanizaniani et al. 
(2014) [22] 

Battery health estimation and safety management by roughly 
focusing on physical models, data-driven and fusion methods 

Lu et al. (2013) [4] Key functions of the BMS, such as the state of charge 
estimation, SOH estimation, cell balancing and fault 
diagnosis 

Barre et al. (2013) [23] Ageing mechanism and SOH estimation for automotive 
applications 

Zhang et al.(2011) [7] Battery state of charge estimation, health monitoring, fault 
detection, correction, and RUL prediction 

 
Health 
prediction 

Lucu et al. (2018) [20] RUL prediction methods focusing on self-adaptive battery 
ageing models 

Lipu et al. (2018) [21] General review of battery SOH estimation and RUL 
prediction methods  

Here, we give an overview of data-driven estimation and prediction methods applied 

to Li-ion batteries and discuss their challenges. The review is intended to inform 

commercial technology choices and academic research agendas alike, thus boosting 
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progress in data-driven battery health estimation on all technology readiness levels. We 

cover the following topics: 

 In Section 2, Battery ageing mechanisms and the most common stress factors are 

discussed as the fundamentals for developing data-driven prediction methods. 

 For battery SOH estimation, data-driven technologies including differential 

analysis, machine learning, and others are reviewed in Section 3, and their benefits 

and drawbacks are discussed. 

 For battery health prediction, technologies including analytical models with data 

fitting, and ML methods are comprehensively surveyed in Section Error! 

Reference source not found..  

 A compilation of the existing issues and challenges is given in Section 5. Feasible 

and cost-effective solutions to address the current challenges are suggested as 

future work directions toward the improvement of data-driven based SOH 

estimation and RUL prediction technologies. 

2. Li-ion battery ageing mechanisms and stress factors  

The success of health estimation and prediction tools depends on how well the battery 

ageing processes and their causes are understood and translated mathematically [24]. 

Many studies have been dedicated to identifying fundamental cause-effect relations for 

the loss of performance. Here, we summarize the most common ageing mechanisms in 

battery and provide an overview of the main stress factors. The interested reader may 

refer to the literature dedicated to this topic [25–27].  

A widely accepted categorization divides the main degradation modes acting in Li-ion 

as three: the loss of lithium inventory (LLI); the loss of active material (LAM) in the 

electrodes and the increase of cell internal resistance. LLI is mostly related to the 

consumption of Li-ions by side reactions, such as solid electrolyte interface (SEI) 

formation on the surface of the graphite negative electrode, electrolyte decomposition 

reactions or lithium plating [23]. Such side reactions irreversibly consume Li-ions, 

making them unavailable for subsequent charge/discharge. LAM normally originates 
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from a combination of factors. One is the structural deterioration of electrodes due to 

volume changes of active materials during cycling. These induce mechanical stress, 

leading to particle cracking and reducing the density of lithium storage sites. Other factors 

include chemical decomposition and dissolution reactions of transition metals into the 

electrolyte and SEI modification [23,28]. The resistance increase of the cell can be caused 

by the formation of parasitic phases, such as SEI, at the electrode surface, as well as the 

loss of electrical contact inside the porous electrode [23].  

Batteries deteriorate even when not in use (“calendar aging”). In contrast, cyclic aging 

refers to the ageing from the continuous battery charge/discharge cycling. Understanding 

both modes is extremely important for a better design and implementation of SOH 

estimation and RUL prediction tools. High storage state of charge (SOC) and high 

temperature are the main drivers of calendar ageing [29]. High SOC implies low Li 

content in the active material of the positive electrode (cathode). This increases the 

tendency of the electrode to chemically decompose electrolyte components. Behind that 

is the same chemical driving force that creates the higher cell voltage at higher state of 

charge, i.e., a higher driving force for Li to re-enter the electrode. Calendar ageing will 

inevitably occur throughout the battery life regardless of the operating mode, and all the 

factors in calendar ageing also affect cyclic ageing. The latter, however, is affected by 

additional factors, such as over-charge/discharge, current rate and cycling depths. These 

factors are not linearly correlated, which complicates the ageing process considerably [26].  

High Temperatures: Accelerate side reactions, including (i) SEI layer growth rates 

on the anode, resulting in faster LLI and cell resistance increase [30], (ii) metal 

dissolution from the cathode [30], and (iii) electrolyte decomposition, with (ii) and (iii) 

leading to LAM and LLI. Extremely high temperatures may trigger “thermal runaway”, 

the ultimate threat [31].  

Low Temperatures: Slow down the transport of Li ions in both electrodes and in the 

electrolyte. Where the electrolyte meets the graphite electrode, attempts of fast charging 

at low temperatures may thus create crowding of Li ions. This may cause (local) lithium 

plating of graphite [32] which comes with LLI. Continuous inhomogeneous lithium 
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plating will eventually cause the growth of lithium dendrites, which may penetrate the 

separator and short circuit the cell. 

Over-charge/discharge: When a cell is overcharged, the cathode is over-

delithiated (no active lithium available) and the anode is over-lithiated (no more ‘room’ 

for lithium). The cathode material suffers from irreversible structural change when over-

delithiated [33], followed by the dissolution of transition metal ions (such as Mn2+) and 

active material decomposition [34]. Decomposition of the electrolyte and significant 

increase of the total internal resistance were found during the overcharging process [35]. 

Overcharging the cell can generate significant heat, due to Joule heating and the heat 

generated by a series of side reactions at both electrodes [36]. During over-discharging, 

the anode potential increases abnormally which leads to the anodic dissolution of the 

copper (Cu) current collector and formation of Cu2+ ions [37]. Upon recharging, the 

reverse reaction can form copper dendrites, which may lead to internal short circuit [38].  

High currents: Excessive charge and discharge currents can cause localized 

overcharge and discharge to occur, leading to the same degradation reactions as 

generalized overcharge and over discharge. High currents come with more heat waste, 

which can raise the cell temperature and concomitantly the rates of ageing processes. 

Once Li-ion batteries use organic electrolytes, their relatively low heat capacity make 

them especially prone to rapid temperature increase upon current flow if compared to 

water-based batteries. For graphite anodes, fast charging also results in metallic Li plating 

due to the graphite’s limited ability to accept Li ions at high rates, leading to LLI[39].  

Mechanical stresses: Cells are subjected to stress from different sources, such as 

manufacturing (e.g. externally applied stack pressure) [40], electrode material expansion 

during operation [41], gas evolution in mechanically constrained cells and external 

loading during service. The highest stresses tend to be generated in the electrode particles 

near the separator, where cracking and fracture are most likely to take place [42]. When 

stress exceeds a certain limit, the electrode experiences material failure, associated with 

cracking or fracture. That results in significant degradation of cell performance and 

capacity fade [43].  
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Fig. 1. Battery ageing impact factors during cycling and their associated degradation modes, adapted from 
[28] 

The contributions of ageing stress factors to cell performance are outlined in Fig. 1, 

providing a proxy to describe the conditions which increase the ageing rate [24]. In large-

format battery systems, the BMS is usually responsible for controlling the operating 

conditions to extend longevity and ensure safe operation. For instance, over-

charge/discharge protection can be achieved via voltage regulation by the BMS: 

(dis)charging is stopped when one cell in the pack reaches a fully charged or discharged 

state. The thermal management system can actively heat/cool the batteries to ensure their 

temperature is in the range where the degradation rate is minimal. Developing an optimal 

charging protocol to achieve good trade-off between battery capacity fade and charging 

time [44–46].Understanding the impact of ageing factors is also essential to develop 

reliable health diagnostic and prognostic tools. Data-driven methods are largely based on 

the quantity and quality of experimental ageing data, but it is in practice impossible to 

test the batteries under the full range of potential operating conditions. For a specific 

application, some of the stress factors can play more important roles in the battery ageing 

than others. A quantitative relationship between operating conditions, stress factors, and 
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ageing processes has to be focused on those with the greatest impact [24], this should be 

considered when designing the experimental testing scheme.  

