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Abstract 

 

Background: Longitudinal next generation sequencing of cancer patient samples has enhanced 

our understanding of the evolution and progression of various cancers. As a result, and due to 

our increasing knowledge of heterogeneity, such sampling is becoming increasingly common in 

research and clinical trial sample collections. Traditionally, the evolutionary analysis of these 

cohorts involves the use of an aligner followed by subsequent stringent downstream analyses. 

However, this can lead to large levels of information loss due to the vast mutational landscape 

that characterises tumour samples.  

Design: Here, we propose an alignment-free approach for sequence comparison - a well-

established approach in a range of biological applications including typical phylogenetic 

classification. Such methods could be used to compare information collated in raw sequence files 

to allow an unsupervised assessment of the evolutionary trajectory of patient genomic profiles.  

Results: In order to highlight this utility in cancer research we have applied our alignment-free 

approach using a previously established metric, Jensen-Shannon divergence, and a metric novel 

to this area, Hellinger distance, to two longitudinal cancer patient cohorts in glioma and clear cell 

renal cell carcinoma using our software, NUQA. 

Conclusion: We hypothesise that this approach has the potential to reveal novel information 

about the heterogeneity and evolutionary trajectory of spatiotemporal tumour samples, potentially 

revealing early events in tumorigenesis and the origins of metastases and recurrences.  
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Introduction 

Investigating evolution and heterogeneity of a neoplasm can give insight to the nature and origins 

of therapeutic resistance as well as assist in predicting response to treatment (Greaves and Maley 

2012; Turajlic et al. 2018) As a result, and due to the decreasing costs of next-generation 

sequencing (NGS), there has been a recent increase in longitudinal profiling of patient samples 

throughout their care leading to a number of high-quality studies (Gerlinger et al. 2014; Johnson 

et al. 2014; Mazor et al. 2015; Turajlic et al. 2018). However, there are limitations introduced by 

bulk sequencing of a tumour and a lack of bioinformatic tools to handle these analyses. 

Phylogenetic reconstruction is commonly used to study evolution in biology, and so, it would be 

intuitive to apply this to study clonal evolution in cancer (Nowell 1976). However, current studies 

build phylogenies based on knowledge from only one type of somatic mutation, such as single 

nucleotide variants (SNVs) and copy number alteration (Gerlinger et al. 2014; Martínez et al. 

2015). These methods also require an alignment step to highlight somatic mutations occurring in 

each sample introducing information loss and bias due to intrinsic issues previously highlighted 

(Kidd et al. 2010; Rosenfeld et al. 2012; Paten et al. 2017).  Similarly, a number of methods have 

been highlighted previously to measure intratumoural heterogeneity (ITH) including the use of 

ecology measures of diversity in Barrett’s oesophagus, the MEDICC algorithm, PyClone and 

EXPANDS (Martínez et al. 2015; Schwarz et al. 2015; Andor et al. 2016). However, similar 

limitations apply here as only one type of somatic alteration is incorporated, such as allele 

frequency, also requiring the use of an aligner. Additionally, ecological measures, such as 

identifying the number of clones, can be found relatively easily in ‘2-dimensional’ tumours such 

as Barrett’s oesophagus but this would be difficult to replicate in 3-dimensional tumours. 

Alignment-free sequence comparison, defined as any approach calculating 

similarity/dissimilarity between sequences which does not use or produce alignment, can be 

used as an alternative approach to address these issues and create holistic patient profiles for 

assessing evolutionary trajectories and spatiotemporal heterogeneity. It is more sensitive in 

the context of sequence divergences and robust against genome rearrangement compared to 

alignment approaches(Vinga 2014; Bernard et al. 2017). These methods can broadly be split 

into 2 groups: word-based methods and information-theory based methods. Here, we will focus 

on word-based methods which have recently been shown to have greater accuracy compared 

to information theory based methods in protein sequence comparison (Zielezinski et al. 2017). 

The natural efficiency and accuracy of this algorithm has led to its use in many areas including 

assessing phylogenetic relationships between bacterial and viral genomes, promoter 

recognition and protein sequence comparison expanding to an extensive list of tools currently 

available for various applications(Sims et al. 2009; Chattopadhyay et al. 2015; Fan et al. 2015; 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article-abstract/doi/10.1093/m
olbev/m

sz182/5551345 by Library,Q
ueen's U

niversity,Belfast user on 06 Septem
ber 2019



Roddy et al. 2019 

 

 

 

Xu et al. 2016), which has been reviewed previously (Zielezinski et al. 2017). However, very 

few tools can scale to handle the quantity of data as required by longitudinal cancer research 

cohorts.  

