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Abstract

Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more 

complete detection and quantification of peptides and proteins across multiple samples. DIA 

allows fragment-level quantification, which can be considered as repeated measurements of the 

abundance of the corresponding peptides and proteins in the downstream statistical analysis. 

However, few statistical approaches are available for aggregating these complex fragment-level 

data into peptide- or protein-level statistical summaries. In this work, we describe a software 

package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-

level intensities. The workflow consists of three major steps: intensity normalization, peptide/

fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level 

intensities by total intensity sums as well as a novel alternative normalization by local intensity 

sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/

fragments that preserve the major quantitative patterns across all samples for each protein. Last, 

using the selected fragments and peptides, mapDIA performs model-based statistical significance 

analysis of protein-level differential expression between specified groups of samples. Using a 

comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed 

proteins with accurate control of the false discovery rates. We also describe the analysis procedure 
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in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction 

network and prostate cancer glycoproteome.

Graphical abstract
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Introduction

The data dependent acquisition (DDA) mode of analysis has long been the prevailing 

platform in mass spectrometry (MS)-based shotgun proteomics. In the DDA mode, more 

abundant precursor peptide ions are preferentially isolated and fragmented to generate 

tandem mass (MS/MS) spectra. These MS/MS spectra are then computationally analyzed to 

identify the peptides and to infer the corresponding proteins. In this strategy, peptides are 

quantified using the intensity of the precursor peptide signal detected in the first stage of MS 

analysis (MS1 quantification). A well-known limitation of the DDA strategy is that 

precursor selection is systematically biased in favor of more abundant peptides, which 

results in inconsistent detection and quantification of lower abundance peptides across 

multiple samples. This is particularly a problem in complex samples where the number of 

co-eluting species to be sequenced exceeds the duty cycle of the mass spectrometer [1, 2].

An alternative mode of analysis, called data independent acquisition (DIA), has the potential 

to provide more consistent peptide quantification [3, 4]. In the currently favored DIA set-

ups, the entire mass range relevant to the experimentalist is covered using a set of wide 

windows, which allows segmented acquisition of MS/MS spectra for an unbiased set of 

precursors. All precursor peptide ions within each window are co-isolated and subjected to 

fragmentation to produce multiplex MS/MS spectra. Although DIA had been initially 

proposed years ago [3, 5], it was not until recently that advances in the instrumentation 

enabled faster scans with improved resolution or resolving power, allowing practical 

implementations of this strategy. One commonly used DIA strategy, SWATH-MS, was first 

implemented on a Qq-TOF AB SCIEX instrument using a sequence of 25 m/z-wide 

precursor isolation windows [2], and related methods are now available on MS instruments 

from other manufacturers, including on the Thermo Fisher Q Exactive system. For example, 

a variant of this strategy, called MSX, uses a stochastic selection of smaller (e.g. 4 m/z 

wide) precursor isolation windows and has been shown to reduce the fragment ion 

interference and increased precursor selectivity [6].
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Because virtually every peptide ion is selected for fragmentation, DIA theoretically allows 

more consistent peptide detection and quantification across multiple samples, resulting in 

more complete quantitative coverage (i.e., less missing data) [7]. In addition, DIA data 

changes the way quantitative data are analyzed compared to the traditional quantitative 

DDA proteomics analysis. The volume of quantitative information in the DIA data is 

considerably larger than that of the DDA data, since the intensity data can be extracted not 

only at the peptide level from MS1 data but also at the MS/MS fragment level from MS2 

data. The current approaches for DIA data analysis, however, do not take full advantage of 

this extended (fragment-level) data and instead use peptide/protein intensities summed over 

the fragments [8, 9, 10].

The fragment intensity data can be viewed as repeated measures of the intensity of their 

parent peptides (this information is lost once the intensity data are aggregated). From a 

statistical point of view, these data create the opportunity to improve statistical significance 

analysis, since the fragment intensity data allow us to estimate the reliability or 

reproducibility of relative quantification provided that they are correlated with the 

(unknown) quantitative level of their parent peptides across the samples being compared. In 

other words: there are much more data to work with to draw inferences for protein 

expression changes per protein basis in the DIA data in comparison to the DDA data 

analyzed at the level of MS1 only.

Nevertheless, the complexity of the DIA data poses numerous challenges to its extraction 

and analysis. At present, the default data analysis strategy for DIA data is targeted 

quantification using tools such as OpenSWATH [8], Skyline [11] or PeakView (AB Sciex) 

that all use spectral assay libraries generated by DDA for matching peaks and extracting 

their areas. This requirement for external spectral libraries is however not absolute, and can 

be alleviated using, for example, the new computational workflow DIA-Umpire that enables 

untargeted identification and quantitative extraction [9]. In either case, the MS2 DIA data 

may contain fragments that are shared across multiple co-eluting precursor ions within the 

same isolation window, creating a difficult problem for quantification. Furthermore, after 

data extraction for each sample, the fragment maps will not necessarily be reproducible 

across multiple runs if the chromatographic elution patterns are distorted by factors such as 

pressure and temperature changes in the column or fragment ion interference. Therefore a 

reliable set of fragments has to be selected carefully before the statistical analysis is 

performed.

Several different types of challenging cases (non-reproducible peptides; too little data) are 

simultaneously present in any DIA-MS dataset, and these challenges have direct 

ramifications for statistical analysis of large DIA datasets. Supplementary Figures 1 and 2 

demonstrate real examples of fragment intensity data in the 14-3-3β dynamic interactome 

dataset we will analyze later. In these figures, the intensity data from a time course affinity 

purification experiment with three biological replicates were transformed into log scale 

(base 2), and the data for each fragment were centered by median within each biological 

replicate. Supplementary Figure 1 shows example proteins in which most fragments from 

these peptides are well correlated with one another and faithfully represent their parent 

protein abundance. By contrast, Supplementary Figure 2 shows the other side of the reality. 
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Here, MYCBP2 and YWHAB (14-3-3β/α) contain many peptides with several associated 

fragments, yet they both suffer from poor reproducibility across peptides within each 

protein. On the other hand, while the reproducibility within and between time points is fair 

for CYB5R3, there are only two peptides and, in contrast to the two proteins above, they 

provide relatively limited evidence to draw precise statistical inference for this protein. 

Thus, careful post-extraction processing of fragment-level intensity data is necessary to 

preclude spurious findings (i.e. inaccurately quantified fragments) that percolate through the 

final stage of statistical significance analysis.

The data analysis challenges from DIA are not entirely addressed by the currently existing 

statistical software tools. For instance, the majority of statistical analysis software packages 

are designed for protein or peptide intensity data, but not fragment intensity data. For 

example, the DANTE software package offers regression model-based analysis of peptide 

intensity data [12]. The MaxQuant-Perseus packages enable protein quantification via the 

LFQ (label-free quantification) or iBAQ (intensity-based, absolute quantification) values 

and perform subsequent statistical analysis of these data [13]. MSstats (version 2.3.4) is 

currently the only statistical software capable of differential expression analysis using 

fragment intensity data, since it was originally written for S/MRM (selected/multiple 

reaction monitoring) data [14]. However, whether the regression-based framework currently 

implemented in MSstats is adaptive to far more complex DIA data has not been rigorously 

examined. In particular, as illustrated in Supplementary Figures 1 and 2, the fragment 

intensities in DIA data can vary significantly between different peptide precursors from the 

same protein. This type of data may expose any statistical model to erroneous quantification 

and false discoveries more easily than the S/MRM data that uses specifically isolated 

transitions that have been carefully selected by the experimentalists.