3. State of health estimation  

Only high-fidelity data-driven approaches of SOH estimation are reviewed in this 

section, for conciseness. A differential analysis (DA) involves identifying features from 

the differentiated curves of the electrical, thermal or mechanical parameters during 

battery cycling, and correlating them with battery capacity fade. Machine learning 

methods, on the other hand, require training a model based on the extracted input 

features from the measured data of a BMS to describe the cell ageing behaviour and 

estimate the SOH. Other methods include constructing correlations between the intrinsic 

characteristics of the cell such as coulombic efficiency with its capacity fade. Before being 

applied to online SOH estimation, all the health estimators need to be built offline, based 

on experimental data after sufficient tuning and validation to ensure reproducibility and 

accuracy. 

3.1  Differential analysis to identify features 

DA in the context of batteries is based on the differentiation of curves containing the 

electrical, thermal or mechanical signals, obtained upon galvanostatically charging or 

discharging of a cell. Incremental capacity/differential voltage (IC/DV) analysis, 

differential thermal voltammetry (DTV) and differential mechanical parameter (DMP) 

analysis are most frequently mentioned. This subsection introduces the basics, 

application, and limitations of each DA method. 

3.1.1 IC/DV analysis  

IC/DV analysis provides a non-destructive means of characterization of cells and has 

been widely used for ageing mechanism identification [47,48]. IC is calculated by 

differentiating the change in battery capacity to the change in terminal voltage for a 

sufficient small-time interval, while DV is defined as the inverse of IC. The differentiation 

transforms voltage plateaus in charge/discharge curves into clearly identifiable peaks in 
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IC curves and valleys in DV curves. Peaks in the DV curve (plotted vs. cell capacity) 

indicate phase transitions in the electrodes, whereas peaks in the IC curve (plotted vs. cell 

voltage) represent the location of a phase equilibria [49]. Each peak in the curve has 

unique features, like intensity and position, reflective of a specific electrochemical process 

in the cell [50]. Both can provide ageing information, with one significant difference. IC 

curves refer to the cell voltage, which can be a direct indicator of the battery state. DV 

curves instead, refer to the cell capacity, which is a secondary indicator that varies with 

battery degradation and loses reliability as a reference in the course of ageing [51]. 

Through the progression of each peak in IC/DV curves throughout ageing, and observing 

the change of the active materials over time, degradation mechanism can be distinguished 

[52]. To study ageing, low charging/discharge current rates (e.g. C/20 or less) are 

typically used, as the peaks in the differential voltage spectrum are more pronounced and 

the polarization influence on IC curves is lower.  

IC/DV analysis is also a powerful tool for online SOH estimation [53,54]: it can be 

easily implemented in a BMS by monitoring two parameters only (voltage and 

charge/discharge capacity) and is suitable for different types of Li-ion cells, regardless of 

the battery chemistry, size and cell design. However, for batteries with flat voltage vs. SOC 

regions (e.g., LiFePO4 or LiMn2O4 cathodes), data processing via a two-point numerical 

differentiation is problematic once dV approximates zero, yielding results of infinite 

slopes. In general, differential curves are very sensitive to the sampling level, cell 

performance change and measurement noise. Therefore, smoothing is the first and most 

important step for SOH analysis, achieved by various filtering techniques, such as moving 

average [49], Gaussian filter [53] and Savitzky-Golay filter [55,56].  

Once smoothed IC/DV curves are obtained, the evolution of features linked to capacity 

fade can be easily identified and tracked by, e.g. peak location [53], height [54] and 

integrated peak area [57]. For instance, Fig. 2 illustrates the evolution of IC curves of a 

high energy NMC cell under a charging current of C/3, where all the peaks are found to 

shift towards higher voltage levels and the peak heights decrease along with cycling [53]. 

Then, the SOH estimator is developed offline by constructing an analytical function 

between the battery capacity and the values of features of interests (FOIs) as a function of 
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every possible degradation path. Berecibar et al. [58] estimated the SOH based on peak 

intervals from DV curves. Note that batteries in real-life applications are charged from 

different SOC levels, which leads to large changes of peak positions on DV curves due to 

the variation of charging capacity. That problem does not arise for the peak positions of 

IC curves since those are not plotted vs. capacity but vs. cell voltage, which has a more 

definite position [59] and is not subject to accumulated errors. Hence, IC-based health 

monitoring is available even during partial cycling. Furthermore, IC peaks are 

discoverable within a specific SOC range, e.g. around 60% [53], making IC more suitable 

for online SOH estimation than DV. Weng et al. [54] found the IC peak height to decrease 

with LFP battery capacity fading. Li et al. [53] used a linear regression relationship to 

describe the correlation between the battery capacity fade with the variation of peak 

positions from IC curves for NMC/graphite cells. Table 2 lists the testing conditions and 

features used in the published literature for single cell capacity estimation based on 

IC/DV analysis. As can be seen, this method is restricted to data obtained at low C-rates. 

At high current rates, the peaks are offset by the over-potential caused by the impedance 

of the cell, which is a stronger function of temperature than ageing [60]. Temperature can 

introduce significant errors in any real application of IC/DV curves.  
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Fig. 2. IC curves for a high energy NMC/graphite cell under charging current of 0.3 C after different cycles 
at 25°C, and the decreasing of peak intensity and shifting of peak location can be observed during cell 

ageing. [53] 

 

Table 2. Summary of the features and estimation methods used for single cell capacity estimation using 
IC/DV analysis 

Differential 
analysis 

Current 
rate 

Features Battery 
Chemistry 

Ref. 

IC C/10 Peak height, peak area LFP Jiang et al. [61] 
IC C/2 Peak position NMC Li et al. [53] 
IC 1C Integrated area surrounding the 

peak 
NMC Tang et al. [57] 

IC C/2 Peak height LFP Weng et al. [54] 
IC C/20 Peak position and height NMC Zhang et al. [62] 
DV C/5 Regional capacity LFP Berecibar et 

al.[58] 
DV 1C Normalized location interval of 

two consecutive transformation 
parameter 

LFP Wang et al.[63] 

3.1.2 Differential thermal voltammetry (DTV) analysis  

DTV analysis can be used as a complementary tool to existing SOH diagnostic 

techniques, which combines the concept of IC analysis with temperature measurements 

to infer thermodynamic information about the electrode materials [55,64]. The DTV 
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technique probes the cell surface temperature during galvanostatic (dis)charges, and it is 

obtained by differentiating the temperature (T) with respect to voltage (dT/dV) and 

plotting against cell voltage. DTV was designed to easily and quickly reveal the most 

pronounced entropy-related information during cell operation. Maher and Yazami [65] 

showed that the entropy (change) profiles of aged cells show variation in peak positions 

and amplitudes similar to those displayed by IC/DV profiles. For instance, shrinking 

peaks can be assigned to the increasing number of point defects in the active materials 

[66,67]. DTV provides similar information as IC analysis yet with the additional 

information of entropic nature. Each peak in the DTV might be attributed to a particular 

phase transition of either the negative or positive electrodes, or be a result from the 

combination of both when full cells are investigated using this technique, as shown in Fig. 

3 (a) and (b).  

 

Fig. 3. DTV results and peak fitting obtained from a 2 C constant current discharge in both (a) aged and 
(b) fresh cells. Each peak can be assigned to a phase transition from negative and positive electrodes 

combined [68]. 

The peaks with greatest change in the peak parameters (e.g. position, height and width) 

can be used for diagnosing the cell degradation, such as capacity fade, resistance increase 

and inhomogeneous electrode performance, showing potential for SOH estimation in real 
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applications [55,60]. Merla et al. [55] carried out DTV analysis and found that the peak 

position and height, both correlated with the cell impedance rise, change significantly 

with battery ageing. In their following work [68], they demonstrated the applicability of 

DTV for monitoring the health information of single cells connected in parallel. In a 

technique similar to DTV, Wu et al. [69] extracted an indicator from the temperature 

variation curve (dT/dt) using thermistors for battery SOH estimation and found that the 

time period from starting the charging process to the minimum in the dT/dt curve show 

a linear correlation with the battery health state. Worth mentioning the validity of this 

method has not been fully demonstrated on the cells with partial charged condition and 

no heat flux sensor was employed. 

Generally, DTV  is invoked as experimentally easy and applicable for parallel connected 

cells with the advantage of enabling higher current rate tests than the ones required for 

IC/DV analysis, for instance [68]. It only requires monitoring the parameters of voltage 

and temperature during the galvanostatic charge/discharge process, which shows great 

potential for online applications. Moreover, DTV does not require strict isothermal 

conditions; in fact, isothermal conditions (T ≈ const.) have no meaning for DTV analysis. 

