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Abstract—This study develops a fault estimation and 

accommodation schemes for the image-based visual servoing 
(IBVS) system to eliminate the effects of the faults due to the image 
feature extraction task, which is named as bias virtual sensor fault. 
First, a bias virtual sensor fault in visual servoing is declared. 
Then, fault accommodation scheme is developed based on a fault 
diagnosis (FD) observer to compensate for the effect of such kind 
of fault. FD task, which includes fault detection, isolation and 
estimation, are designed based on the means of particle filter (PF). 
Finally, a fault accommodation law is developed based on the 
information obtained from the fault estimation to compensate for 
the effects of the fault in the system. The proposed fault estimation 
and accommodation is verified through simulation and 
experimental studies, and the results show that the system can 
estimate and eliminate the unknown fault effects effectively. 
 

Index Terms—Fault diagnosis, Fault tolerant control, Image-
based visual servoing, Particle filter, Robot control. 
 

I. INTRODUCTION 

MAGE BASED VISUAL SERVOING (IBVS), has been proven as 
an effective method for the robotic system guided by visual 
information due to its easy in implementation and high 

accuracy [1]. There are an increasing number of applications 
which can significantly benefit by using the IBVS approaches 
to extract position of the geometric feature/target which has 
inherent error. For example, robotic laser welding process 
guided by real-time seam tracking or edge detection (welding 
on the fly) [2]; or application of laser or white light scanners 
used for in-process or in-line 3D parts geometry inspections [3]. 
However, the current visual servoing approaches encounter 
some limitations as discussed below. In traditional visual 
servoing approaches, the image features are defined based on 
the geometric characteristic of the object such as points, 
ellipses, straight lines, or segments, etc, [4-5]. The control law 
is calculated based on the displacement of the designed image 
features during visual servoing. Based on this principle, the 
robot tracks the object correctly when the displacements of all 
the designed image features are correctly identified. However, 
this major task has sometime been failed due to the effects of 
the complex environment during visual servoing [5-6]. In 
general, the failures can be caused by: (1) image singularities 
[6-7], (2) the lack of field of view (FOV) of camera [8-9]: due 
to the visibility constraint of the camera, some features may go 
out of FOV of camera during visual servoing, and (3) the 
environment noises: due to the change of the environment such 

as light condition, obstacles during visual   servoing,    some   
designed  image features could  be occluded, or some undesired 
image features could be appearing. In order to avoid the image 
singularities, effective visual features such as polar features [6] 
or moment [7] have been proposed. To avoid the loss of features 
due to the visibility constraint, numerous published literatures 
have been developed to increase the FOV of camera [8-11]. The 
features of these methods have been thoroughly reviewed in 
[12]. To reduce the collision with obstacle, surface laser 
scanning has been developed [13]. Although these approaches 
can effectively avoid the failures due to the lack of FOV of 
camera, collision with obstacle and image singularities, the 
failure of the image feature extraction task due to the image 
noises has not been considered yet; in fact this failure scenario 
is usually occurred in real applications. For example, the bias 
fault due to image noise in seam extraction of robotic welding 
system, illustrated in Fig. 1: the demand of the feature 
extraction task in seam extraction for V-groove type is to 
identify the three image feature points, as shown in Fig. 1a); 
however, due to the similar property of the desired feature point 
and the noise feature point, the system extract the noise image 
feature point instead of the desired feature point, and thus the 
displacement of the designed feature will be calculated 
incorrectly, as shown in Fig. 1b). In order to monitor the failure 
due to the feature extraction task, fault diagnosis observers 
based on Kalman filter has been developed [12, 14]. In this 
approach, the nonlinear dynamic model, in which the camera 
velocity is defined as the input and the displacements of the 
feature points are defined as the output, of the visual servoing 
was investigated. Based on the defined dynamic model of the 
visual servoing, the failure of the feature extraction tasks can be 
considered as the virtual sensor faults [12, 14]. Then, a fault 
detection and isolation scheme has been established based on 
the Kalman filter. However, this approach has not considered 
the fault estimation, which is a significant task to identify the 
severity level of the fault. In addition, the approach has not 
investigated for the fault accommodation, which is desired in 
real applications to compensate for the effect of the fault to 
guarantee that the system can guarantee the desired 
performance even in the presence of fault. 