Here, we present NUQA (NGS tool for Unsupervised analysis of fastQ using Alignment-free), 

a framework that utilizes a highly efficient k-mer counter, jellyfish, alongside software built in 

C++ to quickly and efficiently produce alignment-free ‘phylogenetic’ trees for longitudinal 

cancer patient cohorts on a standard workstation. In order to ensure this approach is robustly 

applicable to cancer research cohorts we have assessed a well-known metric, Jensen-

Shannon divergence (JSD), which has previously been applied in an alignment-free context 

(Sims et al. 2009), as well as a novel metric in this space, Hellinger distance (HD). 
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New Approaches 

NUQA was developed using bespoke scripts written in bash and C++ along with pre-built software 

jellyfish (Marçais and Kingsford 2011) and phylip(Felsenstein 2004). This algorithm consists of 5 

steps: k-mer counting using jellyfish; sorting the resulting count vectors for easier processing and 

normalising to values between one and zero for comparison; merging the count vectors into a 

single data matrix using a C++ script; calculating the distances between these vectors using a 

bespoke C++ script and finally, building a newick tree using phylip. These steps are combined in 

a single wrapper script written in bash (Figure S1). We have tested both JSD and HD for 

applicability in the comparison of WES samples in longitudinal cancer patient cohorts. Given two 

probability vectors, P and Q, JSD is defined as: 

 

𝐽𝑆(𝑃, 𝑄) =
1

2
𝐾𝐿(𝑃,𝑀) +

1

2
𝐾𝐿(𝑄,𝑀) 

where 𝑀 =
1

2
(𝑃 + 𝑄) and KL is Kullback-Leibler divergence: 

𝐾𝐿(𝑃,𝑀) =∑𝑝𝑖𝑙𝑜𝑔2
𝑝𝑖
𝑚𝑖

𝑘

𝑖=1

 

 

HD is defined as: 

 

𝐻(𝑃, 𝑄) =
1

√2
√∑(√𝑝𝑖 −√𝑞𝑖)2

𝑘

𝑖=1

 

Detailed methods are available in the supplementary material (Section 1) and the software 

implementation can be found on GitHub (https://github.com/ACRoddy/NUQA) 

 

 

. 
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Results 

Identifying optimal parameters 

Multiple distance metrics have been highlighted for their utility in alignment-free sequence 

comparison in various studies and reviews (Höhl et al. 2007; Dai et al. 2008; Vinga 2014; 

Zielezinski et al. 2017), From these we selected the most applicable to our cohort (discussed in 

the Supplementary Material; Note 1.2). We decided to focus on JSD, a previously studied metric 

in alignment-free methods, and HD which is novel to this domain. We applied each of these 

metrics to 6 patients, 3 clear cell renal cell carcinoma (ccRCC) patients and 3 glioma patients, 

using a 21-mer length in order to assess their applicability to cancer patient cohorts (Figure 1A-D 

and S2). We compared the trees using both Branch Score distance (BSD) and Symmetric 

distance (SD) (Figure 1C and D).  BSD suggests that HD produces similar results to JSD with 

distances <0.3 for 5/6 patients, while SD highlighted that JSD and HD produce the same tree 

topologies (SD=0) for all patients except P17 which obtained a SD of 2 due to a change in location 

of sample 'Recurrence A'. We conclude that JSD and HD both produce consistent results in this 

context suggesting that HD may perform well in other alignment-free applications.   

With the aim of identifying an appropriate k-mer length which should be used when applying 

alignment-free methods to longitudinal cancer patient cohorts, we assessed the effect of varying 

k-mer length (13, 15, 17, 19, 21, 23, 25 and 31bp) for patient RMH004 (Figure 1E-G) and 

additionally for patients P90, P17, EV001 and EV002 (Figures S3, S4, S5 and S6, respectively) 

using JSD. An ideal k-mer length would have the sensitivity of representing only one mutation 

while also ensuring it does not occur frequently or represent multiple regions (Supplementary 

Note 1.2). 

Again, we compared trees using BSD and SD. Results were visualised using heatmaps (Figure 

1F and G) and a line graph depicting the effects of sequential increases in k-mer length on BSD 

(Figure 1H). Results indicate an optimal range of 17 to 25 for these patients supporting previous 

findings that 21 is an optimal k-mer length for large genomes (Sims et al. 2009; Fan et al. 2015). 