The heat flux from the cell will only begin to affect the results if the cell temperature rises 

significantly above the ambient [55]. Appropriate DTV signals require the heat flux to the 

surroundings to be low in comparison with the rate of heat generation that dominates the 

dT/dV term, meaning that there is no necessity of super-efficient cooling of the batteries, 

making such analysis experimentally easier. However, DTV analysis is easily influenced 

by the testing temperature environment, and fluctuations of ambient temperature can 

introduce large noise hampering the extraction of meaningful data and further 

interpretation.   

3.1.3 Differential mechanical parameter (DMP) analysis  

Some recent work has also been directed toward understanding and modelling the 

mechanical behaviour of batteries for battery SOH estimation, such as the variation of cell 

level strain (ε) and stress [70,71].  The intercalation/de-intercalation of Li-ions in/from 

the electrode active materials is associated with volume change, expanding and 
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contracting in repeatable patterns [72]. Mechanical stress in a cell evolves as a result of 

electrode expansion against a constraint normal to the plane of electrodes. It can be 

measured by load sensors on the cell surface.  

Cannarella et al. [71] proposed to estimate battery SOH through the measurement of 

cell strain, after showing that the stress resulting from electrode expansion is linearly 

correlated with the SOH. The physical basis for this relationship is thought to be SEI 

growth. A few studies have investigated the first and second derivative of strain with 

respect to charge (dε/dQ and dε2/dQ2) [56,73] and strain differential to voltage (dε/dV) 

[72]. They postulated these curves bear similarities to IC/DV analysis and might indicate 

phase transitions in electrode materials. The fixtures for measuring cell level vary 

somewhat across this research area. Oh et al. [73] measured the strain of the cell during 

cycling by high-precision displacement sensors and used the dε/dQ curves to identify the 

phase transitions in the negative electrode. They pointed out that the measured strain 

caused by cell swelling is a significant factor in cell performance and claimed that strain 

derivatives have potential for SOH estimation. Sommer et al. [72] measured the cell strain 

through optic fibre sensors and plotted the derivatives dε/dV as a function of voltage. 

They claimed that the peaks in the differential curves representing an increase in strain 

at some voltages can be assigned to phase transitions. Schiffer et al. [56] measured strain 

via a linear variable differential transformer: an electromechanical sensor that converts 

mechanical vibrations into variable electrical signals. The second derivative of the strain 

with respect to capacity (dε2/dQ2) was shown to exhibit similar shifts in peaks as those 

expected in the DV curves during the cell degradation process but in a more consistent 

and reliable manner. The dε2/dQ2 curves were applied for identifying phase transitions in 

electrode materials at higher current rates than the DV analysis, making the method more 

time efficient.  

However, strain measurement is only applicable to unconstrained cells that can expand 

freely. In a battery pack this expansion is limited, making it difficult to measure strain. 

Stress, on the other hand, resulting from expansion in a constrained space can be 

measured instead. Samad et al. [74] measured it with a force sensor on the end plates of 

a battery pack, and developed a method for battery capacity estimation by using IC curves 
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based on measured force (ICF, dQ/dF). A linear relationship was found between the 

battery capacity fade and the increase of peak voltage in both ICF and IC curves as shown 

in Fig. 4. They claimed that the data processing of the ICF curve was easier than IC 

analysis, as ICF has a better signal to noise ratio than DV curves as the amplitude of the 

force signal is much bigger than that of the voltage signal. The identified ICF peaks are at 

a higher SOC level (around 70%) than the peaks in IC curves (around 40%) and indicate 

that an ICF-based SOH monitoring method could be updated more frequently during 

regular use of an EV or HEV where the SOC does not usually fall below 50%. While strain 

derivatives may contain the same information as IC/DV analysis, there is a barrier to 

using this method as it requires an additional apparatus to collect the required data. 

Despite these disadvantages, the strain derivative analysis remains a practical tool when 

cells are cycled under higher current rates, which is the main hurdle for IC/DV analysis 

[56]. 

 

Fig. 4. The IC (dQ/dV)  and ICF (dQ/dF) curves of the tested cell during 1C discharge capacity test after 
different cycles, the peaks in both the IC and ICF curves shift linearly as the number of cycles inreases. 

[74] 

In a nutshell, each differential analysis has its merits and demerits and should all be 

taken as complementary techniques to aid the reasoning behind battery aging. To enable 
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battery users to select the appropriate method for a given application, the characteristics 

of these three DA methods are compared in Table 3.  

Table 3. Summary of the characteristics of differential analysis techniques proposed for online battery 
capacity estimation 

Methods Advantages Disadvantages 
IC/DV 

analysis 
 Easy to monitor, only needs two 

parameters (voltage and capacity); 
 Can be applied to batteries with 

different types, sizes and chemistries;  
 Works for partial charging/discharging 

conditions; 
 Easy to be implemented in BMS for 

online applications. 

 Limited to low current rates (< 1 C); 
 Sensitive to measurement noise – requires 

smoothed curves; 
 Influenced by the operation temperature; 
 Computing dV for chemistries with large 

voltage plateaus (e.g., LFP cells) might 
yield infinite solutions. 

DTV 

analysis 

 Easy, only needs two parameters 
(voltage and temperature);  

 Can be used for monitoring cells in 
parallel; 

 Applicable for partial 
charging/discharging conditions; 

 Easy for BMS implementation 

 Needs additional and calibrated 
temperature sensors; 

 Sensitive to testing temperature 
variations; 

 Challenges in overcoming noise in the 
temperature measurement. 

DMP 
analysis  

 Can be applied for cells with a high 
initial SOC; 

 Not limited to low and constant current 
rates; 

 Applicable to high current rates. 

 Needs additional equipment for the 
mechanical parameter measurement; 

 Not applicable to cells constrained with 
hard covers; 

 Difficult for online application. 

 

3.2 Machine learning (ML) methods for health estimation  

ML is a method of data analysis that automates analytical model building. It is based 

on the idea that systems can learn from data, identify patterns and make decisions or 

predictions with minimal human intervention. Fig. 5 illustrates the basic workflow 

required for the application of machine learning for the online SOH estimation. The first 

step is data collection. Measurable battery parameters, such as temperature, current and 

voltage data recorded by the BMS during operation are recorded and used as the inputs 

for training the model. However, not all data are relevant to cell ageing. A second step is 

to extract the features representative of the ageing process. The third step is to train a 

machine learning model to describe the relationship between the battery SOH and the 

extracted features. Once the model is trained, the last step is implementing it in a BMS 

for online application. 
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Fig. 5. Generic workflow for health prediction models using ML-estimated features. The learning machine 
senses the environment and stores data in memory and constructs the mapping from the feature space to 
the state space.  

Feature extraction is a critical step and significantly affects the SOH estimation 

performance. More meaningful and accurate input data will produce more relevant and 

accurate predictions. This section presents an up-to-date overview of machine learning-

enabled SOH estimation from the perspective of different input features for model 

training.  

Group 1: Model fitted features. Several studies used model fitted features such as 

internal resistance, capacitance and SOC to train their machine learning SOH estimators. 

These features cannot be directly accessed from the BMS sensors and must be inferred by 

an underlying electrical model and online parameter/state estimation algorithms. For 

example, Pan et al. [75] and Yang et al. [76] used battery health model parameters such 

as ohmic resistance, polarization resistance and polarization capacitance as input features 

to train the machine learning algorithm. This approach requires the utilization of an 

electrical model with online state estimation algorithms, such as recursive least square 

algorithm or extended Kalman filters.  



                                                             

20 

 

Group 2: Processed external features. Processed external features are normally 

extracted from differential charging curves under constant current rate, such as IC/DV 

curves [77,78] and voltage gradient curves (dV/dt)  [79,80]. As discussed in Section 3.1.1, 

the variation of peak features has a strong connection with the ageing process. Berecibar 

et al. [78] and Wang et al. [77] trained the proposed ML models with a selection of features 

from IC/DV curves for cell capacity estimation. Wu et al. [79] used geometric features 

such as arc length and curvature from the voltage rate of change curves as input data for 

model training.  

