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Summary 

In this perspective, we discuss developments in mass spectrometry-based proteomic 

technology in the last decade from the viewpoint of our laboratory. We also reflect on existing 

challenges and limitations, and explore the current and future role of quantitative proteomics in 

molecular systems biology, clinical research and personalized medicine. 
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Introduction 

Proteins constitute a large part of the molecular machinery of the cell and are the major class of 

biomolecules targeted by drugs. Organized in functional modules and networks, they carry out 

cellular functions and determine phenotypes by means of coordinated activities of a multitude of 

molecular species1. Traditional biochemical methods for studying proteins have been highly 

biased towards a relatively small subset of proteins for which high quality, mainly antibody-

based assays have been available2. Over the past two decades, mass spectrometry (MS)-

based methods have emerged as the method of choice for the confident and near exhaustive 

identification and quantification of the proteins contained in a biological sample and have 

significantly contributed to unraveling cellular signaling networks, to elucidating the dynamics of 

protein-protein interactions in different cellular states, and to improved diagnosis and molecular 

understanding of disease mechanisms. Overall, MS-based proteomics can reveal the 

quantitative state of a proteome and thereby provides insights into the biochemical state of the 

respective cell or tissue. In the following paragraphs, we will discuss important concepts and 

developments in proteomic technology and explore the current and future role of quantitative 

proteomics in molecular systems biology as well as clinical research and personalized medicine. 

 

 

Evolution of MS-based quantitative proteomics 

MS-based proteomics can be broadly grouped into top-down proteomics where intact proteins 

are measured and bottom-up proteomics where peptides are measured as surrogates for the 

respective protein; in this commentary, we will focus on bottom-up proteomics. The typical 

bottom-up proteomics workflow starts with trypsin digestion of a protein sample into short 

peptides which are then separated by liquid chromatography either directly or after biochemical 

fractionation (Figure 1A)3. As peptides elute from the chromatography column, they are 

subjected to electrospray ionization4,5 and are directly sprayed into the mass spectrometer, 

where two levels of MS measurement take place in tandem3. At the first level, a mass analyzer 

measures the mass-to-charge ratio (m/z) of peptide molecular ions (MS1). At the second level, 

m/z values of fragment ions resulting from the fragmentation of specific peptide ions are 

detected (MS2). The specific fragment ion pattern of each peptide ion together with its m/z value 

enable confident identification of peptides present in the sample. Identified peptide sequences 

can then be mapped to proteins and the signal intensities of either peptides or fragment ions 

can be used to estimate relative abundance changes across samples. 
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Figure 1. Standard MS-based proteomics workflow and acquisition schemes. (A) Proteins can be 

extracted from various biological samples, such as bacterial or mammalian cell culture, tissues or bodily 

fluids. They are then enzymatically digested into peptides, which are then subjected to reverse-phase 

liquid chromatography, ionized with electrospray ionization and sprayed into the mass spectrometer. The 

time dimension in B and C is this chromatographic time. (B) Different acquisition schemes for tandem MS 

sample the proteome in distinct ways. While the most widely used untargeted (also referred to as shotgun 

or data-dependent acquisition, DDA) is relatively simple and applicable to any sample without requiring 

prior knowledge, resulting data can suffer from missing data points due to the stochastic sampling 

process. In contrast, targeted acquisition acquires peptide and fragment ion data in a highly consistent 

manner allowing accurate and sensitive quantification, but is limited to a relatively small, pre-defined set 

of peptides. Data-independent acquisition (DIA) acquires data of all detectable fragment ions in a sample 

in a systematic and consistent manner, but due to the relatively large peptide ion isolation windows (m/z 

dimension) the resulting data is more complex than for the other two acquisition schemes. (C) DIA data 

can be analyzed in different ways, either directly analyzing the multiplexed MS2 spectra or first extracting 

a subset of informative fragment ion signals (requires prior knowledge) and using these to derive 

quantitative data for specific peptides36,40. 
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To account for technical variability at various stages of sample handling and during the actual 

measurement, in the mid-90s, we and others started to develop strategies based on isotopic 

labeling6,7, including chemical isotopic labeling8, metabolic isotopic labeling9, and isobaric 

tagging10,11. Another important application of isotopic labeling in MS is the use of labeled spike-

in peptides or proteins of known concentration that enable the determination of absolute 

concentrations of proteins in a sample, for example, in terms of number of molecules per cell or 

nanograms per milliliter of blood12. While label-based approaches are still the gold-standard for 

quantification by MS-based proteomic methods13, the past years have seen label-free 

approaches becoming more popular thanks to simpler experimental design and sample 

preparation6,14. Among the developments enabling this transition are the advance of 

commercially available high resolution and fast scanning instruments, such as the introduction 

of the Orbitrap (2005)15 and continuous improvement of  time-of-flight mass spectrometers16, 

combined with improvements in software for aligning multiple MS runs17,18. Another more recent 

trend, starting in 200619, is label-free absolute quantification, where the absolute concentrations 

of all proteins measured in a sample are estimated based on summarized ion counts, which can 

then be converted into a meaningful unit by comparison to the total amount of protein that was 

injected into the mass spectrometer or by correlation to a set of spiked-in reference peptides of 

known concentration20-23. 