In light of these issues, and with the number and scope of DIA studies rapidly expanding, it 

is therefore of great importance to evaluate the existing options and develop new tools, if 

necessary, which will render the statistical significance analysis of fragment-level intensity 

data as robust as possible. In this work, we present mapDIA, the first comprehensive 

software package specifically designed for the fragment-level intensity data generated in the 

DIA mode. mapDIA tackles the challenges associated with these data in three major steps: 

normalization, fragment/peptide selection, and statistical modeling.

Experimental Procedures

Here we describe the detailed methods for data preprocessing and statistical analysis 

implemented in the mapDIA workflow. We also present additional details regarding 

experimental designs and simulation setup in this section. The input data to mapDIA can be 

acquired from the targeted data extraction tools such as OpenSWATH [8] and Skyline [11] 

with a prebuilt spectral assay library, or DIA-Umpire [9] that does not required a spectral 

assay library.

Data preprocessing and statistical model in mapDIA

Step 1: Intensity normalization—Using the extracted fragment intensity (or peak area) 

data, the first data preprocessing step in mapDIA begins with the normalization of intensity 
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data (Figure 1a). Here the goal is to remove systematic variations in the chromatography 

across different samples, specifically the variations in the total intensity sum in short periods 

of chromatographic time or retention time (RT). A commonly used data normalization 

strategy is to divide fragment intensities by the total intensity sum (TIS), i.e. the sum of 

intensities of all detected fragments in each sample. Denoting the entire dataset by Y = {yfs}, 

a F × S matrix of intensity values for F fragments in S samples (from G comparison groups), 

the TIS normalization transforms the data as:

(1)

Following this transformation, we multiply all fragment intensities by a constant factor. This 

number is calculated as the ratio of pre-normalization total intensity sum over post-

normalization total intensity sum. This ensures that the sum of all intensities in the 

normalized data is equal to that of the unnormalized data and that the intensities in the 

normalized data and in the original data are on the same scale. This global normalization 

option is suitable when the inter-sample variation is constant for all peptides/fragments 

across the RT space.

Although the TIS normalization procedure is widely used, it is an adjustment by a single 

normalization factor for all fragments in each sample and therefore it lacks the flexibility to 

accommodate the systematic variation in TIC differences by the RT. To accommodate local 

variations in the total ion chromatogram in RT, we developed a local normalization 

procedure termed RT(δ) normalization. Let T = (t1, …, tF) denote the RTs of all F fragments 

in the dataset (where RT is defined, e.g., as the apex of the elution peak of each fragment or 

its precursor). Then the RT(δ) normalization transforms the data as:

(2)

where gδ(Δt) is the normal density function evaluated for RT difference Δt with mean 0 and 

standard deviation δ, and δ is the user-specified RT window for local normalization. Similar 

to the global TIS normalization, we multiply the normalized data by a constant factor to put 

the intensities back on a comparable scale as the original data.

In this procedure, it is crucial to ensure the window size δ is not too small since an extremely 

small window will cause the local normalization factor to be dominated by the intensity of 

the fragment itself (or other fragments of the same peptide). On the other hand, a large δ will 

lead to an equivalent outcome to the TIS normalization. In a typical 2–3 hour 

chromatography gradient, our recommended choice of δ is between 10 and 30 minutes in 

proteomics applications (experiments with ≥2 hour gradient); the exact value can be decided 

based on the visualization of total ion chromatograms of all samples on the same panel. The 

range of 10 to 30 minutes empirically resulted in similar and stable normalization in the 

datasets we have analyzed so far.
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Once the data are normalized, we apply log2 transform to the resulting fragment intensity 

data and center the log2 intensities for each fragment by the median value across samples. 

The median centering is performed differently depending on the experimental design (Figure 

1A): for each fragment, we compute the median across all the samples for the independent 

sample design, whereas we compute it within each biological replicate for the replicate 

design. The reason for computing the median for each biological replicate in the replicate 

design is as follows: the basal protein abundance is the same within each biological 

replicate, but not between replicates. The median value(s), computed for each fragment 

according to the corresponding experimental design, is subtracted from respective 

fragments. See the experimental design section below for the details of independent sample 

design and replicate design.

Step 2: Fragment filtering and selection—In the next preprocessing step (Step 2), 

mapDIA performs a three-tiered fragment filtering and selection procedure (Figure 1A). 

Exclusion of noisy or irreproducible fragments is critical for statistical analysis because data 

extraction is typically performed in one sample at a time and thus not all fragments are 

detected and measured consistently across different samples.

(Step 2a) The first filter detects outlier fragment intensity data (Step 1a). We define outlier 

fragment intensity as a fragment log2 intensity data substantially deviating from the average 

median-centered log2 intensity of all other fragments within the same protein. To find these 

observations, we apply row-wise median centering to the log2 intensity data for all 

fragments in each protein, compute sample standard deviation of the fragments in each 

sample, and tag an observation as outlier if its intensity is outside a certain bound (default 

±2sd) in the sample. Note that this step removes the fragment intensity data in each sample, 

not across all samples at once.

(Step 2b) The second filter searches for the most reliable fragments based on the median 

cross-fragment correlation of quantitative data. Suppose that protein p contains Fp 

fragments. We first compute the correlation matrix (Fp × Fp) between all pairs of fragments, 

where the entry in the row a and column b is the Pearson correlation between fragment a 

(ya) and fragment b (yb). We denote the median correlation of a fragment f by , where the 

median is taken over the correlations with all other fragments (excluding the self 

correlation). This median correlation will serve as the consistency score for the given 

fragment within the parent protein. After score calculation, the fragments with  are 

removed by the user specified threshold m*. As a result of this filter, the fragments that are 

correlated with the majority of other fragments in each protein will be retained. In addition, 

the user can specify the maximum number of fragments per peptide (K) to keep the number 

of available fragments balanced for different peptides, where the top K fragments are 

selected based on average cross-fragment correlation within each peptide. See examples and 

guidelines for choosing the optimal parameters in the software user manual.

(Step 2c) The third filter sets inclusion/exclusion criteria based on the minimum number of 

fragments R and peptides Q available for each protein. Since our model requires repeated 

measurements for each peptide, at least two fragments must be available per peptide. In our 
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experience so far, there are typically a large number of proteins that will be quantified by a 

single peptide, and the decision as to whether these proteins should be included or not must 

be made by the user and specified in the input parameter setting depending on the 

circumstances. The suggested default threshold values for protein and peptide-level 

differential expression analysis can be found in the example datasets distributed in the 

mapDIA package.