Group 3: Direct external features. Direct external features can be recorded directly by 

the sensors in a BMS during operation without the use of models. These include terminal 

voltage, current and temperature. For instance, You et al. [81] cycled batteries 

dynamically according to various driving patterns and used the measured BMS data 

(current, voltage, and temperature) to train a machine learning model, allowing the 

battery health estimation during dynamic operating conditions. Richardson et al. [82] 

and Li [83] proposed to train the model with the voltage-capacity data recorded in a 

specific voltage region under static charging conditions.  

To highlight the advantages and disadvantages of the ML-based SOH estimation 

methods from the perspective of extracted features, a comparison is illustrated in Table 

4. The model fitted features are not directly available but must first be calculated based 

on the BMS data. Those calculations rely on complex models and are thus not well suited 

for real-time applications. For the models using processed external features (group 2), a 

constant current is generally required, restricting their application to galvanostatic 

charging. In addition, due to the limited computational capability of the present BMSs, 

many external features are hard to obtain in operation. It seems that ML models with the 

variables measurable on-board are therefore more suitable for the implementation in 

more sophisticated devices, such as EVs. A SOH monitoring method which can directly 

utilize the direct external features (group 3) for battery SOH estimation becomes highly 

desirable, while the battery modeling and data pre-processing steps should ideally be 

avoided to reduce the computation effort. 
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Table 4. Comparison of ML algorithms for SOH estimation of batteries 

Categories Descriptions Advantage Disadvantages 
Group 1. 
Model 
fitted 
features 
 

 Extra models are 
needed for simulating the 
dynamic behavior of the 
battery such as electrical 
model. 

 Dynamic 
performance of 
batteries can be 
considered. 

 The model for simulating the 
battery working behaviour and the 
identification of model parameters 
are computationally expensive for 
online applications. 

Group 2. 
Processed 
external 
features 

 The features from 
differential curves such as 
peak position, intensity 
can also be used as input 
data 

 Small number of 
input features are 
required for model 
training. 

 Not suitable for dynamic 
operating conditions; 
 Constant current 
charge/discharge is required; 
 Some of the features can be hard 
to obtain during operation due to 
limited capability of the present 
BMSs. 

Group 3. 
Direct 
external 
features 

 Recorded directly by 
sensors in actual BMS; 
 Smooth methods can be 
applied to increase the 
data quality. 

 Easy to obtain from 
BMS; 
 Suitable for online 
application. 

 The number of input features can 
be large and therefore increase the 
computational cost. 

When the dataset is collected and represented appropriately, a particular ML model 

needs to be selected. A wide range of models exists, which can be broadly categorized into 

supervised-learning and unsupervised-learning models. In supervised learning, the 

training data consist of sets of input and associated output values. The goal of the 

algorithm is to learn a mapping from inputs to outputs with an acceptable degree of 

fidelity [84]. The form of the output values can be within a discrete set (such as 

categorizing a cell as failed or non-failed) or a continuous set (such as the capacity or 

resistance value). When the output is categorical, the problem is known as classification; 

when it is real-valued, it is known as regression. All the battery health estimation and 

prediction problem fall into the regression category, as they produce a numerical value of 

SOH or lifetime. Contrary to the supervised learning algorithms, where data scientists 

determine which variables or features to train the models on and use them to develop 

predictions, the unsupervised learning algorithms are only fed in the given inputs and 

their goal is to find “interesting patterns”, identify trends or clustering in the data without 

additional inputs. So far, supervised learning is the most mature and powerful approaches, 

and used in the majority of machine-learning studies in the battery health diagnostics and 

prognostics, and therefore the methods described here refer in particular to this type. 

Various supervised ML techniques have been utilized for battery SOH estimation, 
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including Artificial Neural Networks (ANN) [81], Support Vector Machine (SVM) [85], 

relevance vector machine (RVM) [86], k-Nearest Neighbours (kNN) [87], Gaussian 

Process Regression (GPR) [82] or random forest regression (RFR) [83]. Section 4.2 will 

provide more details of these ML algorithms, given that they are also widely applied for 

RUL prediction.  

3.3 Others  

Apart from differential analysis and ML methods, some novel approaches correlating 

the intrinsic characteristics of a Li-ion cell with its SOH were also proposed. Coulombic 

efficiency (CE) evolution, calculated by dividing the discharge capacity by the charge 

capacity, has been found to present a close relationship with battery degradation. Yang et 

al. [88] studied the correlation between battery degradation and the long-term CE 

evolution and used CE as an indicator for battery degradation rate of LFP batteries. An 

empirical model was constructed for capacity estimation based on the measured CE and 

battery cycles, where the CE was assumed to be constant. Hu et al. [89] demonstrated 

that the sample entropy taken from the hybrid pulse power characterization data can be 

correlated with cell capacity loss and therefore used for online SOH estimation. In 

addition, some studies resorted to additional devices for battery health estimation. Ladpli 

et al. [90] developed a built-in acoustic-ultrasonic guided wave technique to monitor 

battery SOH and discovered a non-linear correlation between the remaining battery 

capacity with the guided wave signal features. However, these studies are still in the early 

stage and require dedicated testing procedures and instruments for health estimation, 

which are cumbersome for online application.  

4. Health prognostic techniques 

The battery health predictor is another key part of the BMS which provides the 

information on the remaining service time of the battery system. The existing research on 

battery health prognostics includes the battery remaining useful lifetime (RUL) 

prediction [91] and capacity (fade) forecasting [92].  The RUL is typically predicted based 

on a modelled degradation signal reaching a predefined failure threshold, and obtained 
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by using the estimated life of the training units minus the current life position of the test 

unit. Battery capacity forecasting tools are developed to predict the future changes in SOH 

as a function of the usage history. Battery health prognostics cannot exist on its own and 

it needs input from the SOH estimator. Their relationship is illustrated in Fig. 6.  

In general, two basic frameworks exist for the battery health prognostics, one based on 

analytical models and another based on ML methods. The first group requires the 

development of an ageing model, constructed by fitting an analytical function to a large 

set of ageing data (e.g. capacity fade) measured under laboratory conditions. In contrast, 

ML-based methods are model free and can learn from the ageing data itself to forecast 

the battery health change. The benefits and drawbacks of these methods are compared 

below. Their challenges are also addressed in this section. 

 

Fig. 6. BMS health diagnostics and prognostics algorithm framework [93]. 

4.1  Analytical models with data fitting  

Analytical-model methods use a mathematical function correlating ageing status of a 

battery and its service time or cycle number. We discuss the analytical models developed 

by dividing them into two categories: semi-empirical lifetime estimation models and 
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empirical ageing models with filtering. The former is an open-loop approach, where the 

model type and parameters are determined by fitting a large amount of ageing data. The 

model parameters cannot be changed once the model is constructed. Empirical ageing 

models with filtering are, instead, a closed-loop, and the parameters of this type of models 

are updated whenever new data becomes available during battery operation. 

4.1.1 Semi-empirical life estimation models 

Semi-empirical lifetime estimation models capture the direct relationship between the 

ageing stress factors and battery SOH to obtain a single mathematical expression of the 

battery performance level over its lifetime. They are constructed by interpolating and 

fitting data through a fixed set of experimental tests. In principle, for successful lifetime 

estimation, a comprehensive battery ageing analysis covering a wide range of operating 

conditions is required. However, it is extremely difficult to consider the effects of all 

impact factors (as discussed in Section 2). For simplification, only the most important 

factors are usually considered based on the specific application.  