In this paper, as a second part of the previous approach [12], 
we investigate a fault diagnosis scheme, which includes fault 
detection, isolation and estimation, for IBVS. The fault 
diagnosis observer is designed based on particle filter (PF). The 
PF is employed because it has a good capability to handle 
nonlinear and non-Gaussian models, as well as its robustness 
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and flexibility compared to Kalman filter or other filters [15-
18].  After a fault is diagnosed, it is desired that the controller 
should be reconfigured to reduce the effect of fault [19-20]. 
This task is known as fault accommodation, or fault tolerant 
control (FTC). Generally, there are two ways to compensate for 
the effects of fault in the system [21]: (1) Passively, FTC is 
designed based on the assumption that the set of possible 
system faults can be predicted in advance, and a fixed control 
law is designed based on the predicted fault for both normal and 
fault operations [22]. However, the prior knowledge of the 
possible system fault is difficult to obtain in visual servoing 
system since the level of noise of the system is difficult to be 
known in advance. (2) Actively, namely active FTC (AFTC), 
the control law is adjusted based on the fault information, which 
is obtained from a fault diagnosis observer scheme [23-24]. The 
operation of the AFTC includes two stages. In the first stage, a 
FD observer is designed to online estimate the system faults. In 
the second stage, the system uses the obtained fault information 
to reconfigure the control law. Compared to the passive FTC, 
the active approach has a higher performance when the fault 
magnitude is correctly estimated, and thus is employed in this 
paper. 

In summary, the contribution of this paper can be marked by 
the following significant points: 

 Virtual sensor fault in visual servoing system is 
broadly reviewed. 

 A FD observer is designed to detect, isolate and 
estimate the severity of virtual sensor fault, based 
on the Particle filter. 

 An AFTC control law is developed to compensate 
for the effect of fault in the system. 

The rest of this paper is organized as follows. In section II, 
problem formulation is stated. In section III, FD and FTC 
strategies based on particle filter are presented. In section IV, 
we verify the proposed methodologies based on simulation 
study. The performance of the proposed strategies is further 
verified through experimental study, in section V. The 
conclusion and future work are provided in section VI. 

II. PROBLEM FORMULATION 

Considering the pinhole perspective model of camera used in 
visual servoing system [1, 4], the projection of the 3D points 

, ,
T

i i i iP x y z    , 1,...,i n  into the image plane of camera is 

,
T

i i is u v    , 1,...,i n  , where [12]: 

 

= i i
i

i ii

u x
s

v yz

   
   

   
 (1) 

 
where   is the focal length of the camera. The relationship 
between the displacement of the feature point in the image plane 
s& and the spatial velocity of camera 
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z  is the depth of the image features and is assumed to be known 
[4].  

The target of the control law in visual servoing system is to 
minimize the error e , which is defined as the different between 

the current feature point  s  and their goal value s , *e s - s . 
The traditional control law is designed as 
 

+
sL̂ ecV    (3) 

 

where   is a positive gain and +
sL̂  is a an approximation of 

pseudoinverse of 1 2L [ , ,.. ]Ts nL L L . 

Discretization is applied to (2) [12]: 
 

k+1 k=A +B + +

=C +ζ
k k k k
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where 1 1, ,..., ,
T

n ns u v u v       denotes the state variable of 

the system,  cKV   is the control input, where K  is the 

sampling time, k  is used to represent the system uncertainty, 

which is defined as the error when discretizing (2) to (4) [12], 


 
and ζ  are the model uncertainty and measurement noise, 

respectively. The coefficient matrix are defined as  
 

 2×n,2×nA=I ,  1 2 2×n,6
B= , ...,

T
s nL L L L     (5) 

 2×n,2×nC=I  (6) 

 
When a virtual sensor fault occurs, the true value of the 

designed image feature may not be determined. This means that 
the input signal is measured as ( ) ( ) ( )s t s t s t   , where ( )s t  

is the true signal and ( )s t  is the fault signal.  