Step 3: Statistical model for differential expression analysis

Basic modeling framework: Markov random field model: Using the preprocessed data, 

mapDIA proceeds to the differential expression analysis based on a Bayesian latent variable 

model with Markov random field prior, an adaptation of the model described in Wei and Li 

[15] with application to genomic data analysis. While our implementation automatically 

performs all pairwise comparisons requested by the user, here we describe the model for a 

comparison of two groups of samples for the clarity of explanation. The latent variable 

model can be first written as

(3)

where the observed data yp for protein p, including all rows in Y corresponding to the 

fragments of protein p, is associated with the latent state zp. zp = 1 and zp = 0 indicate that 

protein p is differentially expressed and non-differentially (equally) expressed, respectively. 

Denoting the two groups in comparison by i and j,

(4)

(5)

(6)

where π(Θz) denotes the prior distribution of all model parameters for differential expression 

status z,  and  denote the peptide index set for protein p and fragment index set for 

peptide q respectively, and  denote the sub-vector of yf and the sub-matrix of yq in the 

comparison group g respectively. Here φ (·) denotes the product of all element-wise 

Gaussian densities, i.e.
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where fragment f is from peptide q,  and  in protein 

p. The priors and closed form expression of  for differential and non-

differential expression are provided in the Supplementary Information.

Significance scores and FDR: We denote the true (unknown) state by Z* and interpret this 

as a particular realization of the random vector Z. Our goal is to recover the true state Z* 

from the observed data Y across all comparisons,

(7)

where the joint distribution of Z is approximated by the Markov random field model [16]

(8)

with ∂p denoting the set of neighbor proteins of protein p on a previously known network. 

We call such protein groups “modules” hereafter. Note that, if the module information is not 

utilized (β = 0), then the entire model will be equivalent to the mixture model treating the 

latent states as independent binary random variables. From the model above, we can derive 

the overall optimal solution Z* or derive the posterior probability of differential expression 

(with no module information) as the final protein significance score for comparing group i 

and j:

(9)

omitting subscripts for the comparison groups i and j. In addition, we provide the posterior 

odds  as a supplemental score (in natural log scale), which is 

useful when further prioritization is needed among the high scoring proteins (e.g. among the 

proteins scoring ŝp = 1).

When the module information is utilized, the probability and odds scores are derived in the 

same manner by using the approximation

(10)

(11)

Once the scores {ŝp} are computed, the Bayesian FDR [17] is computed as
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(12)

The details of posterior distributions and estimation procedure can be found in the 

Supplementary Information.

Experimental designs with independent samples versus replicates

The model derivation above is based on the independent sample comparisons (Figure 1D), 

where the samples in one group are compared to those in another group. An example of this 

experimental design is the glycoproteomic data we present later, where 2 or 3 samples from 

each of 4 different prostate cancer stages are compared in a pairwise manner. In our 

modeling scheme, the replicate design (Figure 1D) refers to a situation where two or more 

conditions are compared within each biological replicate and the consistent changes across 

biological replicates are sought after. An example of replicate design will be shown in the 

analysis of the dynamic interactome data of 14-3-3β, where the time course expression 

before and after a certain treatment is monitored within each of three biological replicates of 

an affinity purified sample. In the analogy of conventional hypothesis testing, the 

independent sample design corresponds to the t-test for two independent samples, whereas 

the replicate design corresponds to the t-test for paired samples. mapDIA does not allow 

nested replicates in the comparisons, i.e. biological or technical replicates for individual 

samples when the comparison is made between groups of samples.

For modeling the data in the replicate design, a reasonable modification is to derive a similar 

model with replicate specific mean parameters and use the resulting marginal likelihood in 

the Markov random field model. However, we discovered that this leads to over-

parameterization and usually performs poorly in small sample datasets. For this reason, we 

remove replicate specific averages (median) from the data prior to modeling and analyze the 

data using the same model as the independent sample design. This adjustment removes the 

differences in the baseline intensity levels across different replicates and thus achieves 

reliable modeling of the data without the over-parameterization problem mentioned above. 

Note that, unless otherwise stated, replicates should be understood as biological replicates, 

not technical replicates (repeated MS runs over the same biological specimen), as the 

variability in such datasets do not represent the biological variation assumed in the variance 

component of the model.

Simulation data

In the simulation study, we generated log2 intensity data for two group comparison (group A 

and B) from the following simulation model:

(13)

for p = 1,…,1, 500, q = 1,…, np, f = 1,…,npq, and each group had 3 samples. Here xpqj ~ 

N(0, τ2) and epqfj ~ N(0, σ2)represent the intensity deviation of peptide q from the protein 

abundance in sample j and measurement error for fragments, respectively. The term x0 
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corresponds to the effect size (the magnitude of differential expression for the protein) in 

log2 scale, the set D is the set of differentially expressed proteins, and SB is the index set for 

samples in group B.

Supplementary Figure 3 illustrates how these two factors affect the simulated data. Panels A 

through D correspond to (τ, σ) = (0.3, 0.3), (0.1, 0.3), (0.3, 0.2) and (0.1, 0.2). In each panel, 

the log2 fragment intensities of each peptide were visualised by the dots of the same color, 

with additional lines connecting them across the samples. First, the parameter τ represents 

the variability between peptides, in other words, the distance between the lines of different 

colors in the visualized data. Hence for a fixed value of measurement error σ, a small value 

of τ reflects high correlation between different peptides (panel B compared to A, panel D 

compared to C). On the other hand, the parameter σ represents the measurement error of 

fragment intensities, and this can be interpreted as the distance between lines of the same 

color within each peptide. Here for a fixed value of peptide deviation τ, a small value of σ 

reflects high correlation between fragments belonging to the same peptide (panels C/D 

compared to A/B).

In all simulation scenarios, we generated 100 datasets and averaged the results to produce 

the pseudo receiver operating characteristic (pROC) and FDR accuracy plots, where pROC 

is pseudo in the sense that (1-specificity) was replaced by the FDR in the horizontal axis. 

Specifically, we created 150 differentially expressed proteins and 1,350 background 

proteins, i.e. 10% of the proteins are differentially expressed in each simulation set. We set 

the effect size at x0 = 1 (2 fold) and the fragment level variability at σ = 0.2 and σ = 0.3, and 

varied peptide level variability τ between 0.1 and 0.3. Note that the peptide abundance 

deviates more from the true protein abundance as τ increases, i.e. quantification of peptides 

becomes less correlated with the underlying protein abundance level in each sample. In each 

simulation setup, we mixed proteins containing a different number of peptides and 

fragments (np, npq) = (2, 3), (2, 5), (5, 5) per protein in equal proportions.

In the simulation with module information, we created the most ideal scenario where the 

module information can be maximized the most to demonstrate the concept. To do this, we 

first created a scale-free network (Supplementary Figure 4) using the algorithm of Herrera 

and Zufiria [18], and verified that the degree of connectivity follows the power law as 

expected in such a network (P (k) ~ k−2.03). Next we allocated 150 differentially expressed 

proteins in local subnetworks (see Supplementary Information) so that these proteins are 

network neighbors with one another. Using one realization of this network generation 

process, we simulated 100 datasets the same way as above, and compared the performance 

of mapDIA with and without the network (module) information.

