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Abstract 

The remarkable stability of microRNAs in biofluids underlies their potential as biomarkers, but their 

small size presents challenges for detection by RT-qPCR. The heterogeneity of microRNAs, with each 

one comprising a series of variants or ‘isomiRs’, adds additional complexity.  Presented here are the 

key considerations for use of RT-qPCR to measure microRNAs and their isomiRs, with a focus on 

plasma. Modified nucleotides can be incorporated into primer sequences to enhance affinity and 

provide increased specificity and sensitivity for RT-qPCR assays. Approaches based upon polyA tailing 

and use of a common oligo(dT)-based reverse transcription oligonucleotide will detect most isomiRs. 

Conversely, stem-loop RT oligonucleotides and sequence specific probes can enable detection of 

specific isomiRs of interest. Next generation sequencing of all the products of a microRNA RT-PCR 

reaction is a promising new approach for both microRNA quantification and characterization. 

Keywords: 

microRNA, miRNA,  isomiR, RT-qPCR, biomarker, NGS 

 

 

  

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

 a
t Q

ue
en

's
 U

ni
ve

rs
ity

],
 [

M
ar

ga
re

t D
el

le
tt]

 a
t 0

1:
20

 1
6 

Fe
br

ua
ry

 2
01

6 



3 
 

Introduction 

MicroRNAs are small RNAs in the range of 18-22 ribonucleotides in length [1]. They are stable in 

biofluids due to protection from exonucleolytic degradation by incorporation in protein complexes 

or containment within vesicles. A plethora of published studies describe the diagnostic potential of 

circulating microRNAs for both malignant and non-malignant diseases [2][3][4][5][6][7][8][9]. A 

range of parameters is critical to the design of a successful PCR assay, firstly careful design of 

primers to ensure specificity, harmonise melting temperatures and avoid formation of dimers. 

However, primer design options for amplification of microRNAs are severely limited because the 

primer sequence is dictated by their small size. Another feature of microRNAs is that they form 

families with similar sequences, making it difficult to design PCR assays with sufficient specificity to 

discriminate between family members. Furthermore, individual microRNAs exist as a series of 

isoforms or ‘isomiRs’ which vary in length and/or sequence [10] [11] and have exciting diagnostic 

potential [12][13]. Expression level and proportion of microRNA isomiRs alters in response to 

bacterial infection [14]. The design of a PCR assay will determine whether it detects just some or all 

of the isomiRs of the target microRNA.   

To develop an optimal RT-qPCR assay to measure microRNAs for molecular diagnosis it is necessary 

to consider the whole workflow (Figure 1). Regardless of the choice of nucleic acid extraction 

protocol, it is critical that the samples are processed in a consistent fashion, with automation where 

possible [15]. Stringent RNA quality control should be performed by both spectrophotometric 

methods to determine purity and fluorimetry with RNA-binding dyes to determine concentration 

[16][17]. It is imperative that such steps are employed to reduce technical variation and therefore 

minimise the need for downstream normalisation procedures which complicate interpretation of the 

data. Considerations for optimising each step in the RT-qPCR workflow are addressed in the 

following sections. 
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RNA extraction 

Many options are available for microRNA extraction from tissue and biofluids (reviewed by 

Moldovan et al [16]). One of the most common methods of extraction, particularly from tissues, 

involves phenol and guanidinium thiocyanate (e.g. Qiazol®/Trizol®). Bead-based capture techniques 

amenable to automation (e.g. Agencourt  RNAdvance Blood Kit for MicroRNA, Beckman Coulter) are 

beginning to emerge. However, column-based (silica or proprietary resin) methodologies are the 

most commonly used, in particular for biofluids. The Exiqon miRCURY™ RNA Isolation Biofluids kit 

has been shown to outperform isolation kits available from other vendors in the isolation of 

microRNAs from plasma[18]; especially given its ease of use and short processing time it should be 

considered when choosing a microRNA isolation kit for plasma. The kit is also suggested for serum 

and urine, although to date there are no comparative studies for these biofluids. Both the phenol 

guanidinium thiocyanate method and column-based approaches can be carried out with or without 

short RNA enrichment, the impact of which is reviewed by Redshaw et al [19].  