In the presence of the virtual sensor fault, the system 
dynamics is changed to 

 

k+1 k=A +B + +

=C( + ( ))+ζ
k k k k

k k kt

   
  


 (7) 

 
where the fault function is defined by 
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                                                            c) 
Fig. 1. Bias fault in weld seam extraction of welding robot system. a) normal 
operation, b) virtual sensor bias fault, c) welding robot system. 

 
where sT

 
 is the time that the fault occurs.  

The objective of this paper is twofold: 1) design a fault 
diagnosis scheme based on Particle filter to detect, isolate and 
estimate the unknown fault ( )t , and 2) design a fault 

accommodation scheme such that the visual servoing can self-
compensate for the effect of fault and continue reliable working 
with an acceptable performance even the fault existing in the 
system. 

III. FAULT DIAGNOSIS AND FAULT TOLERANT CONTROL 

BASED ON PARTICLE FILTER 

In visual servoing, a virtual sensor fault potentially results in 
malfunction of the overall system. To prevent any undesired 
consequences, a monitoring system is necessary to detect and 
isolate the faults as quickly as possible.  

Based on the property of the faults, fault diagnosis problem 
can be considered as three major tasks [19-21]: 1) fault 
detection: makes a binary decision whether and when any 
adnormal event in the monitored system happens, or if 
everything working well, 2) Fault isolation identifies the root of 
the fault, 3) Fault identification or fault estimation specifies the 
magnitude of the fault. In the following the Particle filter-based 
fault diagnosis is presented.  

A. Particle Filter 

Consider the dynamic system of interest is described by 
 

1 1( , )

( , ζ )
k k k

k k k

f
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 (9) 

 
where k  is the state variable,  k  is the measurement. The 

system and measurement noise k  and ζk  are assumed to be 

independent of k . However, unlike the Kalman filter, they 

need not be Gaussian distributed. Because the visual servoing 
system described in (4) might not be a Gaussian distributed 
system due to the uncertainty  , the Particle filter would be 
effective to approximate the system states.  

From a Bayesian perspective, the problem of the state 
estimation is to calculate the probability density function (pdf) 

1:( )k kp    of the state k  based on the sensor data available 

up to time k ,  1: 1 2, ,...,k k    . Starting from the values 

of the initial condition 0 0 0( ) ( )p p    and the pdf,

1 1: 1( )k kp     at time 1k  , there are two steps to update the 

pdf at the time k , 1:( )k kp   .  

i) Prediction step: 
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ii)  Update step: 
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where 1: 1( )k kp     is a normalizing factor that depend on the 

pdf ( )k kp   . 

In theory, the Bayesian filter can estimate the true state 
variable by using the above two recursive steps (10) and (11). 
However, the approach can only give the optimal solution if the 
system can satisfy two assumptions: the noises are Gausian 
distribution and the system is linear. However, these 
assumptions are not usually satisfied in real applications. To 
overcome the limitation, Particle filter, which is an 
approximation method of Bayesian filter, has been proposed. 
The PF approximate the pdf using a set of N  particles, 

{ , }i i
k k  , where i

k  presents the ith particle and  i
k  presents 

its associated weights.  
In literature, many algorithms have been developed for 

Particle filter. In this paper, we use sequential importance 
resampling (SIR) [15] due to its efficient and simple in 
implementation. In the following, the structure of the SIR 
algorithm is presented. 
 
SIR Algorithm [15]. 

1) For i=1,…, N, a new particle i
k  is generated  based on the 

pdf  1| i
k kp     and the corresponding weight is computed as 

 |i i
k k kp   . 