An outline for the development and application of semi-empirical model is illustrated 

in Fig. 7. Most of the existing studies model the battery cyclic and calendar aging 

independently, and combine the two to make predictions under a dynamic load profile 

[6,94,95]. Cells are stored or cycled under specific conditions that help exploring the 

influences of different ageing factors such as temperature, state-of-charge, 

charge/discharge current rates. The cell capacity loss is then calculated as a function of 

time, cycle numbers, or Ah-throughput. Ah-throughput represents the amount of charge 

delivered from one electrode to the other during cycling. The choice of fitting equations 

depends on the measured capacity degradation. The parameters of lifetime estimation 

models are determined by fitting a large amount of ageing data but are difficult to be 

changed once the model is constructed. During operation, parameters such as current 

cycle number or Ah-throughput are registered and used as input for current capacity loss 

estimation (therefore heath state estimation). Moreover, when feeding the model with the 

battery using conditions and loads, the battery lifetime can be also predicted.   
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Fig. 7. Diagram of the concept of lifetime estimation model from offline development to online prediction 
[93,96] .  

a. Calendar ageing 

The capacity loss due to calendar ageing is usually proportional to a power law relation 

with time 𝑡, weighted by the influences of temperature 𝑇 and storage SOC, what can be 

represented by some stress factor 𝑘  [95]:  
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𝑸𝐥𝐨𝐬𝐬
𝐜𝐚𝐥 (𝒕) = 𝑸(𝒕) –  𝑸 (𝟎) = 𝒌𝒄𝒂𝒍(𝑻, 𝑺𝑶𝑪)𝒕𝒛𝐜𝐚𝐥 , (1) 

where 𝑄  indicates the capacity loss during calendar ageing. 𝑄(𝑡) and 𝑄(0) are the cell 

capacity at time t and at its BOL, respectively. The exponent 𝑧  is a dimensionless 

constant. The dependence of 𝑘  on temperature 𝑇 is empirically modelled through the 

Arrhenius equation [97–99]: 

𝒌𝐜𝐚𝐥 = 𝑨 ∙ 𝐞𝐱𝐩
𝑬𝒂

𝑹𝑻
, (2) 

where 𝐴  is the pre-exponential factor and 𝐸  is the “effective” activation energy.  

“Effective” reflects the fact that there is no single underlying physical or chemical process 

that could be modelled in an actual kinetic model. Instead, the interplay of all the 

contributing processes produces an overall observable outcome with a temperature 

dependence similar to an elementary kinetic process. In contrast, the SOC dependence on 

calendar ageing lifetime is typically fitted by linear functions [100], exponential functions 

[99] or by the Tafel equation [95]. 

  b. Cycle ageing 

Battery cycle life is sensitive to the operating conditions and is complicated to predict 

as it involves more variables than the calendar lifetime estimation. The main aspects 

considered are typically the temperature, cycle number/time, charge/discharge current 

rate, cycling voltage range and average SOC during cycling. Cycle number is generally 

used as a measure of time for cycle lifetime modelling, although in some cases Ah-

throughput is used instead. An often used cycle ageing model expresses the capacity loss 

as a power law relation with throughput: 

𝑸𝐥𝐨𝐬𝐬
𝐜𝐲𝐜 (𝑳) = 𝑸(𝑳) − 𝑸(𝟎) = 𝒌𝐜𝐲𝐜(𝑻, 𝑰, 𝑫𝑶𝑫) ∙ 𝑳𝒛𝐜𝐲𝐜 , (3) 

where 𝑄  indicates the capacity loss during cyclic ageing, and it is an overall capacity 

difference over time/cycles. 𝐿  can be either cycle number or Ah-throughput. 𝑘  

represents the effects of ageing factors on the battery degradation process and 𝐼 is the 
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cycling current. DOD represents the depth of discharge during cycling. Again, the 

exponent 𝑧  is a constant extracted from experimental data fitting. Similarly to 

calendaring ageing, Arrhenius equation is often used to empirically account for the 

temperature influence [101]. The current rate and DOD dependence on cyclic ageing can 

be modelled with exponential [95,102] or polynomial [102] functions. Besides, 

polynomial functions were also used to describe the capacity fade under the influence of 

cycle DOD and cycle number [97], as shown by (4)  

𝑸𝐥𝐨𝐬𝐬
𝐜𝐲𝐜

(𝑳) = 𝒂𝒊 ∙ 𝑳𝒊 + 𝒃𝒋 ∙ 𝑫𝑶𝑫𝒋 ,

𝒏,𝒎

𝒊 𝟎,𝒋 𝟎

 
(4) 

where 𝐿 is the cycle number, 𝑎  and 𝑏  are fitting constants; 𝑛 is the order of 𝐿-factor and 

m  is the order of the DOD-factor. Fig. 8 illustrates the surface fits constructed with 

extended measurement data where cycle ageing is modelled as the considered ageing 

factors. 

 

Fig. 8. Illustration of the 3D-surface fitting of the developed cyclic ageing model for lifetime prediction by 
considering the stress factors of cycling DOD at a fixed temperature and mid-SOC [97] 

4.1.2 Empirical ageing models with filtering  

Empirical ageing models constantly update their model parameters when new 

estimated/measured capacity data is available. First, a preliminary ageing model is 

constructed by fitting the experimental data to an appropriate function that describes the 
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capacity degradation, usually expressed as a function of cycle number or time and fitted 

model parameters. Linear, exponential and polynomial functions are generally used, 

summarized in Table 5. Next, the model parameters characterizing the degradation 

behaviour during operation should be continually updated as part of the prognostic 

process. This is achieved by various optimal state estimation technologies every time 

when a new estimated or measured capacity value supplied by the BMS is available. After 

every update, these models with tuned parameters can provide a more accurate prediction 

of RUL. 

Table 5. Models and filters used in the literature for battery RUL prediction. 𝑐  is the capacity at 𝑘th cycle, 
and 𝑎  are the model parameters, 𝑐  indicates the normalized capacity at the 𝑘th cycle, adapted from [20]. 

Model Equation  Filter Reference 
𝑐 = 𝑎 − 𝑎 ∙ 𝑘 Fixed-lag Multiple Model PF Hu et al. [103] 

 
𝑐 = 1 − 𝑎 [1 − 𝑒𝑥𝑝(𝑎 ∙ 𝑘)] − 𝑎 ∙ 𝑘 

Interacting Multiple Model 
PF 

Su et al. [104] 

Gauss-Hermite PF Hu et al. [105] 
Fixed-lag Multiple Model PF Hu et al. [103] 

 
 

𝑐 = 𝑎 ∙ 𝑒𝑥𝑝(𝑎 ∙ 𝑘) 

PF Saha et al. [106] 
Zhang et al. [107] 

Spherical Cubature PF Wang et al. [108] 

𝑐 = 𝑎 ∙ 𝑒𝑥𝑝(𝑎 ∙ 𝑘) + 𝑎 ∙ 𝑘 + 𝑎  PF Xing et al. [109] 
 
 
 
 

𝑐 = 𝑎 ∙ 𝑒𝑥𝑝(𝑎 ∙ 𝑘) + 𝑎 ∙ 𝑒𝑥𝑝(𝑎 ∙ 𝑘) 

Bayesian Monte Carlo He et al. [110] 
Unscented Kalman filter Chang et al. [111] 

Unscented PF Zhang et al. [112] 
Heuristic Kalman optimized 
PF 

Duong et al. [113] 

Interacting multiple model 
PF 

Su et al. [114] 

Gauss-Hermite PF Ma et al. [115] 
Interacting multiple model 
PF 

Su et al. [104] 

𝑐 = 𝑎 ∙ 𝑘 + 𝑎 ∙ 𝑘 + 𝑎 ∙ 𝑘 + 𝑎  PF Y. Sun et al. [116] 

A whole family of Bayesian filters, ranging from the Kalman filter (KF) [117], particle 

filter (PF) [117] and their variants (see Table 5), provides a general framework for dynamic 

state estimation problems. In Bayesian inference, the observations are used to estimate 

and update parameters with a form of a probability density function (PDF) [118]. The 

choice of the filter depends on the dynamics of the system and the shape of the noise 

distributions, as well as the filter itself. For a linear system with Gaussian noise, KF is the 

best candidate. For instance, Burgess [119] proposed a linear capacity fade model with KF 
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to estimate the RUL for valve regulated lead-acid batteries. However, the fading process 

of Li-ion cells is often non-linear, and variant KF such as extended KF and unscented KF, 

have been proposed to address this. For the KF family, the state space PDF remains 

Gaussian at every iteration and the filter equations propagate and update the mean and 

covariance of the distribution [120]. Note that the errors of RUL prediction come from 

multiple sources during data acquisition and transmission. Hence, the overall noises thus 

do not always show Gaussian behaviour. Applying KF algorithms in such scenarios may 

cause the filter to diverge [91].  

The health prognostics process involves solving non-Gaussian problems based on a 

nonlinear system, which is the strength of the more widely used PF algorithms. PF is a 

sequential Monte Carlo method that combines Bayesian inference with importance 

sampling. In PF, the Bayesian update is processed sequentially with particles that have 

probability information of unknown parameters. When a new measurement is available, 

the posterior from the previous step is used as the prior information at the current step 

and the parameters are therefore updated by multiplying it with the likelihood [118]. 

Numerous studies using PF and its variants have been carried out for RUL prediction. 