Results

Overview of mapDIA workflow

Our analysis framework follows a three-step workflow (Figure 1A). The input data should 

be obtained from a signal processing software that extracts peak features, either via targeted 

extraction of fragment intensities using spectral assay libraries (e.g. OpenSWATH, Skyline) 

[8, 11] or using DIA-Umpire that allows direct identification of peptides from DIA data 
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without the need for an external spectral library [9]. The input data are further processed in 

two preprocessing steps by mapDIA, namely intensity normalization (Step 1) and fragment 

selection (Step 2).

In the first step, mapDIA offers two optional normalization methods. One approach is the 

widely-used procedure of scaling the data by the total intensity sum in each sample (TIS), 

which essentially corrects for the variation in the total amount of sample analyzed in a 

particular run. We also developed an alternative procedure that scales intensity data by the 

locally weighted intensity sums on the RT axis, which is applied to each fragment in each 

sample separately. The latter procedure is more adaptive than the TIS-based universal 

normalization in the sense that temporal fluctuations in the chromatography and measured 

MS intensities can be adjusted [19].

The next step (Step 2) is fragment filtering and selection. This is a critical step since the data 

extraction tools process each sample independently, and as a result the detection rate and 

quantification quality is not the same across all reported peptides and fragments. In 

mapDIA, there are three-tiered selection thresholds, including (a) standard deviation 

tolerance to define outliers, (b) minimum average cross-fragment correlation, and finally (c) 

minimum number of peptides and fragments required for differential expression analysis.

The last step (Step 3) is the model-based analysis for selecting differentially expressed 

proteins. Although mapDIA’s probability model is constructed flexibly enough to 

accommodate peptide and protein intensity data (Figure 1B), we will describe the model 

primarily for the analysis of fragment intensity data. mapDIA embodies a Bayesian 

hierarchical model for multi-group comparisons, which borrows statistical strength across all 

proteins in each dataset and thus confers robustness to the significance analysis, especially 

when the sample size is small (e.g. 3 samples per group). By contrast, the existing software 

package MSstats fits an independent fixed effects or random effects regression model for 

each protein and performs statistical significance inference using p-values with multiple 

testing correction [20], which depends on the accurate estimation of fixed effects parameters 

and prediction of random effects parameters with a limited number of samples.

The structure of the probability model for individual proteins in mapDIA is illustrated in 

Figure 1C. After median centering of the log scaled data, each fragment intensity is 

considered as a repeated measurement of the parent peptide and is modelled by probability 

distributions under the differential expression (DE model in Figure 1C) scenario and equal 

expression (EE model) scenario, respectively. The posterior probability and the posterior 

odds of differential expression are the significance scores for individual proteins and the 

false discovery rate (FDR) estimates are reported to facilitate the selection of differentially 

expressed proteins with target FDR [17]. This model is constructed for two common 

experimental designs, namely independent sample comparison and within-replicate 

comparison (Figure 1D; See Experimental Procedures for details), adding to the flexibility 

of our method to various kinds of experimental data.
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Simulation study

Key factors in simulation—We performed extensive simulation studies to evaluate the 

ability of mapDIA to identify differentially expressed proteins. Although data preprocessing 

steps are essential components of mapDIA, the major goal of this simulation study was to 

evaluate the performance of the model in comparison to MSstats [14]. The comparison 

focused on classification of proteins into differentially expressed proteins and non-

differentially expressed ones, and on the quality of FDR estimation. We disabled data 

preprocessing steps in mapDIA so that these steps do not give mapDIA an unfair advantage.

As mentioned in the Introduction, we varied two factors that are likely to affect 

quantification based on our empirical observation over several test datasets. The first factor 

is τ, the deviation of peptides from the underlying protein abundance pattern across the 

samples, i.e. lack of correlation of isolated precursor ions (peptides) with their parent 

protein. The second factor is σ, the measurement error or noise in the fragment intensities, 

which can be interpreted as the lack of correlation of the fragments with the abundance of 

their precursor peptides. Based on our empirical observations, the correlation of fragments 

with their precursor peptides tended to be better than that of peptides with their precursor 

proteins. One extra factor we varied was the number of data points per protein, which was 

controlled by the number of peptides per protein (np) and the number of fragments per 

peptide (npq). Fixing the values for the first two factors (τ, σ), we would expect that the 

simulation performance improve as more data are reported per peptide and per protein basis.

Classification performance and FDR accuracy—We generated simulation datasets 

with different values of these two key parameters that affect the performance of the model 

(see Experimental Procedures). In all simulation settings, mapDIA and MSstats showed 

comparable performance (Figures 2A and 2C, Supplementary Figure 5A and 5C). This 

comparable classification performance was repeated even when the peptide abundance was 

very inconsistent with the protein abundance (τ = 0.3). The classification performance was 

more affected by the correlation of peptide-level abundance to the parent protein than the 

measurement error of fragment intensities (correlation of fragment intensities to their parent 

peptide). With regard to the data volume, as expected, the classification performance 

improved as more peptides and fragments were included (data not shown).

However, the accuracy in the FDR estimates was markedly different between mapDIA and 

MSstats (Figures 2B and 2D, Supplementary Figure 5B and 5D). In mapDIA, the FDR 

estimates were highly accurate when the peptide deviation τ was below 0.2 (data for τ < 0.2 

not shown due to overlap), and the FDR began to be underestimated as τ increased above 

0.2 (green and red line, Figure 2B and 2D). Consistent with the classification performance, 

the FDR accuracy was more dependent on the peptide-level correlation to the protein 

abundance than on fragment intensity correlation to the peptide abundance. For a fixed level 

of fragment level variability σ = 0.2 or σ = 0.3, the FDR estimates were more heavily 

underestimated in the critical region (e.g. FDR < 0.1 in Figures 2B and 2D) when peptide-

level deviation from protein abundance τ became greater. This suggests that the peptide-

level consistency to the parent protein abundance becomes much more influential for the 

error control in mapDIA when the fragment intensity measurement error is low, i.e. when 
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the peptide deviation dominates the fragment measurement error. It should be noted that the 

data preprocessing steps of mapDIA, which were not factored into this simulation, were 

specifically implemented to prevent these scenarios (the filtering Step 2b based on the 

median cross-fragment correlation score should remove most fragments and peptides with 

inconsistent quantification from the estimation of the parent protein abundance levels).

In contrast, MSstat had more difficulty with estimating FDR in these data. To avoid 

suboptimal performance due to incorrectly specified parameters in MSstats, we have 

evaluated its performance with variable settings. In MSstats, the choice of fixed effects 

model versus mixed effects model over the biological replicates and/or the MS runs 

(technical replicates) is a major parameter. Since we assume that each biological sample is 

analyzed in an independent MS run in our simulation, these are neither biological nor 

technical replicates as defined in the MSstats package. However, assigning different 

biological replicate IDs to the samples and assigning identical biological replicate IDs in 

produced very similar results. At the same time, changing from fixed to random effects in 

the model (scopeOfBioRep option) affected the outcome dramatically. Including random 

effects in the model led to highly conservative adjusted p-values, but the default fixed effect 

model yielded very instable adjusted p-values, and an associated heavy underestimation of 

the FDR (Supplementary Figures 5B and 5B). This phenomenon prompted us to investigate 

this behavior carefully in all the real experimental datasets, and this pattern remained 

consistent in those datasets (also see below).