2) Compute the sum of weights 
1

N
i

w k
i




   and then normalize 

the particle weights: 1i i
k w k   . 

3) Do the sampling process: 
3.1. Start from 0 0c  , construct the cumulative sum of 

weights (CSW) by computing 1
i

i i kc c    for 1,...,i N . 

3.2. Give 1i   and generate a starting point 1  from the 

uniform distribution 10,U N 
  . 

3.3. For  1,...,j N  

 Make  1
1 ( 1)j N j     . 

 While j ic   make 1i i  . 

a) b) 
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 Assign j i
kk  . 

 Assign 1j
k N   

B. Fault Detection and Isolation Based On Particle Filter 

The PF estimate output for the dynamic model described in 
(7) is: 

 
ˆ ˆ=C   (12) 

 
where ̂  is the PF state estimation outputs, which are 

determined as the output of SIR algorithm applied for the 
system (7). 

In fault diagnosis task, it is important to choose the effective 
residual, which can be easily distinguished between normal 
condition and fault condition when the system is being changed 
from the normal operation to the fault operation, and the 
corresponding threshold. In this paper, the error e , which is 
defined as in (13), is chosen as the residual. 
 

ˆe -   (13) 

 
In normal operation, the Particle filter state tends to 
approximate the state variable of the system. Thus, from (7) and 
(12), the residual e  tends to approximate the system 
uncertainties and noises, e    , where ζ   .  

Assumption 1: the system uncertainties and noises are 
bounded by The   , where The  is a known constant.  

The assumption 1 is reasonable in real application because the 
noise value is usually bounded by a constant. In practice, the 
bound value of the system uncertainty and noise are usually 
obtained by experiments. Since e     when the system in 
normal operation, the bound value of     can be estimated 
based on the bound value of the error e , defined as in (13). In 
this paper, we employ this method. The procedure to obtain the 
bound value is performed offline, and is as follows. First, a 
desired image is obtained by moving the robot to the target 
position. Then, starting from the arbitrary position, but 
guarantee that the object be within the FOV of camera, 
command the robot to track the object using the control law (3). 
Obtain the residual e when the system in normal operation. As 
shown in Figs. 5, 8 and 11 (will be discussed latter), the residual 
e will converge to close zero with small variation due to the 
noise and uncertainty. The bound value The  is chosen such that 

it is bigger than the peak of the variation. After obtaining the 

The , this value is used for online monitoring of the proposed 

fault diagnosis. Since The e   , to distinguish 

between the effects of the system uncertainty and the virtual 
sensor fault, The  is selected as the threshold. Fault decision is 

made when the residual, ( e ), surpass its corresponding 

threshold The . 

From (1), the change of the state variables u  or v  can be 
represented by the change of s . Thus, in order to facilitate in 
fault detection and isolation of a feature point, the residuals of  

 

TABLE I 
FAULT-SIGNATURE TABLE 

Fault 1r  2r  3r  4r  … nr  

None 0 0 0 0 … 0 
Sen. 1 1 0 0 0 … 0 
Sen. 2 0 1 0 0 … 0 
Sen. 3 0 0 1 0 … 0 
Sen. 4 0 0 0 1 … 0 
… … … … … …  
Sen. n 0 0 0 0 … 1 

 
 

 
 
Fig. 2. Fault diagnosis and fault tolerant control scheme for visual servoing 
system. 
 
two state variables u  and v  should be represented by s , as 
follows: 

 
2 2

i i is u ve e e   (14) 

 
where 

iue  and 
ive  represent the PF estimation error of the state 

variables iu  and iv  of the feature point i , respectively, and 
is

e  

is used to represent the PF estimation error of the feature point 
i . 

Then, the decision rule is defined as 
0

1
i

i

s i
i

s i

if e Th
r

if e Th

  
 (15) 

where 2 2
u vi i

i Th ThTh e e   , where 
uThu

e   
 

and 

vThv
e    , is a chosen threshold. 