Saha et al. [121] found that the sum of impedance parameters exhibits a linear 

correlation with the battery capacity measured at 1 C-rate Development of a lifetime 

Model for Lithium-ion batteries and can be used as a health indicator for capacity 

prediction. An exponential impedance growth function was used to describe ageing, 

which was combined with the PF framework to make predictions of the battery RUL. The 

result is illustrated in Fig. 9, and it shows that the prediction accuracy of the model can 

be improved by increasing the considered dataset. The accuracy of empirical ageing 

models with filtering is highly dependent on the fitting model. For cells with complex 

ageing behaviour, one single model may not be enough to describe the degradation 

process. To address this, Hu et al. [103] proposed two empirical models (linear and 

exponential/linear hybrid model) for representing the capacity fade behaviour of Li-ion 

cell and a fixed-lag multiple model PF was applied on nonlinear filtering for batteries 

whose capacity fade behaviour switches between multiple fade models.  
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Fig. 9. Schematic illustration of RUL prediction with PF [121] 

4.2 Machine learning methods for health prognostics 

While ML methods can be utilized for both SOH estimation and RUL 

prediction[122,123], there is a large difference between the two applications in terms of 

input features and the desired output. As described in Section 3.2, the input features for 

SOH estimation should be extracted from the BMS during operation and the outputs are 

the estimated capacity at a given time. However, the ML methods for RUL prediction 

generally require the estimated or measured SOH information such as the capacity values 

as the inputs to predict remaining lifetime or cycles. Supervised ML models can be either 

non-probabilistic or probabilistic. In the former, the outcomes are determined through 

known relationship among states and events without modelling the underlying 

probability distributions. Some methods include ANN, SVM, elastic net and others. Yet, 

an important aspect of RUL diagnostics is not only predicting the RUL value but also 

presenting the uncertainty level of the prediction. For this reason, probabilistic models 

like Gaussian Process regression (GPR) and relevance vector machine (RVM), both 

deriving from the Bayesian framework, are gaining increased attention for the uncertainty 

quantification.  
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4.2.1 Non-probabilistic approach 

4.2.1.1 Autoregressive based models 

Autoregressive (AR) based modelling is a time series model that uses a linear 

combination of observations from previous time steps as input to predict subsequent time 

step values. The AR model has the advantages of easy parameterization and low 

computational complexity. Long et al. [124] used an optimized AR model for battery 

capacity fade prediction, where the model order can be changed adaptively by applying 

particle swarm algorithm. However, the AR model is linear while the battery capacity 

fading process is generally nonlinear, and this difference will make the model under-

fitting especially for the long-term prediction. To solve this problem, an autoregressive 

integrated moving average (ARIMA) framework was proposed that combines the AR 

model and the moving average method. Instead of using past values of the forecast 

variable in a regression, the moving average uses the past forecast errors in a regression-

like model. For instance, Zhou et al. [125] combined ARIMA model with empirical mode 

decomposition to improve the prediction accuracy.  

4.2.1.2  Artificial neural network  

ANN is designed to mathematically mimic the activity of the human brain, with 

artificial neurons (the processing unit) arranged in input, output and hidden layers as 

shown in Fig. 10 (a). The input layer takes the pre-processed data and serves as a conduit 

to the hidden layer(s) [126]. In the hidden layers, each neuron contains a mathematical 

model for determining its output based on its input, and can be expressed by a weighted 

linear combinations that are wrapped in an activation function [126]. The higher the 

weight of the neuron, the greater its sensitivity to this specific input. The prediction data 

comes out of the model from the output layer. During the learning process, the model 

parameters are tuned by considering the number of hidden layers, the number of neurons 

in each layer, the weights of interconnections between neurons and the type of activation 

function. 

Two types of ANNs have been successfully applied for battery RUL prediction, 

including feed forward neural network (FFNN) and recurrent neural network (RNN). In 
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FFNN, the input data travels in one direction only. When FFNN is extended to include 

the feedback connections, it is called RNN as shown in Fig. 10 (b). RNN can keep and 

update the previous information for a period of time, making it a promising tool to capture 

the correlations in battery capacity degradation data. The battery degradation process 

generally covers hundreds of cycles, and the information of capacity degradation among 

these cycles is highly correlated. It is thus meaningful to extract and consider these 

correlations for accurate RUL prediction. Because it can learn the long-term 

dependencies in the data, RNN is a promising NN type to capture and update information 

from degradation data. 

Based upon the analysis of terminal voltage of charging curve under various cycle 

numbers, Wu et al. [127] used FFNN to simulate the relationship between battery charge 

curves at a constant current and battery RUL. The total cycle number when the battery 

comes to its EOL was taken from experiments, and they used the FFNN to estimate the 

current cycle number of the battery. The RUL was then calculated by subtracting the 

current cycle number from the total cycle number. Liu et al. [128] proposed an adaptive 

RNN to predict the RUL of Li-ion cells, relying on a history of cell impedance data from 

multiple batteries as a starting point to predict the unknown impedance variation of a 

new battery. The proposed method can enhance the prediction accuracy by utilizing the 

previous system states through adaptive/recurrent feedbacks. 
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Fig. 10. A visual representation of (a) feed forward neural network and (b) recurrent neural network. The 
recurrent connections in the hidden layer allow information to persist from one input to another. The 

neurons are represented as circles [126]. 

One distinct characteristic of ANNs is their ability to learn from experience and 

examples to adapt to changing situations. They can be established automatically by 

training without the identification of model parameters and coefficients. However, they 

require a large amount of input data for training and verifying, and their accuracy is 

significantly affected by the training method and data. Moreover, the computational cost 

is still a bottleneck for large-scale applications of RUL prediction and the structure of an 

ANN plays an important role in its performance. Furthermore, the identification and 

optimisation of the model topology of ANN remains an open technical challenge. 

Generally, the structure is achieved through a time-consuming trial and error phase. Hu 

et al. [129] proposed to use novel genetic algorithm-based fuzzy C-means clustering 

technique to partition the training data sampled of a lithium-ion battery during the 

driving cycle-based test, and the clustering result was then applied to automatically learn 

the topology and antecedent parameters of the ANN model for battery state estimation. 

(a)FFNN (b) RNN 

Neuron/Percep
tron  
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4.2.1.3  Support vector machine (SVM) 

 SVM is a non-parametric ML technique based on kernels. A non-parametric model 

means that the number of parameters grows with the amount of training data. It has the 

advantages of being flexible and can model arbitrarily complex systems when providing 

enough data[130]. It performs classification by searching for the hyperplane separating 

classes of interest with a maximal margin. Kernel functions are often used in SVM to 

facilitate solving nonlinear problems, by transforming the nonlinear problem in a low-

dimensional space into a linear problem in a higher dimensional feature space. Typically, 

the predictions are based on some functions defined over the input space, and learning is 

the process of inferring the parameters of this function. SVM makes predictions based on 

the function (5), as follows [131]: 

 𝑦(𝑥) = ∑ 𝜔 𝐾(𝑥, 𝑥 ) + 𝜀 , (5)  

where 𝜔  are the model weights connecting feature space to output, 𝐾(∙)  is a kernel 

function and 𝜀 is an independent noise term. Current health diagnostic and prognostic 

algorithms primarily use SVM as a regression tool for continuous values and are known 

as support vector regression (SVR). Regression is realized by searching for a minimum 

margin fit instead of a maximum margin classifier. 

Based upon load collectives, Nuhic et al. [132] used SVR to learn the capacity 

degradation behaviour of a battery and then used the same estimation method to predict 

RUL. Measurements were carried out on Li-ion cells aged to different degrees to ensure a 

large amount of data for model training. Qin et al. [133] proposed an SVR model to 

capture capacity degradation. There, particle swarm optimization was used to optimize 

the kernel parameters of SVR, improving the RUL prediction. In order to improve the 

efficiency of training and prediction, Zhao et al. [134] took the feature vector selection to 

reduce data size by extracting two health indicators measurable online. An SVR model 

was utilized to capture the relationship between health indicators and capacity, resulting 

in reliable RUL prediction.  
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SVM is particularly appealing for its capability of handling small training datasets [135]. 

However, when the size of the training dataset increases, the number of support vectors 

increases accordingly. In order to improve the stability and robustness of SVR with large-

scale training samples, decremental and incremental strategies [136,137] have been 

applied to integrate the relevant data sample for SVR training and ignore the irrelevant 

part. However, the computational cost is also increased by this procedure.  