The effectiveness of microRNA isolation technologies can vary depending upon the properties of the 

specific samples and the RT-qPCR assay employed [15][19][20] and it is therefore advisable to assess 

various combinations when optimising a new assay. It is particularly important to test different 

volumes of input material; we and others have observed that the yield of microRNA from plasma (as 

judged by RT-qPCR) does not increase linearly as expected with increasing volume [21], presumably 

due to decreased isolation efficiency or presence of inhibitors [18]. A lesser effect was reported with 

increasing volumes of murine serum [22] and the phenomenon is not observed with other biofluids, 

such as cerebrospinal fluid, perhaps because lower protein content reduces column clogging [18]. 

However, it should be noted that extraction from small amounts of starting material can result in the 

selective loss of microRNAs with low GC content or high secondary structure [23]. 
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Direct quantification of microRNAs from cells or biofluids presents an attractive option to both 

simplify and therefore speed up the RT-qPCR workflow and remove bias introduced by preferential 

purification of certain sequences [11]. It is possible to detect microRNAs in cells lysed with 

commercial (eg TaqMan MicroRNA Cells-to-CT Kit, Thermo Fisher Scientific) or in-house detergent 

solutions [7][24][14]. We have successfully amplified miR-22 and miR-34a directly from 100 

endothelial colony forming cells (ECFCs [25]) lysed with a buffer containing Nonidet P40 and Triton 

X100 [24] (Figure 2). Asaga and colleagues in 2011 were the first to report a direct RT-qPCR protocol 

(which they termed RT-qPCR-DS) to detect circulating microRNAs in sera from cancer patients [5].  

Commercially, SomaGenics( http://www.somagenics.com/ ) have developed a miR-Direct™ system 

which uses a capture probe followed by a solution phase hybridisation to capture the probes which 

they claim improves the capture of low abundance microRNAs. This hybridisation step also facilitates 

washing to remove any potential PCR inhibitors. Quantification of microRNAs occurs with 

SomaGenics' miR-ID® technology [26]. Circularization of the target microRNAs during this step 

prevents re-hybridization to the immobilized capture probe and thereby is claimed to improve the 

sensitivity and reproducibility. The entire miR-Direct™ procedure is performed in a single tube and is 

reported to be amenable to automation. This technology has been used to measure expression of 

circulating microRNAs in plasma [27]. 

Reverse transcription (RT)  

The two most widely used strategies for reverse transcription (RT) of microRNAs involve either 

addition of a polyA tail and priming with an anchored oligo(dT) RT oligonucleotide or use of a stem-

loop microRNA-specific RT oligonucleotide (Figure 3)[16]. If assaying for multiple specific microRNAs, 

some RT reactions may be sub-optimal due to variations in the sequence-dependent hybridisation of 

each primer. A pulsed RT methodology (e.g. 40 cycles of 16°C for 2 min, 42°C for 1 min and 50°C for 

1 s, followed by a final reverse transcriptase inactivation step at 85°C for 5 min) may provide 
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conditions for all targets to be efficiently reverse transcribed [28]. An advantage of the polyA-

oligo(dT) methodology is the potential to return to the cDNA at any point and assay for another 

microRNA; in contrast, the direct methodology is limited to those microRNAs with specific primers 

included in the RT. 

The simultaneous amplification of all isomiRs from oligo(dT)-primed cDNA provides greater 

theoretical sensitivity for this approach, but this is offset by the potential for greater specificity and 

therefore reduced noise of microRNA-specific  reverse transcription. The use of stem loop 

oligonucleotides which overlap the 3′ end of the target microRNA to prime reverse transcription 

adds an additional level of specificity prior to amplification [29]. This step is employed by the widely 

used TaqMan™ miRNA Assays (Thermo Fisher Scientific) in which a hydrolysis probe is subsequently 

used to quantify the product amplified by a microRNA-specific forward and common reverse primer. 