 

Regardless of whether label-based or label-free strategies are used, bottom-up proteomic 

methods have traditionally been divided into discovery proteomics and targeted proteomics 

(Figure 1B). Discovery proteomics (also known as shotgun proteomics and exemplified by data-

dependent acquisition, DDA) has its strength in identifying thousands of proteins per run. 

However, in complex samples, we have often been faced by limitations regarding repeatability 

of peptide identification and consistency of quantification24,25. Recent developments in 

chromatographic performance and MS hardware alleviate some of these concerns and allow 

high-quality quantitative measurements of near-complete proteomes, even in highly complex 

samples such as human cell lines and tissues26-29. 

 

About a decade ago, in order to overcome the limited scalability and reproducibility of discovery 

proteomics in studies aiming to quantify proteins in cohorts consisting of large numbers of 

samples, we and others started exploring the capabilities of targeted proteomics (exemplified by 

selected/multiple reaction monitoring, S/MRM30,31, and more recently parallel reaction 

monitoring, PRM32,33). Targeting methods provide consistent and accurate quantification, even 
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at low abundances and in complex mixtures. While targeted proteomics is typically limited to a 

few dozen predefined proteins per run, its sensitivity and highly quantitative capabilities make it 

well-suited for hypothesis-driven research and clinical studies where a smaller number of 

proteins, such as potential biomarkers, are to be measured in large numbers of patient 

samples34. 

 

Placed between these two well established techniques, a third type of mass spectrometric 

acquisition has gained remarkable momentum in the past five years: data-independent 

acquisition (DIA)35,36. In this method, multiplexed fragment ion spectra are acquired 

systematically using deterministic peptide ion isolation windows that collectively span the mass 

range in which most tryptic peptides are expected (Figure 1B). DIA was first described in the 

early 2000s37,38 and the following years have seen various further implementations and 

developments of the concept35,36. While these methods were of substantial conceptual interest 

and also led to a commercial implementation referred to as MSE 39, adoption of them in the field 

was somewhat limited due to the overwhelmingly complex data resulting from their application 

to high-complexity samples. In 2012, our lab described a new DIA-based method termed 

SWATH-MS, which uses a targeted paradigm for the analysis of DIA data40. The novel analysis 

strategy based on comprehensive spectral libraries41 and refined targeted scoring algorithms42, 

together with improved instrumentation and an optimized acquisition scheme, enabled us to 

efficiently deconvolute the highly multiplexed DIA data and use it to achieve highly consistent 

quantification of thousands of analytes (Figure 1C). Latest developments to improve DIA 

methods include: coupling with ion mobility43, new acquisition schemes44, as well as new data 

analysis modes and software tools45,46. Combining the analyte throughput of discovery 

proteomics with the accuracy and repeatability of targeted proteomic methods, DIA/SWATH-

type techniques have been applied successfully in a variety of studies and are becoming 

increasingly prevalent in the quantitative proteomics field, particularly in studies that require the 

consistent analysis of large sample cohorts23,47-50. 

 

Over the years, sensitivity and speed of mass spectrometers has improved at a rapid pace, 

however, obtaining robust, quantitative data over large numbers of samples remains one of the 

greatest challenges in proteomics, even for expert labs51. The most rigorous way to assess the 

capabilities and pitfalls of proteomic methods are inter-laboratory comparison studies. Such 

studies were conducted for discovery proteomics24,52 as well as targeted proteomics53. In a 

recent study using DIA/SWATH-type methods54,55, we found that over 4000 proteins from over 
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200 measurements of a human cell line can be independently identified and quantified across 

laboratories and instruments with coefficients of variation typically around 20%54. These results 

are encouraging because they show that quantitative proteomics is capable of delivering 

accurate, reproducible and comprehensive data at high throughput.  

 

In the following two sections, we briefly outline our view of the fields’ current and future role in 

molecular systems biology as well as in clinical research and applications. 

 

 

Quantitative proteomics in molecular systems biology and the study of cellular 

organization 

The comprehensive quantification of proteins, and their post-translational modification status 

across conditions, or over time in response to a stimulus or perturbation, is an important aspect 

of systems biological studies. Thanks to the technological advances described above, the 

quality of the resulting quantitative data matrices for large sample numbers has substantially 

improved, enabling us and others to conduct systems-oriented studies, not only in 

microorganisms, but also higher organisms, including mammals23,47,50,56,57. 

 

Proteins are not isolated molecules but three-dimensional objects acting in the context of other 

proteins, the modular and spatial organization of proteins can therefore be as important as their 

expression levels1,58. MS-based proteomic methods developed to query the organizational units 

of the proteome typically combine MS measurements with biochemical assays (Figure 2). The 

oldest of these methods, first described in 199959, is affinity purification coupled to MS to find 

interaction partners of a specific protein60-62. More recently, proteome fractionation using native 

separations has been applied to study protein complexes in a cell on a proteome-wide scale63-65. 