Simulation study with module information—We also evaluated mapDIA for datasets 

in which additional module information is available, e.g. relational information between 

proteins (with the idea that proteins within the same module are likely to co-vary). Modular 

information can be obtained from protein-protein interaction data (e.g. iRefIndex [21]) or 

co-annotation of proteins to the same functional category (e.g. Gene Ontology [22] or 

Reactome [23]). Another example of modular setting is to use peptide-protein membership 

as the module information when mapDIA is applied to score individual peptides, not 

proteins (as shown later in the prostate cancer glycopeptide analysis). We generated 

simulation datasets with differentially expressed proteins spatially positioned in network 

modules (see Experimental Procedures). As expected, simulation results suggest that 

mapDIA assisted with the module information through the Markov random field prior 

brought significant improvement in the classification performance and FDR accuracy 

(Supplementary Figure 6). The improvement was pronounced for proteins that had only a 

few peptides and fragments, specifically for proteins with 2 peptides and 3 fragments per 

peptide. Nevertheless, there are two caveats here. First, our analysis was conducted 

assuming that we have the complete knowledge of the underlying network/module. Second, 

the differentially expressed proteins are often dispersed throughout the entire network in 

realistic datasets, i.e. not as concentrated around a subnetwork as in our simulation example. 

Both properties are not likely to be satisfied in real applications, and therefore the 

performance improvement will likely be more moderate than in our demonstration. 

However, such module information is still useful in real setting, as we later demonstrate in 

the analysis of glycoproteomics data.
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Analysis of 14-3-3β dynamic interactome data

We applied mapDIA to a recently published SWATH-MS dataset by Collins et al [24], who 

investigated the 14-3-3β interactome in IGF-stimulated HEK293 cells via affinity 

purification-mass spectrometry (AP-MS) experiments in a time-resolved manner. The AP-

MS experiments were performed in three biological replicates at six time points: the PI3K 

inhibitor LY294002 was added to prevent AKT activation (−60 minute) prior to IGF1 

stimulation (0 minute), and the interactome was followed at four post-treatment time points 

(1, 10, 30, and 100 minutes) after IGF1 stimulation. GFP control purifications were also 

prepared in triplicates at each of three time points (−60, 0, and 30) to remove non-specific 

binders. The SWATH-MS data was extracted using OpenSWATH by targeted extraction 

using an existing spectral assay library as described in [24], which produced the original 

data for 1,967 proteins, 16,180 peptides, and 85,545 fragments across all bait and control 

purifications.

We performed the data analysis similar to the original paper, and used mapDIA (replicate 

design, Figure 1D) and MSstats for downstream analysis. Since AP-MS experiments capture 

contaminants in addition to real interaction partners [25, 26, 27], we first compared the bait 

purification to the control purification at each of the three time points using mapDIA, and 

identified 648 proteins significantly enriched in the bait purification over controls (1% FDR) 

at one or more time points. This step reduced the number of peptides and fragments to 8,309 

and 43,575, respectively. Using this contaminant-filtered data, we performed the differential 

expression analysis to detect protein abundance changes at each time point against the 

baseline at IGF1 stimulation (0 minute) using mapDIA and MSstats.

Fragment filtering and selection—Throughout the analysis, we applied 2 standard 

deviation threshold for outlier detection, median cross-fragment correlation 0.2 with a 

maximum number of fragment per peptide K = 5, and at least 1 peptide per protein/3 

fragments per peptide in the fragment selection step (see Experimental Procedures for 

details). Since normalization of quantitative data in dynamic conditions can remove real 

biological signals [28], we applied no normalization procedure to this dataset. Figure 3A 

shows the outlier detection and removal step in the time course analysis, where the green 

boxes indicate the outliers that are removed in specific samples. Following this step, for 

each fragment, the Pearson correlation was computed with all other fragments within the 

same protein and the median cross-fragment correlation was reported as the consistency 

score for that fragment. The fragments with median cross-fragment correlation score below 

the threshold (0.2) were removed from further analysis (Figure 3B–3C). Finally, mapDIA 

analyzed the proteins containing at least Q peptides each with at least R fragments for 

statistical analysis (with Q and R specified by the user, see below).

After this three-tiered filtering and selection step, outlier observations for 4,025 fragments 

were removed in at least one of the 18 samples (3 replicates, 6 time points), and 8,277 

fragments (19%) from 495 of 648 proteins were removed as quantitatively unreliable 

fragments for the analysis. Lastly, 4,232 fragments were further removed by requiring Q = 

1, R = 3 and K = 5, which resulted in the final dataset consisting of 31,038 fragments, 6,872 

peptides in 632 proteins. Note that mapDIA reports which filtering step(s) removed each 
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fragment in a separate output file so that the user can tune the filtering criteria in subsequent 

analyses.

Differential expression analysis in the replicate design—Following the fragment 

selection step, we ran the differential expression analysis using map-DIA, comparing pre- 

and post-treatment time points (−60,1,10,30,100 min) against the time at IGF1 stimulation 

(0 min). Note that quantitative comparison is made at each of the 5 time points for 632 

proteins (3,151 comparisons in total; Supplementary Table 1). In mapDIA, the estimated 

probability score associated with the estimated 1% FDR was s* = 0.825 (no module 

information), and this threshold gave 1,018 significant comparisons. Here differentially 

expressed protein refers to a protein that was affinity captured at different concentration 

levels against 0 minute in at least one of the five comparisons.

Figure 4A shows the plot of the significance scores (posterior probability) against log2 fold 

change for all five time points of comparison, showing clear separation between significant 

and non-significant comparisons. Here many proteins with absolute log2 fold change around 

0.5 or below (fold change 30% increase or decrease) scored near zero probability. However, 

there was an increasing tendency to score favorably as the number of peptides and fragments 

per protein increases, and the distinction between differentially and non-differentially 

expressed proteins became clear with increasing amount of data per protein. For example, 

the classification calls were very clear cut once the number of fragments per protein reached 

30 or so (1,370 comparisons for proteins with ≥30 fragments). We note that some 

comparisons were called significant at the target FDR level even with moderate average 

log2 fold change. These cases came from the proteins in which clear differential expression 

was observed in two biological replicates across many fragments, but not in third replicate. 

In the replicate design, mapDIA automatically reports the inter-replicate correlation for each 

fragment, with which the user can identify these patterns in the final report.