4.2.2 Probabilistic approach 

Prognostic predictions need to cope with uncertainties coming from the measurement, 

the operation environment and the model itself – these arise from the structure of the 

model and uncertain parameters [110]. Probabilistic approaches use probability theory to 

express all forms of uncertainty, where probability distributions are used to represent all 

the uncertain unobserved quantities and their correlations with the data [138].  

4.2.2.1 Gaussian process regression  

Deriving from the Bayesian framework, GPR models have been widely applied to 

prognostic analysis as they are flexible, nonparametric and probabilistic [139]. GPR is a 

kernel based ML method, which can realize prognostics combined with prior knowledge 

based on a Bayesian framework and provide variance around its mean prediction to 

describe the associated uncertainty [120]. The Gaussian process can be seen as a 

collection of a limited number of random variables which have a joint multivariate 

Gaussian distribution [140]. Richardson et al. [122] applied a known parametric model to 

exploit prior information of capacity fade dynamics and then proposed three multi-output 

GPR models for RUL prediction by incorporating data from multiple batteries. In their 

later work [92], a GPR transition model was proposed to generate the underlying 

mapping between arbitrary current, voltage, temperature and capacity to predict the 

capacity degradation and battery RUL under dynamic conditions. However, the basic 

GPR method is unable to capture the local regeneration phenomenon during capacity 

degradation, where a battery shows a sudden and temporary incremental increase in 

capacity. To rectify this, Liu et al. [141] utilized a combination of covariance functions and 

mean functions in GPR for multi-step-ahead prognostics.  
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The performance of GPR is highly sensitive on the covariance function and the kernels 

should therefore be carefully selected to achieve high prediction accuracy [139]. The 

capacity fading process is complicated as it is influenced by many factors. The single 

covariance function would result in unreliable prediction for non-linear mapping with 

multidimensional input variables. Hence, it is recommended to construct an isotropic 

kernel with an advanced structure such as automatic relevance determination [142]. Note 

that an unsuitable optimization of hyper-parameters in the covariance function can result 

in over-fitting. To ameliorate this in GPR, one way is to minimize the negative log 

marginal likelihood [139].  

4.2.2.2 Relevance vector machine  

Relevance vector machine (RVM) was first introduced by Tipping [131] and is identical 

to SVM as shown in Eq. (5) but with a probabilistic approach. The RVM employs a 

Bayesian framework to infer the weights 𝜔 , with which the PDFs of the outputs instead 

of point estimates can be obtained. RVM provides performance comparable to SVM, while 

utilizing arbitrary kernel functions with high sparsity and also offering probabilistic 

predictions [143]. High sparsity means that a significant number of weights are zero, 

leading to more computationally efficient models.  

Because of uncertainty representation, RVM is an effective approach for RUL 

prediction. Wang et al. [144] used RVM to derive the relevance vectors to represent the 

battery capacity fade, and predict capacity degradation values for the future cycles of 

relevance vectors. The uncertainties of the predicted degradation values are calculated 

and used to determine the parameters of a capacity degradation model. RUL estimations 

was achieved with the extrapolation of this model. To improve the long-term prediction 

performance of RVM, Liu et al. [145] proposed an incremental on-line learning strategy 

for RVM to inpromove the RUL prediction precision. 

RVM provides good accuracy, high learning ability, sparsity, easy training process, and 

prediction result with probability distribution. However, one obvious drawback is that 

large datasets are required for training, leading to high time and memory demands. 
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Noteworthy, the computational complexity is on the order of 𝑁  , with 𝑁  being the 

number of training samples [146].  

5. Discussion  

 Numerous methods have been proposed for health diagnostics and prognostics of Li-

ion cells. There is no single method to solve all current issues. A trade-off between the 

accuracy, computational effort and generalizability is usually required for each particular 

application. To better understand these trade-offs, this section summarizes and compares 

the characteristics of the existing data-driven methods. Based on their comparison, the 

challenges of the up-and-coming technologies based on data-driven battery health 

diagnostics and prognostics are discussed.  

5.1 Data-driven based battery health estimation 

Accuracy and computational complexity are the main challenges for health diagnostics 

in real applications. Some of the benefits and drawbacks of each type of data-driven based 

approach are listed in Table 6, comparing ML and DA methods. 

Table 6. Advantages and disadvantages of SOH estimation methods 

Methods Advantages Disadvantages 
Differential 
Analysis 

 Easily implemented in a BMS;  
 Reasonable amount of literature 
available (mature technique); 
 Low computational effort. 

 Requires controlled charging/discharging 
processes;  
 Temperature variation disturbs the 
estimation accuracy;  
 Requires noise filtering.  

Machine 
Learning 

 Good estimation accuracy; 
 Applicable in dynamic operating 
conditions; 
 No need of physical-based models.  

 High computational effort;  
 Estimation accuracy is sensitive to the 
quantity and quality of training data. 

ML provides higher estimation accuracy than DA as pointed out in [147] by comparing 

the IC analysis with two ML techniques (GPR and random forest regression). DA, 

especially IC/DV and DTV analysis, relies on the data measured during static 

(dis)charging which limits their usability. ML, on the other hand, can be used in a 

dynamic situation such as a driving cycle of an EV. Moreover, the temperature has a 

significant influence on the DA and will cause large bias, while ML can use temperature 
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variations as the input features for model training and correlate it with ageing. However, 

the high computational effort required for ML methods is a major hurdle for their online 

application. In contrast, DA is easily implemented in a BMS by monitoring several cell 

parameters. A suitable SOH estimation method should be selected based on the 

application of the cells. When cells operate in moderate environmental conditions and in 

predictable patterns, for example in households, DA offers sufficient performance as the 

ageing trend can be captured with simple mathematical functions. For batteries under 

more complex operating conditions, such as in EVs, ML is a better solution due to its 

ability to approximate non-linear function surfaces.  

5.2 Data-driven battery health prognostics 

Methods for RUL prediction differ in their numerical complexity, prediction accuracy, 

and the ability to produce confidence intervals. Table 7 summarizes and compares the 

main characteristics of data-driven battery health prediction methods. Lifetime 

estimation models on the one hand and empirical ageing models with filtering on the 

other both rely on functions that capture the relations between battery capacity loss with 

its service time or the number of cycles. The prediction accuracy relies on the developed 

mathematical function. Note that lifetime estimation models belong to the open-loop type, 

developed offline using a large amount of ageing data collected in laboratory experiments. 

Such models have the advantage of low computational effort and ease of implementation 

in a BMS. Due to the ease of extracting model coefficients and the low computational 

effort, it is convenient to implement these models for online prediction. However, one 

major disadvantage is that they rely completely on the estimation accuracy of the 

developed model and do not include any recalibration mechanism. Additionally, the 

prediction accuracy is highly dependent on the amount of data used in their development. 

When the data is insufficient, extrapolating the fitted curve produces large errors. In 

contrast, empirical ageing models with filtering belong to the closed-loop type and can be 

recalibrated using battery characteristics in real-time. These models are designed to 

automatically achieve the desired output with the help of adaptive filters by comparing 

the estimated output with the actual measurement. The model parameters are updated 
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during the operation to tune their predictions. However, these models construct functions 

by fitting the degraded capacity of the cell which restricts their applicability under more 

complex ageing conditions. Our recommendation is therefore hybrid approaches, for 

instance by combining these two types of models: a lifetime estimation model that could 

be constructed first based on a reasonable amount of experimental data and then, 

adaptive filters would be implemented to update the key parameters to provide more 

reliable prediction results. This seems a worthwhile and relatively unexplored path for 

future research. In this way, the model can be adapted to the real battery degradation 

conditions.  

Battery health predictions based on ML methods do not assume any explicit 

mathematical model to describe the battery ageing behaviour and are mainly dependent 

on the quality of the historical test dataset. Non-probabilistic ML approaches can only 

provide an estimated point in regression. Ideally, however, the conditional distribution in 

order to capture the prediction uncertainty level, is a real challenge due to uncertainties 

from various sources such as measurements, state estimation, model inaccuracies, and 

future load uncertainty [120]. Probabilistic methods with an ability to yield PDFs, predict 

data points but also return confidence bounds around them. Because of this, probabilistic 

ML approaches are preferable as the estimated uncertainty can benefit battery users. 