The robustness property of the fault diagnosis system is 
guaranteed and can be explained as follows: when the system 
in normal operation, the residual is approximated as

is
e  

,  and  based  on  the  assumption  1, the residual is always 
smaller than the chosen threshold value, 

is ie Th  and 0ir  . 

However, when a fault occurs, the residual is approximated as 

is
e     . This residual signal will overshoots the 

threshold value 
is ie Th  and  1ir  , the fault decision will be 

made. The fault detection and isolation rules are defined as in 
Table I. 
Remark 1: Table I is also used to define the multiple faults 
working condition.  For example, when faults occur in the  
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a) 

 
b) 

 

 
c) 

Fig. 3. Tracking performance of visual servoing when the system in normal 

operation. a) Image space, b) control inputs (noted that x y  in the figure), 

c) image error. 
 

 
Fig. 4. Residual values and the selected thresholds when the system in normal 
operation. 

 
sensors 1, 2 and 3 at the same time, the corresponding residuals 
are 1 1r  , 2 1r   and 3 1r  . 

C. Fault Estimation 

In the previous section, the analyses show that the PF 
approximates the image feature states with a very small error 
when the system in normal operation, se    . However, 

when a fault occurs at the time sT , the estimation error se  tends 

to approximate the fault component, se      . Because 

    is usually much smaller compared to  , the estimation 
error approximate the fault magnitude, se  . Thus, the fault 

magnitude can be approximated as 
 

Δs( ) e
s st T t Tt    (16) 

 
a) Error 1 

 
b) Error 2 

 
c) Error 3 

 
d) Error 4 

Fig. 5. Comparison between particle filter (PF) and unscented Kalman filter 
(UKF). 

 
However, sT

 
is the unknown time, it only can be predicted by 

using the information from the fault detection and isolation 
scheme. If we denote dT  as the time that the fault is detected, 

the fault magnitude can be estimated as 
 
Δs( ) e

s dt T t Tt    (17) 

 
where e

dt T  denotes the PF estimation error at the time dT . In 

practice, if the fault detection and isolation scheme is working 
well, we will have d sT T . 

D.  Fault Tolerant Control 

After a fault is diagnosed, it is desired that the fault should 
be compensated to reduce its effects on the system. In the 
traditional visual servoing, the system is controlled by the 
conventional law (3). The system performance is satisfied only 
when it operates in normal condition, wherein the system get 
the feedback of the correct image feature input s . However, 
when a fault occurs, the fault feature value ( ) ( ) ( )s t s t s t    

is used as the input signal to the controller that will generate 
incorrect control input calculated and decrease the tracking 
performance consequently. In order to increase the system 
performance, the correct image feature value ( )s t  at the time  
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a) 

 
b) 

 
    c) 

Fig. 6. Tracking performance of visual servoing when the faults occurred in 
feature points 4 and 3 without FTC. a) Image space, b) control inputs, c) image 
error. 

 

 
Fig. 7. Residual values when the faults in the points 4 and 3 occur. 

 

sT  should be reconstructed and fed back to the controller 

instead of the fault value ( )s t . The correct feature value can be 

simply calculated as ( ) ( ) ( )s t s t s t   . However, since the 

correct fault value ( )s t  can not be calculated, its estimation 

value obtained from the fault estimation scheme (17) is used 
instead. Then, the estimation value of the correct image feature 
at the time sT , ˆ( )s t , can be obtained as: 

 
ˆ( ) ( ) e

dt Ts t s t    (18) 

 
Afterward, when a fault is detected, to reduce its effect on the 

system, the controller is reconfigured as 
 

 
a) 

 
b) 

Fig. 8. PF state estimation errors when the faults existed in feature points 4 and 
3 without FTC. a) PF estimation error for feature point 4, b) PF estimation error 
for feature point 3. 