While very effective at discriminating between closely related microRNAs, this approach is not 

completely specific for a single 3′ isomiR of the target microRNA. For example, although a TaqMan 

assay designed to detect mature miR-127-3p did not detect a 3′ isomiR which was two nucleotides 

shorter than the mature sequence, an assay designed to detect the isomiR amplified both the isomiR 

and mature sequences with similar efficiency [30]. Comparable findings have been reported for 

TaqMan assays designed to detect isomiRs of miR-877-5p or miR-33b-5p [31]. The ligation of stem-

loop adaptors to both the 5′ and 3′ ends of the target microRNA to create a ‘dumbbell-like’ structure 

which can then be quantified by TaqMan RT-qPCR enables the selective quantification of specific 

isomiRs[32]. Another methodology with a specific RT step involves the use of microRNA-specific 

‘conformation-restricted’ RT primers (MiRXES) [33][34]. Use of microRNA-specific forward and 

nested reverse primers increases the specificity of MiRXES assays and because there are no universal 

primers generation of non-specific cDNA is minimised. Unlike TaqMan assays, amplification is 

detected using SYBR Green allowing for rapid amplification at a lower cost.   
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In an alternative approach developed by Castoldi and colleagues [35] termed ‘miQPCR’, T4 ligase is 

used to ligate an adaptor to the microRNA 3' end. Ligation of the 26nt oligonucleotide adaptor 

(miLINKER) provides a template for RT with a complementary primer. An important feature of this 

technique is that the linker does not contain the full sequence of the universal qPCR primer, which is 

introduced into the amplicon during reverse transcription with the specific primer. This is proposed 

to increase the specificity of the assay and also results in the ability to change the universal PCR 

primer without having to change the miLINKER sequence. 

Choice of PCR primers 

Formation of primer dimers and off target amplicons can interfere with the amplification of the 

target amplicon causing signal dampening, false-negatives and even false-positives. Careful design of 

primer sequences to enhance specificity and minimise primer:primer complementarity and 

therefore formation of primer dimers is critical for all PCR reactions and is thoroughly reviewed in a 

recent book dedicated to this topic [36]. Many computer algorithms are available to help the end 

user, for example primer3 [37][38][39]. Unfortunately the short length of microRNAs severely limits 

the choice of primer sequence. This restriction can be partially circumvented by addition of a tail at 

the 5′ end of the primer, an approach incorporated in publicly available ‘miRprimer’ software for 

design of primers for ‘miR-specific RT-qPCR’ [40]. The specificity of miRprimer assays is increased by 

designing reverse primers with 3-8 nucleotides complementary to the microRNA.  Candidate primers 

are adjusted to a Tm of 59°C by trimming or addition of nucleotides and optimum primer pairs 

selected to minimise formation of secondary structures and primer dimers.   

Incorporation of modified nucleotides, most commonly ‘Locked Nucleic Acid’ (LNA) (Exiqon), can 

significantly enhance the affinity of an oligonucleotide for its complementary target sequence. A 

mixed LNA/DNA oligonucleotide can therefore be designed to have a similar affinity towards 

different microRNA sequences with varying GC-content [41]. An increase in duplex melting 
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temperature (Tm) of 2-8 °C for each incorporated LNA nucleotide means that LNA oligonucleotides 

can be made shorter than traditional DNA oligonucleotides and still retain a high Tm.  

 

In many cases it is possible to discriminate between related microRNAs with similar sequences using 

conventional oligonucleotide primers for amplification. The optimum annealing temperature that 

distinguishes between hybridisation of a primer to its perfectly matched intended target and 

hybridisation with mismatch(es) to a similar off-target sequence can be determined experimentally. 

Using this approach it was possible to discriminate effectively between miR-135a and miR-13b, 

which differ by only a single base [42]. However, incorporation of modified nucleotides into primers 

can reduce cross-reactivity between closely related microRNAs and indeed the miRCURY platform 

(Exiqon) which employs LNA-enhanced PCR primers showed absolute specificity for members of the 

miR-302 and let-7 families in the microRNA quality control (mirQC) study[43]. The incorporation of 

modified nucleotides into primers to enhance binding affinity and use of the microRNA-specific RT 

oligonucleotides discussed above are the two main approaches adopted to improve the specificity of 

RT-qPCR. Particularly for a diagnostic PCR assay, a ‘hot start’ technique should be adopted to 

prevent extension of primers annealed to non-specific templates or to each other (forming primer 

dimers) at low temperatures during assay set-up. 