To determine subunit topologies of protein complexes and thereby obtain insights into the 

architecture of macromolecular assemblies, we and others have used approaches based on 

chemical cross-linking of protein residues66-68; adding a quantitative dimension enables probing 

of dynamic changes in protein complex composition and structure69,70. Furthermore, spatial 

resolution of the proteome within a cell can be added by combining proteomic techniques with 

enzymatic activities to label proximate or interacting proteins of a particular protein of interest71. 

Overall, these techniques highlight the power and flexibility of MS-based proteomics to not only 

produce a comprehensive and high-quality data matrix of protein abundances across a large 

number of samples, but also to obtain a dynamic, three-dimensional view of the proteome and 
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its modular and spatial organization, both of which are critical to fully understand complex 

biological systems.  

 

 
 

Figure 2. A selection of methods to explore the modular and spatial organization of the proteome.  

Two methods to study protein-protein interactions and complexes as they occur within a cell are affinity 

purification and protein correlation profiling. For both methods, cells are lysed under native conditions 

preserving protein-protein interactions. For affinity purification, a protein of interest is purified either via an 

affinity tag genetically added to the protein or with a specific antibody and subjected to MS analysis to 

identify proteins directly or indirectly binding to the protein of interest60. For protein correlation profiling, a 

cell lysate is fractionated e.g. by size-exclusion chromatography and after MS analysis of all the resulting 

fractions, correlation analysis is performed to find co-elution of proteins indicative of them having been 

part of the same protein complex63-65. Chemical cross-linking can be used to gain insights into the 

topology of a protein complex 66-68. After digestion of cross-linked proteins, cross-linked peptides can be 

identified by MS and provide information on which parts of which proteins are in close proximity within the 

protein complex. Another emerging method is proximity labeling (also called BioID) using a ubiquitous 

biotin-ligase fused to a protein of interest to biotinylate all proteins in its proximity71. Biotinylated proteins 

can then be isolated and identified by MS. The BioID method captures not only stable protein complexes 

but also transient interactions between proteins that could not be captured by the other methods 

mentioned here. 
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Quantitative proteomics in molecular medicine 

One of the major challenges in clinical studies is the requirement for large patient cohorts to 

cope with biological and experimental variability of clinical samples. In contrast to genomics, 

proteomic analyses of cohorts consisting of hundreds of samples are still prohibitively time-

consuming and expensive, especially if large numbers of proteins are to be consistently 

quantified across the cohort. Two remarkable studies from 2016 used discovery proteomics to 

quantify several thousand proteins across over a hundred patient samples each; both efforts 

required several months of instrument time72,73. To conduct studies at larger scale, proteomic 

techniques that allow higher throughput, while maintaining robustness, repeatability and 

sensitivity are therefore essential. DIA/SWATH-type approaches emerge as a promising 

alternative for the quantitative proteomic analysis of clinical samples and first studies applied 

them successfully to quantify large numbers of proteins across hundreds of human patient 

samples74. 

 

The datasets generated from such studies can be used to discover cellular mechanisms and 

processes that are affected in the disease under study. Alternatively, quantitative proteomic 

techniques can be used to profile potential protein biomarkers in patient tissue, blood or urine to 

 

Figure 3. Quantitative proteomics in molecular medicine. Applications of quantitative proteomics in 

personalized medicine are typically based on biomarkers that reflect disease risk or disease status. 

Biomarkers are screened across individuals or patient cohorts. Longitudinal profiling of individuals allows 

monitoring of the molecular profile of a person over long time frames; and more meaningful clinical 

information can be obtained by comparing each measurement with previous time points of the same 

person than by comparing a single measurement with the population average. This personalized 

approach to molecular medicine is expected to achieve early and highly sensitive detection of disease 

risk and is therefore most effective in preventing disease. 
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inform disease risk, diagnosis, prognosis, and treatment stratification (Figure 3). Biomarkers 

also play a crucial role in the emerging field of personalized medicine, where recurrent 

molecular measurements of specific protein and metabolite levels are used to evaluate an 

individual’s health status and to prevent development of disease in a timely manner by dietary, 

exercise or drug-based interventions (Figure 3)75. While protein biomarkers have traditionally 

been measured with immunoassays, targeted proteomic techniques have a number of 

advantages, including faster assay development, multiplexing capabilities and analytical 

specificity, and are therefore the method of choice to test panels of candidate biomarkers before 

they enter clinical validation studies76-78.  

 

 

Conclusion 

Over the past two decades, we have witnessed rapid developments in mass spectrometric 

instrumentation as well as acquisition methods and analysis strategies. Furthermore, 

quantitative proteomics has contributed enormously to biological and clinically oriented 

research. However, current instrument operation as well as data acquisition and analysis still  

require highly specialized expertise. Many facilities, including ours, are therefore working 

towards the development of more robust MS-based methods and automated analysis pipelines 

to make quantitative proteomics available, not just to expert labs, but also to general molecular 

biology laboratories in academia, hospitals and industry. 
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