 

Application to cancer patient cohorts 

To first validate the use of this method on longitudinal, spatial and temporal cohorts, we created 

simulated datasets, A and B, to represent cancer patient profiles through introducing controlled 

mutational events (Figure 2A and 2B, respectively). The aim was to anticipate a predefined 

branching pattern and assess the ability of NUQA to correctly assign a branching pattern. A 

‘normal’ file (N) was produced initially before being mutated to form a ‘cancerous’ file (C). This 

cancerous sample was then mutated 3 separate times to represent heterogeneity (files C1a, 

C2a and C3a) and finally each of these three files were mutated two successive times (files b 

and c) to represent the evolution of these 3 subclones. Dataset A was simulated to represent 
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SNVs and indels within WES data while dataset B represents SNVs, indels and structural 

variants within WGS data. As expected, these 3 subclones form 3 distinct branches with file ‘c’ 

being the most distal sample and file ‘a’ being the least. 

Furthermore, we identified two well-studied, high quality longitudinal cancer research cohorts to 

test the utility of our software in glioma (Johnson et al. 2014; van Thuijl et al. 2015) and ccRCC 

(Gerlinger et al. 2014). We have identified one patient from each cohort for whom the original 

authors have produced phylogenetic trees drawn from the information obtained using a variant 

caller to highlight SNVs and small indels. Patient P90 from the glioma cohort had longitudinal 

samples, whole-exome sequenced, including circulating blood samples (Normal), six samples 

from the initial tumour (Initial A-F) classified as a grade II glioma and 2 samples from a recurrence 

tumour (Recur A and B) also classified as a grade II glioma. We applied our own algorithm to this 

patient and produced phylogenetic trees and MDS plots based on our output (Figure 2B and C). 

A least-squares minimum-evolution (LSME) tree was produced from somatic SNVs and indels for 

patient P90 by Mazor et al., for which, detailed methods can be found in the original paper (Mazor 

et al. 2015) (Figure 2A). We use these as a basis for comparison, aware that bias will have been 

introduced as only reads which uniquely aligned to the reference genome have been considered 

and the variant callers used could only identify SNVs and small indels but not larger aberrations. 

This tree contains a relatively long trunk region before tumour samples diverge indicating linear 

evolution. Furthermore, three key clusters of samples are formed, the first containing Initial C, D 

and F, the second containing Initial A, B and E and the final cluster containing the two recurrent 

samples. Similarly, the tree produced using NUQA is highly consistent, also indicating that initial 

samples C, D and F occur early in evolution, clustering closely with the Normal sample while initial 

samples A, B and E branch distally suggesting that these are later events in evolution. In addition, 

recurrence samples A and B branch early, clustering closely with initial samples C, D and F. 

Moreover, both trees seem to suggest high levels of ITH within the initial tumour and that there is 

little ITH within the recurrent tumour. 

For ccRCC patient RMH004 we have WES data for germline DNA in the blood (GL), 5 samples 

from the initial ccRCC tumour (R2-4, R8 and R10) and 1 sample from a thrombus in a renal vein 

(VT). Again, we produced phylogenetic trees and MDS plots based on our output from NUQA for 

this patient (Figure 2E and F). Maximum parsimony trees were created based on SNVs and small 

indels found to be present within the tumour samples as described in the original paper (Gerlinger 

et al. 2014) (Figure 2D). The original maximum parsimony tree suggests that R3, VT and R10 

occur early in evolution while R8, R4 and R2 occur much later and are more highly mutated. The 

original authors highlighted that two distinct mutations occurred in PBRM1 indicating parallel 

evolution of two subclones within the tumour. The phylogenetic tree produced using NUQA also 

suggests that sample R10 occurs early in evolution and that R2 and R4 are more genetically 
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divergent, occurring much later in evolution (Figure 2E). However, samples R3, VT and R8 show 

variations in branching suggesting that more complex mutational events may be present in these 

samples. Both trees also appear to show high levels of ITH which can also be seen in the MDS 

plot for these samples (Figure 2F).  

Further analysis of patients P17 and EV001 also indicate similar groupings to what can be seen 

using alignment-based methods, however, again there are key differences in branching within 

these patients (Figure S6;Note 3.1 and S7;Note 3.2, respectively). Additional analyses can be 

performed based on these results, for example, by using the branching pattern produced through 

NUQA to inform groups as a basis for further analysis. An example using FastGT (Pajuste et al. 

2017) to identify SNP calls differentiating groups found in patient P90 can be found in the 

supplementary material (Note 3.3). 