Unfortunately the hot start protective effect will not prevent subsequent amplification of any primer 

dimers that do form in the early stages of the PCR. Although not currently adapted for detection of 

microRNAs, a novel method to prevent formation of primer dimers and enable amplification of the 

target even in their presence has been reported by Satterfield [44]. In this approach a capture probe 

providing target specificity is linked to a short primer with a low Tm that does not amplify unless the 

capture sequence binds first. These ‘cooperative primers’ amplify template whilst blocking 

propagation of primer dimers [45]. 
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PCR Efficiency 

The accuracy of quantification using RT-qPCR is highly dependent upon constant and high PCR 

efficiency.  RT-qPCR assay efficiency is usually calculated by performing a template dilution series 

and plotting the CT values against the log template amount, and determining the slope of the 

resulting standard curve. However, this method relies heavily upon the assumption that for all 

samples the PCR efficiency of each amplicon is constant and the software used has properly handled 

the baseline fluorescence call [46]. As an alternative, an algorithm called ‘LinRegPCR’ was developed 

to determine PCR efficiency values per sample by fitting a regression line to a subset of data points 

in the log-linear phase (LinReg -version 11.0, download: http://LinRegPCR.HFRC.nl) [47]. If efficiency 

values are low there may be PCR inhibitors in the samples, the primer-probe design may not be 

optimal or inaccurate pipetting may be occurring.  

Normalisation:  endogenous, spike-in or external standard?  

Despite optimisation of the steps discussed above some technical variability will remain between 

samples due to slight differences in starting material, sample processing, RNA extraction, reverse 

transcription and PCR amplification. Delineation of a normalisation strategy to ensure accurate 

quantification for each clinical sample is perhaps the most challenging issue for use of microRNA RT-

PCR in molecular diagnosis [6]. An internal endogenous small RNA with invariant expression would 

constitute the optimum control, particularly for research applications, but identification of a 

universal candidate is unlikely. Considerable effort to identify stable reference microRNAs or other 

small RNAs in various cells, tissues and disease states has had limited success in solid tissues 

[48][49], however definitive reference microRNA(s) for biofluids have yet to be demonstrated.  The 

most appropriate endogenous controls need to be determined empirically for a specific setting as 

recommended in the Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments (MIQE) guidelines [50] [51].  The consensus in the field is that in addition to a panel of 
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endogenous controls, a spike in exogenous control microRNA such as Caenorhabditis elegans miR-39 

or Arabidopsis thaliana should be used to provide data on recovery and amplification efficiency 

between RNA preps [7][19][16].  

However, due to the difficulties outlined above normalisation to an internal control is unlikely to be 

practical in a clinical diagnostic setting. To enable absolute quantification a dilution series of known 

amounts of synthetic microRNA oligonucleotide (perhaps calibrated by digital PCR as described 

below) can be used to generate cDNA and used as a standard curve for quantitation of the cognate 

endogenous microRNA [9]. Typically clinical assays are performed on a fixed volume of serum or 

plasma, therefore the assay could report the number of microRNA copies per ml.  

Choice of microRNA RT-qPCR assay 

The choice of qPCR strategy, polyA tailing of the microRNA followed by RT using an oligo(dT) primer 

or direct RT methodologies utilising microRNA-specific RT primer(s), will depend upon application 

but comparative studies can provide a guide. The difference in copy number estimations for some 

microRNAs reported for TaqMan microRNA or miRCURY LNA Universal  RT microRNA PCR (Exiqon) 

assays highlights the significant impact that choice of RT-qPCR technology can have upon microRNA 

measurements [19]. A comprehensive study by Mestdagh et al [43] compared 7 different qPCR 

strategies for microRNAs from 5 different vendors (miRCURY (Exiqon),  OpenArray (Life 