Comparison with MSstats—In order to compare the results with MSstats, we again ran 

the analysis with all possible combinations of fixed effects and random effects terms for 

both biological replicates and technical replicates, which gave us four different analysis 

outputs. Consistent with our experience in the simulation datasets, MSstats produced two 

very different results in terms of the reported p-values dependent on the fixed vs. random 

effects option selected (Supplementary Table 1). When random effects were specified for 

biological replicates, merely 127 comparisons were found to be significant at 1% FDR 

threshold, whereas 2,244 comparisons (out of 3,151) were reported to be significant when 

fixed effects were specified (Supplementary Figure 7A). The options for technical replicates 

made minor differences only.

When fixed effects for biological replicates were used for comparison in MSstats, the 

statistically significant comparisons from mapDIA were completely nested within the 

selection by MSstats (1,008/1,018), even though the two algorithms reported almost 

perfectly correlated log2 fold changes (Supplementary Figure 7B). We compared the fold 

change distribution and the inter-replicate reproducibility of the proteins called significant 

by both mapDIA and MStats and those only identified as significant by MStats. Proteins 

identified by MStats alone tended to exhibit more moderate fold changes (the fold change in 
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the majority of these proteins was 40% or less; Supplementary Figure 7C). When we 

examined the relationship between the p-values and the number of peptides and fragments, 

the majority of comparisons (1,154) in those proteins with ≥30 fragments (1,370) were 

called statistically significant by MSstats in the data with fixed effects for biological 

replicates (Supplementary Figure 7D). Taken together, this suggests that the additional 

comparisons reported as significant by MSstats tended to come from the pool of proteins 

with a large number of fragments showing only moderate fold changes. The comparisons 

called significant in MSstats also tended to come from the proteins with lower inter-replicate 

correlations (Supplementary Figure 7E).

We further analyzed the enrichment of Akt substrates (Akt1/Akt2) in the top scoring 

comparisons made by MStats alone and MStats/mapDIA. Akt is the central kinase in the 

insulin-IGF1 signalling pathway modulated by the perturbation, and substrates of Akt are 

well known to bind 14-3-3 proteins at the phosphorylated site. As such, binding of Akt 

substrates to 14-3-3 is expected to be significantly modulated by this treatment. The 

substrate list was extracted from PhosphoSitePlus [29] and NetworKIN [30] and the 

comparisons were ordered by the log odds scores for mapDIA and adjusted p-values for 

MSstats. Supplementary Figure 7F clearly shows that Akt substrates were more enriched in 

the comparisons prioritized by mapDIA than that by MSstats. Therefore, while mapDIA 

produces a smaller list of significantly changed proteins than MStats, mapDIA does not 

appear to be underpowered, and is capable of revealing likely biologically meaningful 

changes.

Analysis of prostate cancer glycoproteomics data

We next re-analyzed a published glycoproteomics dataset of prostate cancer samples with 

varying tumor aggressiveness [31]. In this study, N-linked glycopeptides were isolated from 

10 normal (N), 24 non-aggressive (NAG), 16 aggressive (AG) and 25 metastatic (M) 

prostate cancer samples, and each group was pooled into 2 or 3 sample pools and analyzed 

by SWATH-MS (effective samples sizes are 2 N, 2 NAG, 3 AG, 3 M). We first extracted 

the data for 302 glycoproteins (2,641 peptides, 27,361 fragments) using the recently 

developed DIA-Umpire tool [9]. Note that the DIA-Umpire pipeline includes an optional 

user-selected fragment/peptide selection module applied prior to computing protein-level 

protein intensities. In this analysis, we disabled the selection module and used the entire set 

of fragment intensities extracted by DIA-Umpire (i.e. not subject to DIA-Umpire’s 

fragment/peptide selection procedure). Using this data, we performed peptide-level 

differential expression analysis using mapDIA in the independent sample design (Figure 1D) 

for all 6 pairwise comparisons (between the four groups). In mapDIA, the analysis can be 

performed at the peptide-level by specifying the peptide identifier as the protein name in the 

input data.

Intensity normalization—In this dataset, we first tested all variants of intensity 

normalization methods implemented in mapDIA. According to a recent report that 

investigated the variation in multi-center pro-teomic data [19], the major sources of 

systematic variation included the chromatographic retention time (RT) and ion suppression 

during the ionization in each MS run. The temporal variation can be addressed in mapDIA 
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using the RT(δ) normalization (see Methods). Here we used Gaussian kernel weights with 

standard deviation of δ = 10 and δ = 30 min utes to compute the normalization factor locally 

for each fragment, with weights assigned to the adjacent fragments in the m/z and RT axes. 

If there is no such temporal or local variation, then this normalization method should 

produce similar results as the TIS normalization where all fragment intensities are divided 

by the total fragment intensities in each sample. When we compared the results obtained 

using no normalization, TIS-normalization, and RT(10) and RT(30) normalization, the 

fragment intensity data were significantly more correlated in RT(10) normalized data 

between samples belonging to the comparison group (Supplementary Figure 8), indirectly 

suggesting improved normalization of the data therein. We therefore decided to use the 

RT(10) normalized data for further downstream analysis (see Supplementary Figure 9 for 

the TIC profiles across the 10 samples before and after normalization).

Peptide differential expression analysis in the independent sample design—
We performed peptide differential expression analysis using mapDIA under the independent 

sample design (Figure 1D) and MSstats, comparing every pair of groups (up to 6 

comparisons per protein). We noticed that MSstats reported significance scores for 12,174 

comparisons whereas mapDIA reported scores for 6,735 comparisons, where mapDIA 

removed a large number of comparisons due to minimal fragment requirement (Q, R) = (1, 

3) (Supplementary Table 2). Therefore we compared the two methods only for the 

comparisons reported from both (6,735 in total).

At the 1% FDR threshold in each method, mapDIA and MSstats reported 2,083 and 4,869 

comparisons as significant, respectively, and the comparisons reported as significant by 

mapDIA were again almost completely nested within those reported by MSstats. For 

MSstats, the aberrant behavior of p-values were observed again with the choice of fixed 

effects and random effects specification in the model. With random effects model, nearly no 

comparisons were reported to be significant, whereas 72% of the comparisons (4,869/6,735) 

were found to be significant with the fixed effects model (Supplementary Figure 10). Since 

the random effects model of MSstats gave too few significant comparisons, we used the 

fixed effects model for comparison.

In the mapDIA analysis, statistically significant glycopeptides showed at least a 40% or 

more of fold change (Figures 5A). Unlike the previous protein-level analysis in the 14-3-3β 

dataset, this plot looks similar to a typical “volcano plot” one would expect from the 

analysis of a typical gene or protein expression dataset where each gene or protein is 

quantified with a single value. This was expected because the analysis was performed at the 

peptide level, each containing at most 5 representative fragments in terms of cross-fragment 

correlation, and therefore the amount of data for each unit was much more balanced for 

peptide-level analysis than for protein-level analysis (e.g. 14-3-3β data).

Examining the 2,083 significant cases, the majority of these comparisons came between 

cancer patients and controls (transplant donors) and between the MET group and AG/NAG 

groups. When we examined the estimated fold changes reported from both methods, they 

were again highly correlated (r = 0.99, Supplementary Figure 11). This indicated that the 

difference in the significant comparisons at the same FDR threshold is due to the differences 
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in the statistical approaches applied to model the variability in the data, and not from the 

estimation of effect size (magnitude of change).