 

Benchmarking alternative alignment-free packages 

Reviewing the literature on current alignment-free phylogenetic software identified two capable of 

processing multiple large fastq files for sequence comparison: AAF and kWIP (Fan et al. 2015; 

Murray et al. 2017) both of which are designed to classify organisms at species level requiring a 

sensitivity to much larger genetic distances. All packages were tested using patient P90 using a 

k-mer length of 21 and allowing 64 GB RAM. AAF produced the best time of 1 hour, 57 minutes 

while NUQA ran in 2 hours, 25 minutes and kWIP ran in 5 hours, 48 minutes. In order to assess 

the applicability of these to cancer research data we tested NUQA, AAF and kWIP on our 

simulated dataset (Figure 3A, 3B and 3C, respectively). It is promising to see that all softwares 

produce the branching pattern we expect to see. However, when applied to patient P90 (Figure 

3D, E and F, respectively) we see a variation in tree topology, but more importantly, AAF and 

kWIP produce a very small trunk (orange) compared to branch lengths indicating that they are 

less sensitive to the changes occurring between single-patient samples.  

 

Discussion 

Alignment-free sequence comparison is capable of building evolutionary relationships between 

samples without the use of an aligner. This approach allows for the inclusion of all information 

regardless of whether it would align to a reference genome preventing bias to pipeline specific 

information and allowing the inclusion of larger insertions and deletions or chromosomal 

rearrangements which would be difficult to align. It is also a highly efficient approach yielding 

grossly improved times over traditional methods using an aligner (Zielezinski et al. 2017). 

Here, we have shown potential utility for this approach to be applied to longitudinal cancer patient 

cohorts as an unsupervised approach for comparing sequencing files. In order to do this we have 

tested a range of suitable distance metrics for their applicability to this type of data, highlighting 
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JSD as an appropriate measure to assess pairwise distances between feature frequency profiles 

as previously described (Sims et al. 2009). But also HD, a previously untested metric in alignment-

free sequence comparison which we have shown produces equally consistent results. Varying k-

mer length revealed that a k-mer greater than 17 should be sufficient for this analysis, however, 

we decided to continue further analysis with a k-mer length of 21 to reduce the effects of 

homoplasy. We validated the use of NUQA on longitudinal, spatial and temporal cohorts using 2 

simulated datasets A and B, representing SNVs and indels in small scale data and SNVs, indels 

and structural variants in large scale, WGS data, respectively. Furthermore, we assessed the 

utility of applying an alignment-free framework in cancer research by applying this method to one 

patient each from two high-quality longitudinal cohorts in ccRCC (Gerlinger et al. 2014) and 

glioma (Johnson et al. 2014; Mazor et al. 2015). In both cases, clear similarities could be seen 

when comparing the results of alignment-free analysis to the trees produced using alignment-

based approaches, deduced from changes in SNVs and small indels, however, clear and possibly 

fundamental differences could be seen. This may be a result of unassessed gene fusion events, 

larger indels or chromosomal rearrangements which are also contributing to the tumours 

mutational landscape and therefore affecting the evolutionary pathway of these cancer patients. 

Finally, we benchmarked our software, NUQA, against other large-scale alignment-free softwares 

designed for assessing a much greater genetic divergence between samples: kWIP and AAF. We 

found that AAF yielded a marginal improved speed over our current approach, however, neither 

software was designed to assess the relatively small genetic distances which would be seen in a 

cancer patient cohort.  

Our tool, in combination with alignment-free genotyping tools, such as FastGT (Pajuste et al. 

2017), has the potential to add extra layers to the evolutionary analyses of cancer types providing 

insights which may otherwise be passed over. Further analysis of the feature frequency profiles 

built in our extendable alignment-free framework could highlight patterns and abnormalities 

contributing to the branching pattern obtained for each cancer patient helping to tease out 

contributing factors in cancer evolution. We would expect that given current precision medicine 

paradigms and reductions in sequencing costs this approach may be adopted clinically to highlight 

a cancer trajectory and consequential strategies for the patient. 

In conclusion, we have introduced NUQA, a novel and efficient software application for performing 

alignment-free sequencing comparison, with the aim of highlighting the utility of these methods 

for the unsupervised phylogenetic assessment of longitudinal patient cohorts in cancer research. 