Technologies), TaqMan Cards (Life Technologies), TaqMan Cards preAmp (Life Technologies), 

miScript (Qiagen), qScript (Quanta BioSciences) and SmartChip (WaferGen)). They assessed the main 

criteria for an assay; reproducibility, specificity, sensitivity and accuracy with high and low RNA input 

amount. Transforming these metrics into a Z score allowed for direct comparisons between 

platforms; each had specific strengths and weaknesses which should be taken into consideration 

when choosing an assay for your microRNA qPCR molecular diagnostic assay. We have summarised 
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the advantages and disadvantages associated with the alternative choices available at each step in 

development of a microRNA PCR strategy in Table 1. 

Future directions 

PCR is already supporting point of care diagnostics, with results possible in as little as 15-20 minutes 

(for example the alere q (Alere) and cobas Liat PCR System (Roche)). The demonstration that a PCR 

reaction can be completed in less than a minute [52] has provided the proof of principle that assay 

time could be further reduced to provide even more timely information to the physician (pending 

successful resolution of the numerous technical challenges). Given the potential of circulating 

microRNAs as biomarkers [6][8, 16][53][3], this is likely to be one of the first point of care 

applications involving RT-PCR of microRNAs [2]. We have already shown that a panel of microRNAs 

can be amplified from plasma cDNA in less than 10 min using the xxpress thermal cycler (BJS 

Biotechnologies) that employs resistive heating and forced air cooling to enable ramp rates of up to 

10°C/s [54].   

Miniaturisation of qPCR assays can enable molecular diagnostics labs to offset the cost of increased 

throughput and the advent of 384 and 1536 microplates for qPCR assays has made this feasible. 

However, in order to maintain data integrity and accuracy at such low volumes liquid handling 

machinery must be utilised. For example, extremely low volumes can be dispensed accurately by the 

Echo liquid handler (Labcyte Inc) which employs acoustic ejection of 25nl droplets [55]. This system 

eliminates the need for costly disposable tips and was used to prepare the 2µl PCR reactions from 

which the amplification curves shown in figure 2 were generated. In addition to reducing reagent 

costs, the ability to transfer such small volumes can simplify assay design by eliminating dilution 

steps.  Another advantage of reducing assay volumes is that less cDNA is required. Therefore more 

microRNAs can be assayed from each sample, facilitating the use of expanded diagnostic panels, or 

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

 a
t Q

ue
en

's
 U

ni
ve

rs
ity

],
 [

M
ar

ga
re

t D
el

le
tt]

 a
t 0

1:
20

 1
6 

Fe
br

ua
ry

 2
01

6 



12 
 

assays can be performed on fewer starting cells (only 100 cells in the amplification depicted in Figure 

2) an important consideration for detection of microRNAs from circulating tumour cells.  

The development of qPCR and recent increasing role for digital PCR (dPCR) and NGS has been 

reviewed recently in Biomolecular Detection and Quantification [56]. dPCR enables absolute 

quantification of a target nucleic acid and is beginning to replace qPCR for some applications.  The 

target is diluted across a number of partitions (individual PCR reactions) resulting in some without 

any template; the number of target molecules initially present can be determined from the numbers 

of positive and negative reactions. The myriad potential applications of dPCR in molecular 

diagnostics are beyond the scope of this review, but  it offers an alternative highly sensitive 

approach for the quantitative detection of low abundance microRNAs [57][58][59][60] and would 

reduce the need for a reference microRNA for normalisation. Despite the proposed benefits, dPCR is 

not without some caveats. It is more labour intensive than qPCR and as it still relies on PCR is subject 

to some of the same pitfalls. The main application of dPCR in molecular diagnostics in the immediate 

future is likely to be in the calibration of standards for RT-qPCR [61].  