 
+ *
sL̂ ( ( ) e s )

dc t TV s t      (19) 

 
Finally, the whole FTC law for the visual servoing system is 

designed as: 
 

+ *
s

+ *
s

L̂ ( s )

L̂ ( ( ) e s )

d
c

d

s t T
V

s t t T





   
   

 (20) 

 
The overall FD and FTC scheme developed in this paper is 

illustrated in Fig. 2. 

IV. SIMULATION STUDY 

In this section, the performances of the visual servoing 
system with and without the FTC are simulated to show the 
performance of the FD and FTC schemes. The target used in 
this simulation is masked by four feature points. The image 
resolution is 1000x1000 pixel. The sampling time is 5 frame-
per-seconds (fps). The number of particles is set as N=500; this 
value is chosen based on the trial and error validation through 
several experiments. Eight internal states, 1 1 2 2 3 3, , , , ,u v u v u v  

and 4 4,u v  are approximated by the PF. Starting from the initial 

camera location, where the four points can be seen by dashed 
lines in the image space in Fig. 3a), the target of the visual 
servoing system is to locate the camera at the position such that 
the four points can be seen by dot-dashed lines in the image 
space in Fig. 3a). In order to compare the tracking performance 
of the system between normal operation, fault operation without 
FTC and fault operation with FTC, the visual servoing is 
modeled in three  
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different working conditions. In the first case, the visual 
servoing system is modeled to operate in normal condition. In 
the  second  case,  the  failures  of  features points 3 and 4 are 
generated to the system without FTC. In the third case, the FTC 
control law is employed to reduce the effects of faults generated 
in the second case. In addition, multiple faults condition is also 
reported to further verify the performance of fault estimation 
and compensation of the system.  

A. Visual Servoing System in Normal Operation 

Considering the operation of the system in normal operation, 
as shown in Fig. 3, the PF approximates the nonlinear visual 
servoing system with a small error due to the uncertainties and 
noise,    , as shown in Fig. 4. We can see from Fig. 3 that 
the camera tracks the object very well. From Fig. 4, the PF 
estimation errors converge close to zero very fast (after a few 
iterations). To distinguish between the effects of the 
uncertainties and faults such that the system can correctly 
distinguish between the normal operation and fault operation, 
the threshold values Th  are selected as the red line, shown in 
Fig. 4. The fault decision is made whenever the residual 
surpasses the corresponding threshold value. 

To further evaluate the performance of the PF to approximate 
the system states, we simulate the system with the measurement 
noise 5  . In addition, we compare the performance of the 
PF, with different number of particles used, with unscented 
kalman filter (UKF), which is a well-known nonlinear filter and 
widely applied in real applications. The results are shown in 
Fig. 5. For easy in comparison, the root mean square error 
(RMSE) and standard deviation (STD) and the computation 
time of these methods are also reported in Table II. From the 
results we can see that both the UKF and PF filters approximate 
the system states very well. On the other hand, with the lower 
number particles (N=200), the performance of the PF is worse 
than the UKF. When the number of particle is larger (N=500), 
the performance of the PF is better than the UKF. However, 
there is a trade off in the approximation capability and 
computation time of the PF. The higher number of particles the 
better approximation performance but higher computation time, 
and vice versa.   

B. Visual Servoing System with Assumed Virtual Sensor Faults 

In order to show the effects of virtual bias fault in the visual 
servoing system and to verify the performance of the developed 
FD and FTC schemes, we generate a bias fault to the visual 
servoing system. Particularly, we assume that the feature point 
4 is disappear (occluded) at the iteration 20; it means the 
extracted value of feature point 4 at the iteration 20 is 

4 4 20[ 0, 0]tu v   , as shown in Fig. 6a). This fault can be 

represented by a bias fault with magnitude  
 

 
 
 
 
 
 
 

 
a) 

 
b) 

 
c) 

Fig. 9. Tracking performance of visual servoing when the faults existed in 
feature points 4 and 3 with FTC. a) Image space, b) control inputs (noted that 

x y   in the figure) , c) Image error. 
 