We hypothesise that this presents an opportunity to provide a landscape view to identify early and 

late events in evolution as well as give an indication of the origins of metastatic and recurrent 

tumours in quick turnaround time and can be used in combination with the more targeted and 

previously adopted approaches.  
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Materials and Methods 

This framework was applied to 2 previous published datasets: A glioma cohort containing spatial 

and temporal exome-seq data for patients P17, P49 and P90 (Johnson et al. 2014; Mazor et al. 

2015), A ccRCC cohort containing spatial and temporal exome-seq data for patients EV001, 

EV002 and RMH004 (Gerlinger et al. 2014). 

Both the glioma and the ccRCC cohort were pre-processed using the same steps prior to applying 

our algorithm: SAMTOOLs (Li and Durbin 2009) was used to revert files for patient’s P17, EV001, 

EV002 and RMH004 from bam to fastq files to allow us to work with the raw reads obtained from 

sequencing. Following this, FastQC (Andrews 2010) was used to ensure the files were a good 

quality for alignment-free processing and for setting levels for trimming, if required reads were 

trimmed using Trimmomatic (Bolger et al. 2014). Finally, resulting trees were visualised using the 

online software tool, iTOL (https://itol.embl.de/). MDS plots were created using the cmdscale() 

function and ggplot2 (Wickham 2009) package within the R statistical environment (R Core Team 

2017). 

To assess changes in tree topology and branch lengths between trees produced using alignment-

free methods for the same patient we used Branch-Score distance, a measure accounting for 

both branch length and tree topology, and Symmetric distance, a measure accounting for only 

tree topology. Both of these are available through the Phylip package. 

Further description of the generation of simulated data and discussion on the choice of distance 

metric and evaluation of k-mer length are available in supplementary notes 1.2-1.6 
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Figure 1: Identifying optimal parameters for use with alignment-free. Application of Jensen-Shannon 

Divergence (JSD) and Hellinger Distance (HD) to (A) clear cell renal cell carcinoma (ccRCC) patient 

RMH004 with a germ-line sample (GL), multiple samples from the ccRCC tumour (R2-4, R8, R10) and a 

tumour thrombus from the renal vein (VT) and (B) glioma patient P90 with a germ-line sample (Normal), 

multiple samples from the initial grade II glioma (Initial A-F) and 2 samples from a recurrent grade II glioma 

(Recur 1A and 1B). (C) A table summarizing Branch score distance (BSD) and Symmetric distance (SD) 

values returned when comparing trees for 6 patients for which both JSD and HD have been applied. (D) A 

bar chart summarizing BSD and SD values returned when comparing trees for 6 patients for which both 

JSD and HD have been applied. (E) Tree topologies produced using k-mer lengths 13, 15, 17, 19, 21 and 

23 in combination with JSD when applying alignment-free methods to patient RMH004. (F) A heatmap 

representing the Branch-Score distance (BSD) between trees produced using varying k-mer lengths and 

HD applied to patient RMH004. (G) A heatmap representing the BSD between trees produced using varying 

k-mer lengths and JSD applied to patient RMH004. (H) A line graph representing the BSD between trees 

produced using increasing k-mer lengths when applying JSD. 
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Figure 2: Applying alignment-free sequence comparison methods to glioma patient P90 and ccRCC 

patient RMH004. (A) Simulated dataset ‘A’ created using software XS and fastx-mutate-tools to represent 

SNVs and indels in small scale data such as WES (B) Simulated dataset ‘B’ created using software pIRS 

to represent SNVs and indels and structural variants in WGS (C) Least-square minimum-evolution tree 

produced based on a binary matrix of SNVs present in the samples for P90 adapted from Mazor et al. (D) 

An unrooted neighbour-joining tree produced applying our alignment-free software (NUQA), incorporating 

JSD, to patient P90. (E) Multi-dimensional scaling plot representing the distances between samples 

produced applying NUQA, incorporating JSD, to patient P90. (F) A maximum parsimony tree produced 

based on a binary matrix of SNVs present in the samples for RMH004 adapted from Gerlinger et al. (G) An 

unrooted neighbour-joining tree produced applying NUQA, incorporating JSD, to patient RMH004. (H) Multi-
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dimensional scaling plot representing the distances between samples produced applying NUQA, 

incorporating JSD, to patient RMH004. 

 

 

Figure 3: Benchmarking of NUQA against other alignment-free softwares. Unrooted neighbour-joining 

trees produced when applying NUQA (A), AAF (B) and kWIP (C) to a simulated datset using a k-mer length 

of 17 and allowing 64GB RAM and trees produced when applying NUQA (D), AAF (E) and kWIP (F) to 

patient P90 using a k-mer length of 21 and allowing 64GB RAM. 
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