Perhaps the ultimate solution for accurate quantitation of microRNAs will be to combine RT-PCR 

with next generation sequencing (NGS) technology and employ a ‘molecular indexing’ strategy 

analogous to that used by Cellular Research to measure mRNA abundance[62]. Labelling of each 

microRNA cDNA product with a unique sequence tag present in the RT primer would enable biases 

introduced during PCR to be corrected; counting the number of unique index sequences would 

provide a quantitative measure of the number of microRNA molecules present in the sample.  This 

global approach has the advantage of revealing the isomiRs present [10] and discriminating between 

microRNA families with similar sequences.  
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Expert commentary 

It is important that microRNA isomiRs are considered in the design of a PCR assay. These sequence 

variants are ubiquitous and the relative proportions of isomiRs for any given microRNA will vary 

depending upon the sample type [11]. Therefore an isomiR-specific assay, typically involving a 

dedicated stem-loop RT step, may not accurately reflect the total expression of the microRNA 

concerned. Alternatively, assays involving polyadenylation and oligo(dT)-based RT steps potentially 

detect all isomiRs. Depending upon the requirements of the assay, either approach may be suitable. 

Comparative studies are available to assist in the choice of the most appropriate assay [43]. 

Perhaps the most difficult challenge to the use of microRNA PCR assays for molecular diagnosis is 

definition of an effective normalisation strategy. Many technical factors, particularly sample 

handling and RNA extraction, can influence the microRNA expression level reported by an assay. As 

emphasised in the MIQE guidelines for mRNA qPCR assays [50] [51], it is necessary to determine a 

panel of endogenous control small RNA genes that are stably expressed in the samples under 

investigation. These should be combined with appropriate exogenous spike-in controls. 

 

Five-year view 

Nucleic acid extraction is a significant source of bias. Therefore it is likely that methods involving 

direct lysis will become more prominent, supported by the ongoing advances in analyses of single or 

small numbers of cells [63]. Concomitant with this trend is the miniaturisation of PCR assays, which 

both reduces reagent costs and enables more microRNAs to be measured. Acoustic liquid transfer, 

as delivered by the Echo systems (Labcyte Inc), provides the ability to accurately transfer nanolitre 

volumes without tips. Despite the high capital cost, the advantages of assay miniaturisation and 
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reduced cross contamination risk will drive the wider adoption of this technology for microRNA PCR 

assays. 

There is increasing realisation of the importance of isomiRs [12][11], particularly in the biomarker 

field; therefore a greater awareness of which isomiRs are detected by each assay will be required. 

Combination of PCR assays with NGS will provide the advantages of both technologies, namely 

ability to detect informative microRNAs from small samples with sequence information. Similar 

approaches are already being developed commercially for quantification of mRNAs by, for example, 

Cellular Research Inc and Bio Spyder. Cellular research have pioneered the application of ‘molecular 

indexes’ which facilitate absolute quantification from single cells [62], while Bio Spyder employ 

‘detector oligos’ which in the presence of target sequences are amplified and subsequently 

sequenced, avoiding the need for RNA extraction and reverse transcription. PCR offers specificity for 

selected microRNAs of interest, while subsequent sequencing of the amplification products would 

provide sequence level data about isomiR expression. 

 

Key issues 

• There are two main approaches to detecting microRNA: polyadenylation and oligo(dT) and 

microRNA-specific RT primer.  

• Choice of RNA isolation method can influence the detection of microRNAs and should be 

optimised for the specific sample type under investigation. Direct lysis is an appealing 

alternative to simplify assays and reduce bias introduced during RNA extraction.  

• MicroRNAs exist as a series of variants or isomiRs and the choice of RT-PCR strategy will 

determine whether all or only selected isomiRs will be detected. Polyadenylation followed 

by oligo(dT)-directed RT can detect all 3′ isomiRs whilst microRNA specific stem-loop RT 

focuses on one or a subset of isomiRs. 
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• Future techniques will likely combine RT-PCR with sequencing to provide quantitative data 

on all isomiRs present. 

• Design of primers to discriminate between closely related microRNA sequences is 

challenging due to their short length, but can be aided by inclusion of high affinity modified 

nucleotides. 

• Careful primer design and use of hot start techniques to minimise amplification of off-target 

sequences and primer dimers maximises the sensitivity and specificity of microRNA 

detection. New approaches are being developed to reduce propagation of primer dimers.  