Analysis using the module information—In certain experimental designs, co-

variation of proteins or peptides may be expected: in these cases, allowing an experimental 

design that makes use of such information may be beneficial. We refer to these associations 

as modules, and in its current implementation, mapDIA can use protein interaction or other 

annotation data as a source of modules, but in the case of inference at the level of peptides, it 

can also use the parent protein as a module. Hence, here we also tested the mapDIA 

performance at the peptide level for the glycopeptide data, by specifying peptide names as 

the protein identifiers in the mapDIA. In this dataset, this specification essentially represents 

the hypothesis that a glycopeptide is more likely to be differentially expressed if other 

glycopeptides in the same protein are also differentially expressed. If this hypothesis holds 

true, then the Markov random field model will effectively utilize such information. 

Otherwise, then the model will automatically downplay such associations and differential 

expression status will be inferred independently for each peptide.

When the module information was utilized through the Markov random field model (see 

Methods), 2,173 comparisons were found to be significant. The majority of them (1,990) 

were in agreement between the two models (Supplementary Table 3). As expected, 

additional differentially expressed peptides in the model with the module information were 

found to belong to the proteins containing other peptides reported as differentially 

expressed. Figure 5B shows that, when we looked at the 183 additional comparisons 

significant in the model with module information, on average 75% of the other peptides in 

the same proteins were significantly differentially expressed peptides. This indicates that the 

Markov random fields model effectively pooled information within the modules (individual 

proteins) to boost probability scores for glycopeptides when other glycopeptides in the same 

protein were differentially expressed and vice versa.

Discussion

In this work, we presented a novel software package, mapDIA, for statistical analysis of 

quantitative proteomics data generated in the DIA mode. Our data preprocessing routines 

include normalization methods that can remove systematic bias that is constant or temporal 

between MS runs, and a series of fragment filtering and selection procedures to remove 

outlier observations and irreproducible fragments. The statistical model had previously been 

developed for microarray data [15] and here we modified the same modeling framework to 

account for the protein-peptide-fragment hierarchy in DIA data. As we illustrated in both 

simulation and real experimental DIA data, mapDIA yields sensitive selection of 

differentially expressed proteins and allows robust control of the FDR. Unlike most other 

methods previously applied to DIA data, mapDIA explicitly utilizes repeated measurements 

(multiple fragments/peptides) of the protein abundance, which is a unique feature of MS2 

fragment-level quantification offered by the DIA-MS. The software is also flexible enough 

to accommodate different experimental designs, and allows robust estimation of the FDR 

even in datasets with a small number of samples.
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We have used MSstats as our main benchmark for comparison in this work. Importantly, our 

motivation was not to highlight the potential deficiencies of MSstats - a valuable tool for 

SRM/MRM based quantitative data - but to better understand the challenges presented by 

the more complex DIA-MS data. The conclusion we drew in the performance comparison 

warrants further investigation across a larger number of datasets. It is likely that the main 

reason behind the suboptimal performance of MSstats observed in this work is related to the 

inherent differences between the SRM/MRM and the DIA-MS data. In SRM/MRM, for 

which MSstats was developed, the protein-peptide-transition pairing is carefully selected, 

which yields more reliable quantification for protein-level statistical inference. In contrast, 

DIA-MS data is more complex and inherently noisier (i.e. it contains a larger number of 

inaccurately quantified fragment ions), and peptide ions isolated in different SWATH 

windows across the DIA-MS experiment can deviate quite significantly from the average 

cross-peptide pattern of each protein. As a result, a regression model that handles sample-to-

sample variation only at the protein level through fixed or random effects, even in the 

presence of the interaction terms in their model, may not be sufficient to account for such 

variability.

The three-tiered fragment selection step is a very important feature of mapDIA. In 

particular, the median cross-fragment correlation score can effectively remove noisy 

fragments in both datasets analyzed in this work. These steps are critical because the 

fragments peak data is extracted in each sample separately and thus the fragment intensity 

data may not be of the same quality across different samples. Moreover, even with the well 

behaving fragments, we noticed that a certain degree of data reduction is crucial for reliable 

statistical modeling in both methods because the amount of data can be severely unbalanced 

for different proteins, i.e. while some proteins have hundreds of fragments from tens of 

peptides, others may have a single peptide with only a few reliable fragments. To address 

this problem, we have allowed the users of mapDIA to control the maximum number of 

fragments (K) per peptide, where the most representative K fragments in terms of the 

median cross-fragment correlation score are chosen within each peptide. However, we also 

remark that excessive application of these filtering steps can lead to spurious findings, and 

thus our recommendation is to carefully specify the input parameters in a way that the final 

selection of reliable fragments preserves the underlying quantitative trends across the 

samples. To facilitate this monitoring process, our software automatically reports the 

filtering outcome at every stage as a part of the analysis output and also saves the filtered 

data to allow the users to visualize the data and monitor the changes as different filtering 

criteria are applied.

With regard to the statistical inference of differential expression, we formulated a 

hierarchical Bayesian model with the Markov random fields prior, which enables module-

oriented analysis. We discovered that this additional feature of prior was impactful when 

there are a limited number of quantitative data per protein (i.e. a small number of peptides 

and fragments) as illustrated in our simulation study. For many proteins DIA-MS data 

provides a sufficient number of repeated measurements (fragments and peptides) to support 

solid probabilistic decision for protein-level analysis without the need for additional priors 

in the model. Nevertheless, the model was found to be useful when the number of 
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observations per unit of analysis was relatively small, which occurs in two practical 

scenarios. First, when the quantitative data is rolled up to the protein or peptide level 

(summed over fragments and peptides), the model can incorporate the functional module 

information such as Gene Ontology and protein-protein interaction data in the differential 

expression analysis, assuming that the proteins in a common functional module are likely to 

behave similarly. Second, as we demonstrated in the glycoproteomic data, the model can be 

used for peptide-level analysis using the protein identifiers as the modules. mapDIA’s data 

input format was flexibly designed to accommodate various types of module information 

(see our software manual).

A frequently arising topic in the statistical analysis of label-free quantitative data is the 

treatment of missing data. Currently, we do not perform any missing data imputation or 

model-based treatment in mapDIA. We analyze the data using fragments with non-missing 

data in at least two samples within each comparison group in the independent sample design, 

or using fragments with no missing data in the replicate design. While the existing missing 

data imputation methods such as the nearest neighbor-based approach are appealing, their 

performance has not been benchmarked using gold standard DIA datasets. More 

fundamentally, it is difficult to judge whether such methods represent the underlying 

mechanism resulting in missing data in DIA experiments, which is non-random and 

associated with various components of the data extraction pipelines (e.g. de-convolution of 

co-eluting ions, data extraction parameters, the quality of DDA spectral library in targeted 

extraction, etc.). Indeed, the missing data problem can potentially be better addressed at the 

data extraction stage, where one can further reduce the number of missing values via 

improved algorithms for detection and quantification of low abundance fragment ions at the 

limit of detection.