However, the development of probabilistic ML methods is still in its infancy. Most 

existing studies test/validate their ML models on data obtained under the same 

conditions used for their training, which calls into question the robustness of these 

models in real applications where the operating conditions may vary significantly. It is 

therefore recommended to improve probabilistic techniques by training the models under 

complex ageing conditions. Additionally, the performance of these techniques is also 

highly sensitive to their structure and parameters. Suitable structure determination and 

parameter optimization strategies should also be explored to enhance their performance 

for future self-adaptive health or lifetime prediction.  

Finding methods that can accurately predict the lifetime of batteries in an early stage 

is essential to accelerate the development, manufacture and optimization of emerging 

battery technologies. Interestingly, Severson et al. [148] have tackled the challenges using 
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lasso and elastic-net regression approaches on a comprehensive training dataset that 

characterizes the performance of 124 commercial LFP/graphite cells aged under fast-

charging conditions. The best regression model had correctly predicted cycle lives for 90.9% 

of the tested cells before any clear signal of capacity fade, within the first 100 cycles. 

Additionally, the developed classification model could classify cells as either having a 

short or a long lifetime based on the first five cycles of experimental data with test error 

of 4.9%. It is remarkable that this level of accuracy was achieved by analysing the 

discharging process from the experiments rather than by only considering capacity-fade 

data. This ML training approach is different from the conventional one. This work 

highlights the attractive applying ML techniques for lifespan prediction at early stages.  
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Table 7. A comparison of battery health prediction methods  

 Advantages Disadvantages 
 
 
 
 
 
 

Analytical model with 
data fitting 

Semi-
empirical 

model 

 Easy to be built up and quick to produce 
predictions; 

 Easy of extracting model parameters; 
 Low computational effort; 
 Easy to be implemented on BMS for 

online application by monitoring the 
parameter of cycling conditions, time 
and/or numbers. 

 Extensive laboratory tests over the entire operating 
range are required, which are time consuming and 
economically costly; 

 Difficult to develop suitable laboratory ageing tests to 
analyse the interaction between different ageing 
processes and link them to lifetime expectancy on an 
experimental basis; 

 Poor generalizability. Developed models are 
restricted to a specific battery type and operating 
conditions. 

Empirical 
ageing 

model with 
filtering 

 Only a small amount of ageing data is 
required for setting up the model; 

 Estimation errors are updated based on 
the real measurement. 

  High computational effort and which increases the 
difficulties for online application. 

 
 
 
 
 
 
 
 
 
 

ML 

 
 
 
 
 

Non-
probabilistic 

AR model  Simple structure; 
 Easy to identify parameters; 
 Easy to implement. 

 Easy to cause under-fitting problems due to its linear 
regression type; 

 Poor generalization ability; 
 Bad long-term prediction ability. 

ANN  Strong ability to consider 
nonlinearities; 

 RNN owns strong long-term RUL 
prediction ability due to recurrent links; 

 High prediction accuracy. 

 Potential to cause over-fitting problem; 
 Poor uncertainty management ability; 
 Performance highly depends on the training process. 

SVM  High prediction accuracy; 
 Non-parametric; 
 Robust to outliers; 
 Low prediction time. 

 High computational cost; 
 Poor uncertainty management ability; 
 Requires cross validation procedure to determine 

hyper-parameters. 
 
 
 
 

Probabilistic 

GPR  Provide covariance to generate 
uncertainty level; 

 Non-parametric; 
 Being flexible. 

 Performance is highly affected by kernel functions; 
 High computational cost.  

RVM  Generate PDF directly; 
 Non-parametric; 
 Realize high sparsity; 
 Avoid cross validation process. 

 Plenty of data is required for modelling; 
 Large time and memory consumed training process; 
 Easy to fall into the local optimization problem; 
 Potential to cause over-fitting problem. 
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5.3 Challenges and future developments  

Although great efforts have been made in developing data-driven diagnostic and 

prognostic techniques, there are several major challenges in this field: 

Ageing mechanism identification: Some of the purely data-driven methods, 

especially ML techniques, cannot provide in-depth information of the battery ageing 

mechanism. It is therefore desirable to find a way to combine the identification of ageing 

mechanism with online health estimation methods. As such, combining ML methods with 

physical mechanisms of degradation is indeed a promising direction for future research. 

As mentioned in Section 3.1, DA techniques, especially IC/DV and DTV, can reveal battery 

degradation mechanisms. It is therefore recommended to use DA under low current rates 

to uncover the ageing mechanism. Combining DA with ML is particularly promising as 

the former can help finding the most sensitive indicators for capacity loss which can then 

be used for ML SOH estimation or RUL prediction.  

Self-improving models via online data: The degradation behaviour of Li-ion 

cells is sensitive to the operating conditions. It is still difficult to predict ageing under 

conditions different from the training dataset. The deviations between the laboratory 

conditions used to develop the models and real operating conditions limit the practical 

applicability of data-driven methods. This can be rectified in two ways: by improving 

experimental testing and by further algorithm development. When the size of the 

experimental dataset increases, covering the ageing information on a large range of 

operating conditions, the prediction capabilities of a data-driven approach increases 

accordingly. However, this also leads to a large experimental cost. On the other hand, 

improving the dynamic updating capability of the data-driven methods developed off-line 

is worth investigating further as it paves the way to self-improving models.  

Health diagnosis and prognostics at module and pack level: Till now, most 

of the research on battery health diagnostics and prognostics has been done at cell level. 

However, in practice, these are generally connected in series and/or parallel to construct 

a battery pack for specific energy and power requirements. Understanding the ageing 

process of packs requires knowledge beyond the cell-level, considering additional impact 
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factors, such as inconsistencies of cell characteristics, electrical imbalance and 

temperature gradients between cells [149]. All these issues complicate accurate ageing 

estimation and prediction models for packs. The advances in artificial intelligence and 

deep learning algorithms are foreseen to introduce some solutions to these problems. 

Deep neural networks are particularly suitable for highly complex non-linear fitting and 

can therefore achieve better accuracy for these problems. Several newly developed deep 

learning ANNs such as convolutional neural networks and generative adversarial 

networks have been successfully applied in the fields such as speech recognition [150] and 

image segmentation [151], owing to their strong self-learning abilities. However, to our 

knowledge, no attempts have been made so far to utilise them in batteries especially for 

module/pack-level health diagnostics. The use of ANNs or similar self-learning methods 

is also recommended for RUL prediction. 

6. Conclusion  

This article reviews data-driven technologies for battery health diagnostics and 

prognostics. Scientific literature covering the above topics is analysed, and each 

individual approach is discussed in view of its advantages and pitfalls. We provide an 

intuitive classification of the different strategies reported in the literature, and methods 

using differential analysis, analytical models, and machine learning are specially explored 

given the emerging interest on using them to assert more accurate models for Li-ion 

batteries lifespan. 

We highlight that differential analysis methods can not only be used for battery health 

estimation but also for the fundamental identification of ageing mechanisms. They are 

generally computationally light and easy to implement, but also easily affected by the 

testing conditions such as temperature and current rate.  Semi-empirical models can also 

be used for both health diagnostics and prognostics, but as they are open-loop in nature, 

their generalization ability is poor and therefore inflicting their performance when the 

battery is exposed to operating conditions different from those used to develop the model. 

Empirical ageing models with filtering can be recalibrated employing battery 

characteristics measured during operation. Machine learning methods are gaining 

increased attention for both health estimation and lifetime prediction problems, as they 
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perform well in modelling highly nonlinear dynamic systems without assuming any 

mechanism a priori. Nevertheless, this increases the computational effort and their 

prediction accuracy is still highly limited by the adopted capacity fading model. 

In a nutshell, the permanent reliable operation of a battery requires data-driven 

methods to be implemented in the battery management system for online application, but 

many corresponding technologies are immature. None of the methods is a one-size-fits-

all solution; instead there are inherent trade-offs between complexity and the 

corresponding diagnostics and prognostics performance. Among all, the machine 

learning techniques, supported by a platform of open-source tools and data sharing, has 

the potential to revolutionize the battery health management system. We hope that this 

review provides useful reference points to support the design and operation of battery 

health diagnostics and prognostics systems, whilst informing the agenda of the battery 

research community at the same time. 
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