• Miniaturisation of RT-PCR assays made possible with advances in liquid handling technology 

reduces reagent costs and facilitates evaluation of more microRNAs from limited samples. 

• Appropriate normalisation is critical to achieve reliable detection of microRNAs and a panel 

of endogenous controls empirically evaluated for the specific situation combined with 

exogenous ‘spike-ins’ is recommended. 

• The availability of rapid thermal cycling devices is reducing the time required to detect 

microRNAs and it is now possible to complete the PCR stage in less than 10 minutes. 
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Table 1. Summary of the advantages and disadvantages associated with the alternative choices 
available at each step in development of a miRNA PCR strategy 
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PHASE OF STRATEGY OPTIONS AVAILABLE 

RNA extraction Phenol/chloroform Column None (RT directly from 
lysate) 

Advantages Advantages Advantages 

Relatively inexpensive; 
ability to isolate from a 
large volume of fluid 

Fast, simple 
protocol amenable 
to automation 

No loss of miRNA or bias inherent 
with RNA extraction methods; 
ability to analyse small volumes 
(valuable for limited clinical 
samples); speed  

Disadvantages Disadvantages Disadvantages 

Relatively time 
consuming and not 
amenable to 
automation, therefore 
not suitable for large 
numbers of samples; 
Health and safety 
concerns 

Starting volume 
limited; expensive 

QC of RNA not possible; 
Commercial lysis buffer expensive 
(“homemade” buffer an option); 
Not yet widely characterised 

Summary Summary Summary 

Speed *; Sensitivity 
***; Cost **; 
Reproducibility ** 

Speed ***; 
Sensitivity**; Cost 
*; Reproducibility 
*** 

Speed ***; Sensitivity **; Cost 
***; Reproducibility ** 

RT Strategy Poly-A miRNA-Specific 
stem loop miRQPCR (linker) 

Advantages Advantages Advantages 
Single universal RT 
suitable for 
subsequent detecton 
of all miRNAs of 
interest and also 
amenable to analysis 
of mRNA. Detects all 
microRNA isomiRs 

High sensitivity and 
specificity; can be 
multiplexed; 
isomiR specificity 

Universal ligation and RT steps for 
subsequent detecton of all 
miRNAs of interest 

Disadvantages Disadvantages Disadvantages 

Sensitivity limited by 
background; requires 
additional 
polyadenylation setp; 
does not discriminate 
between isomiRs 

Specific RT 
reaction required 
for each miRNA; 
expensive 

Involves an extra ligation step  

Summary Summary Summary 

Speed **; Sensitivity 
**; Cost ***; 
Reproducibility ** 

Speed **; 
Sensitivity***; 
Cost *; 
Reproducibility *** 

Speed **; Sensitivity***; Cost 
***; Reproducibility ** 

Detection Chemistry Double-stranded 
DNA intercalating 
molecules, e.g. 
SYBR Green or 

Oligonucleotide 
probe-based 
fluorescent 
detection e.g. 
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EvaGreen Taqman, 
Scorpion or 
PNA 

Advantages Advantages 

Low cost, melt curve 
available to check 
specificity 

Increased 
specificity and 
sensitivity; primer 
dimers less critical 
provided PCR 
efficiency 
maintained; 
potential to 
perform multiplex 
reactions 

Disadvantages Disadvantages 

Primer dimers 
contribute to increases 
in fluorescence; 
typically requires user 
design, Dye inhibition 
of PCR and effect on 
melt curve analysis; 
preferential binding to 
GC rich sequences. 