4 4 4 20[ , ]ts u v      [ 619.42,361.17] . And, another bias 

fault is assumed to exist on the feature point 3 at the iteration   
30 with the magnitude  3 [ 100,200]s   . Figure 6 illustrates 

the varying of the system performance when the system 
changes from the normal operation to fault operation. 
Comparison results between Fig. 3 and Fig. 6 show that the 
motion of the camera is incorrect if the displacement of a 
feature is incorrectly extracted. In particular, due to the effect 
of the virtual sensor faults, the corresponding velocity control 
input is discontinuous at the iterations 20 and 30, as shown in 
Fig. 6b), that will make the visual servoing system unstable. 
Due to the effect of the fault, the convergence of the PF is 
broken, as shown in Fig. 7. The residual of the feature point 4 
overshoots the threshold at the iteration 20, indicating that the 
fault has been existed in the virtual sensor 4 and the residual of 
feature point 3 overshoots the corresponding threshold at the 
iteration 30, indicating that the fault has been existed in the 
virtual sensor 3 at the iteration 30. Thus, in this experiment, the 
system has detected and isolated the faults successfully.  

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

u (pixels)

v 
(p

ix
e

ls
)

 

 
Starting points
End points

s1
s3

s4

s2

0 10 20 30 40 50 60 70
-0.4

-0.2

0

0.2

0.4

0.6

C
a

rt
e

si
a

n
 v

e
lo

ci
ty

Iteration

 

 

v
x

v
y

v
z 

x


y


z

0 10 20 30 40 50 60 70
-600

-400

-200

0

200

400

F
ea

tu
re

 e
rr

o
r 

(p
ix

el
)

Iteration

 

 
u1 u2 u3 u4 v1 v2 v3 v4

TABLE II 
COMPARISON BETWEEN UNSCENTED KALMAN FILTER (UKF) AND PARTICLE FILTERS (PFS) 

Method 
Point 1 Point 2 Point 3 Point 4 Computation 

 time RMSE VAR RMSE VAR RMSE VAR RMSE VAR 
UKF 0.0903 0.0420 0.0892 0.0425 0.0896 0.0515 0.0971 0.0438 0.003149 

P
F 

N=200 0.0922 0.0595 0.1065 0.1061 0.0995 0.0528 0.1072 0.1250 0.002373 
N=500 0.0450 0.0256 0.0478 0.0250 0.0450 0.0312 0.0496 0.0289 0.007080 
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           a) 

 
          b) 

Fig. 10. Tracking performance of experimented visual servoing when the faults 
in the points 1, 2 and 3 occur. a) Image space, b) control inputs. 
 

 
Fig. 11. Residual values when the faults in the points 1, 2 and 3 occur. 

 
Now, we consider the fault estimation performance. At the 

iterations 20  and  30,  where  the existed faults in the feature 
point 4 and the feature point 3 have been successfully detected 
and isolated, the fault estimations were then computed by the 
formulation defined in (17) that gave 

4 20
ˆ e [ 619.3, 361.2]

dt Ts        for the virtual sensor 4 and 

3 30
ˆ e [ 99.98, 200]

dt Ts       for the virtual sensor 3, as 

shown in Fig. 7. The estimated fault values, 4
ˆ s

 
and 3

ˆ s , are 

very close to the generated fault values, 4s
 
and 3s . Thus, 

we can conclude that the faults have been estimated correctly. 

C. Visual Servoing System With Fault Tolerant Control 

As shown in Fig. 5b), the effects of fault generate the 
discontinuous control input, which will make the incorrect 
camera motion. To reduce the effect of fault, the developed FTC 
law in (20) is employed based on the feedback information of 
the estimated fault obtained in the Fig. 7. The performance of 
the developed FTC for the visual servoing is shown in Fig. 8. 
Comparison results between the Fig. 8 and Figs. 2 and 5 show 
that the FTC system compensates the effects of the fault very 
well. The system performance of the visual servoing under FTC 
input is comparable with the normal operation case. The 
velocity control input of the system with FTC is continuous, as 
shown in Fig. 8b). Thus,  

 

 
   a) 

 
    b) 

 
     c) 

Fig. 12. PF state estimation errors when the faults in the points 1, 2 and 3 occur. 
a) PF estimation error for feature point 1, b) PF estimation error for feature point 
2, and c) PF estimation error for feature point 3. 

 
we can conclude that the fault has been accommodated 
successfully. 