Finally, the current implementation of mapDIA requires that fragment intensity data be 

organized in the two-layered hierarchy, that is, protein to peptides and peptides to fragments. 

However, the software can be immediately applied to protein intensity and peptide intensity 

datasets. As mentioned earlier, for example, quantitative phosphoproteomics analysis 

requires significance scores at the peptide level, and the user can format the data with 

peptide sequences as protein and peptide identifiers, which will inform the software to 

compute scores for peptides. Likewise, protein-level analysis can be performed if protein 

intensities are provided along with protein ID specified as protein/peptide/fragment 

identifiers.

Overall, we believe that mapDIA enables robust statistical analysis of DIA quantitative 

proteomics data. Refinements are planned and will be introduced in the future releases of 

mapDIA, such as handling of technical/biological replicates in the independent sample 

design, additional options to adjust the stringency of fragment selection steps, and more 

elaborate evaluation of the built-in normalization methods. More importantly, a 

comprehensive investigation of the interplay between various data extraction methods and 

the preprocessing steps in mapDIA will be of utmost interest, which will reveal the optimal 

integrated data analysis pipeline for this type of data from start to finish.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance of our work

Data independent acquisition mode of mass spectrometry (DIA-MS) is an emerging topic 

in the quantitative proteomics literature. While currently published reports are primarily 

focused on the DIA instrumentation and data extraction methods, our manuscript presents 

one of the first statistical tools, called mapDIA, to perform rigorous data preprocessing in 

the context of multi-sample DIA data and robust statistical analysis to determine 

differential expression status using DIA data. mapDIA also features a flexible intensity 

normalization procedure and an advanced probabilistic model that can incorporate 

biological networks in the detection of differentially expressed proteins.
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Highlights

• We developed mapDIA, one of the first statistical methods for differential 

protein expression using the data produced from data independent acquisition 

mass spectrometry.

• mapDIA provides an interactive user interface to filter out outliers and poorly 

quantitated fragment-level intensity data, commonly found in DIA-MS data 

produced by the library-based or library-free data extraction step.

• mapDIA also offers a flexible retention time-based normalization method.

• The core of mapDIA consists of the Bayesian hierarchical model for differential 

expression analysis, which yields a highly sensitive scoring system with good 

control of false discovery rates.

• The model can also incorporate biological network data through the Markov 

random field model, which tends to detect differentially expressed proteins in 

relevant sub-networks.

• The statistical model is applicable to two commonly used experimental designs, 

namely comparison of independent biological samples and comparison of 

different conditions within biological replicates (e.g. time course).
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Figure 1. 
(A) The workflow of data processing and analysis using mapDIA. mapDIA applies data 

preprocessing steps including normalization and fragment filtering and selection steps, and 

then performs statistical analysis on the processed fragment-level intensity data. (B) Protein/

peptide quantification possibilities using the data extracted from DIA data. DIA data enables 

both MS1 and MS2 quantification. Fragment-level intensities from MS2 data can be rolled 

up to peptide-level intensities, which can further summarized into protein-level intensities. 

Statistical analysis for comparing abundance levels at the protein level can be performed 

using any of the three types of data: protein, peptide, or fragment-level intensities. The basic 

architecture of mapDIA was designed to perform protein-level differential expression 

analysis using fragment-level intensity data. However, simple reformatting of input data 

allows the user to apply the method to perform the same analysis using peptide or protein-

level intensity data. (C) A conceptual diagram of the hierarchical model in mapDIA. 

Probability models representing differential expression and non-differential expression are 

estimated for each protein, and the significance score is computed as the posterior 

probability of the former. The FDR can be directly estimated at each score threshold, 

facilitating the choice of differentially expressed proteins at the target FDR. (D) Two 

experimental designs in mapDIA analysis. All pairwise comparisons can be made in a single 

mapDIA run as requested by the user. Independent sample design offers differential 

expression analysis between groups of individual samples, whereas replicate design offers 

within-replicate comparisons over multiple conditions, e.g. time course or dose-dependent 

Teo et al. Page 26

J Proteomics. Author manuscript; available in PMC 2016 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments replicated in more than one biological replicate. In the Replicate design, 

reproducible changes in the same direction across multiple replicates lead to greater 

confidence scores for proteins (or peptides).
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Figure 2. 
Classification performance and FDR accuracy in simulation studies. In each plot, the 

measurement error for fragment intensity, denoted by σ, was fixed and the peptide deviation 

from protein abundance, denoted by τ, was varied. (A, C) Sensitivity versus FDR (pseudo-

ROC curve) plot. The actual FDR refers to the average of false discovery proportions over 

100 simulations, not the estimated FDR. (B, D) FDR accuracy plot as peptide-level intensity 

deviates from true protein-level abundance (increasing τ). For each method, τ was varied 

between 0.1 and 0.3 at a fixed value of σ (0.2 or 0.3).
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Figure 3. 
(A) The extracted fragment intensity data for a sample protein in the 14-3-3β dataset. Each 

black line is the time course trajectory of fragment intensity data in each biological replicate. 

The first step detects outliers at each time point within each replicate. Green boxes indicate 

the log2 intensity values that are 2 standard deviation away from the mean at each time 

point. The data shown are after log2 transformation and centering within each replicate 

under the Replicate design. (B) After outlier removal, the median cross-fragment correlation 

is used to score the reliability of each fragment. The dashed line 0.2 is a user-specified 
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correlation threshold, and the fragments with the median correlation score above this 

threshold are selected for the statistical analysis. If there are more than the user specified 

maximum number of fragments per peptide (K), then K fragments with the highest median 

correlation scores will be selected. (C) The threshold 0.2 leads to removal of the fragments 

shown in green lines. After removal of the fragments, if the protein still retains at least Q 

peptides with minimum R fragments in each, the protein is kept for further analysis. (D) The 

final fragment-level intensity data after all data preprocessing steps are applied.
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Figure 4. 
(A) Posterior probability scores for all comparisons plotted against log2 fold change in the 

14-3-3β interactome data. Different proteins with similar fold changes may get drastically 

different confidence scores depending on the reproducibility of fragment-level intensity data 

and the number of peptides/fragments available for each protein. (B) Posterior probability 

scores for all comparisons plotted against the number of fragments in each protein in the two 

methods in the 14-3-3β interactome data. The confidence scores in mapDIA tended to be 

mildly favorable to the proteins with more peptides and fragments.
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Figure 5. 
(A) Posterior probability scores for all comparisons plotted against log2 fold change of 

glycopep-tides in the prostate cancer glycoproteome data (no module information was used). 

(B) The boxplots of score distributions for the peptides-level analysis. Peptides originating 

from the same proteins were assumed as the modules, and this module information was 

utilized in the model fit. This leads to two model fits for peptide-level analysis, with or 

without module information. Boxplots were drawn separately for the peptides that are 

common in both analyses and those that are unique to each analysis. The plots show that 

more glycopeptides were called significant with higher score in the analysis using the 

module information if their co-member glycopeptides were differentially expressed.
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