Expensive; 
maximum rate of 
extension reduced  

Summary Summary   

Speed ***; Sensitivity 
**; Cost ***; 
Reproducibility ** 

Speed **; 
Sensitivity***; 
Cost *; 
Reproducibility *** 

  

Standardisation/ 
Normalisation Standards Internal 

Reference 
  

Advantages Advantages 
Common practice in 
molecular diagnostics, 
providing an absolute 
value; reduces need to 
find a “housekeeping” 
miRNA 

Less laborious than 
generating 
standards; controls 
for some sample-
specific variables 

Disadvantages Disadvantages 

Involves additional 
reactions; 
Concentrations of 
standars must be 
determined accurately 
(eg by digital PCR) 

More appropriate 
for research 
applications than  
clinical diagnostics; 
difficult to 
establish reliable 
“housekeeping” 
miRNA particularly 
in biofluids 

Summary Summary   

Speed *; Sensitivity 
NA; Cost *; 
Reproducibility *** 

Speed **; 
Sensitivity NA; Cost 
**; Reproducibility 
**   
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Figure 1. Overview of potential microRNA RT-qPCR workflows. The key steps indicated in  blue 
boxes are  common to all protocols, with the exception of RNA extraction which can be 
circumvented by performing reverse transcription directly upon lysed sample.  Sequencing of PCR 
products provides an alternative to qPCR to provide isomiR information in addition to 
quantification of the amplicons. The alternative strategies available at the ‘Reverse transcription’ 
and ‘Quantification’ steps are provided in red, purple and green boxes and are detailed in the text.

Tissue

Reverse transcription

PCR

Quantification

Normalisation

Polyadenylation

Probes SYBR

OligodTStem-loop

Direct 
lysis

Sequencing

Digital 
quantification 
of all isomiRs

Relative quantification of 
single isomiRs 
or total miRNA

Linker ligation

RNA extraction & QC

Linker

 

 

miR-22

miR-34a

Figure 2 . Low volume RT-PCR directly from cell lysates. 100 endothelial colony forming cells (ECFCs) [25] were 
lysed with 10µl in-house detergent buffer [24]. Reverse transcription and quantitative real time PCR was 
performed with TaqMan assays for miR-22 and miR-34a in a 2µl reaction volume using a Roche LightCycler 480.
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Figure 3. Comparison of polyadenylation and oligodT with 
microRNA-specific stem-loop RT strategies. The miR-133a-3p TaqMan
assay preferentially reverse transcribes the mature sequence (bold) 
while all 3′ isomiRs are detected with the oligo-dT based RT 
oligonucleotide. Both assays employ a miRNA-specific forward primer 
(often with modified nucleotides (*)) and a reverse primer 
complementary to sequences introduced by the RT oligo to amplify 
the target microRNA. RPM: reads per million

polyA RT-PCR

UUUGGUCCCCUUCAACCAGC................ 132
UUUGGUCCCCUUCAACCAGCU............... 76
UUGGUCCCCUUCAACCAGCUG.............. 51

UUUGGUCCCCUUCAACCAG................. 47
UGGUCCCCUUCAACCAGCUGU............. 45

UUUGGUCCCCUUCAACCAGCUG.............. 39
UUUGGUCCCCUUCAACCAGCUGU............. 32
UUGGUCCCCUUCAACCAGCUGUA............ 28
UUGGUCCCCUUCAACCAGC................ 24
UUGGUCCCCUUCAACCAGCUGU............. 23

UUUGGUCCCCUUCAACCAGCAAAAAAAAAAAAAAAA
UUUGGUCCCCUUCAACCAGCUAAAAAAAAAAAAAAA
UUGGUCCCCUUCAACCAGCUGAAAAAAAAAAAAAA

UUUGGUCCCCUUCAACCAGAAAAAAAAAAAAAAAAA
UGGUCCCCUUCAACCAGCUGUAAAAAAAAAAAAA

UUUGGUCCCCUUCAACCAGCUGAAAAAAAAAAAAAA
UUUGGUCCCCUUCAACCAGCUGUAAAAAAAAAAAAA
UUGGUCCCCUUCAACCAGCUGUAAAAAAAAAAAAA
UUGGUCCCCUUCAACCAGCAAAAAAAAAAAAAAAA
UUGGUCCCCUUCAACCAGCUGUAAAAAAAAAAAAA

NVTTTTTTTTTTTTTTTT

UUUGGUCCCCUUCAACCAGCUG

Stem-loop

RPM

AAACCAGGGGAAGTTGG

*  *  

TTTTTTTTTTTTTTTTAAACCAGGGGAAGTTGGTC

cDNA

*  *  

PCR primers

GACAT
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