D. Visual Servoing System with Multiple Fault Condition and 
Fault Tolerant Control  

In order to further show the performance of the proposed 
method to handle the multiple faults, we simulate the system 
with a severity fault condition, 1 [30,30]s  , 2 [50,50]s   
and 3 [100,100]s  . The three faults are assumed to be 

occurred at the same time at the iteration 20. The response of 
the system under the effect of the faults is shown in Fig. 10. The 
residual generated by PF is shown in Fig. 11. From Fig. 11, it 
is obvious to see that the faults occurred in the points 1, 2 and 
3 have been detected and isolated correctly. The fault 
estimation and FTC performance of the system are shown in 
Figs. 12 and 13, respectively. It can be seen from the Figs. 12 
and 13 that the faults have been estimated and compensated 
effectively.  
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Fig. 13. FTC performance for the visual servoing system when the faults in the 
points 1, 2 and 3 occur. 

 
Remark 2: If we consider the sensor fault only and assume that 
the actuator is always healthy, the proposed fault diagnosis and 
accommodation can handle for the heavy sensor fault case, 
where all the sensors are failed at the same time. However, if 
we consider both the actuator and sensor faults, the control 
system will isolate the wrong actuator fault instead of sensor 
faults when all the sensors are failed at the same time [12]. 
Fortunately, this situation is rarely occurring in real application.   
Remark 3: To easily verify the performance of the proposed 
fault estimation, the noise components has not been considered 
in the fault estimation part. However, the fault diagnosis system 
is still working well if there is a noise existing in the system, as 
shown in the Fig. 5. For the bigger of the noise system, the 
threshold should be chosen as the big value to guarantee the 
robustness, as analyzed in section IIIB. 

V. EXPERIMENTAL STUDY 

In order to show the tracking performance of the system with 
FD and FTC, a lab experimental setup is developed as shown in 
Fig. 14. The Baxter industrial robot [25] is used to do 
experiment. The Baxter is a new generation industrial robot and 
has been widely using in industrial application and research. 
The Baxter has two independent arms and each has seven 
degree-of-freedom (DOF). Each arm has been attached with an 
eye-in-hand configuration. In this study, we used the left-arm 
and left-hand camera to do experiments. The object to be 
tracked used in paper includes four feature points, as shown in 
Fig. 17. The camera capturing rate is 30 fps (frame/s), and the 
image information is sent into the host Linux PC to processing. 
The camera of the Baxter robot has 640x400 pixels resolution 
and has an effective focal length of 1.2 mm.  

Faults are introduced in the virtual sensor by changing the 
displacements of the image feature points at an arbitrary time. 
In the following, we present the performance of the visual 
servoing system without FTC and with FTC when the system 
in normal and fault operations. 

 
 

 
Fig. 14. Experiment setup of eye-in-hand visual servoing. 

 

 
a) 

 
       b) 

Fig. 15. Tracking performance of experimented visual servoing when the 
system in normal operation. a) Image space, b) control inputs. 
 

 
Fig. 16. Residual values of experimented visual servoing and the selected 
threshold values.  

 

A. Visual Servoing in Normal Operation 

In fault-free working condition, the visual servoing system 
tracks the object very well, as shown in Fig. 15. The PF 
estimation errors, which are used as the residuals in this paper, 
are shown in Fig. 16. The Fig. 16 shows that the PF estimation 
errors are quickly convergent after a few iterations. As analyzed 
in section IIIB, the residual value obtained when the system in 
fault-free operation is the uncertainty and noise components,   
   ,   of   the   system. Thus, to  avoid  any  
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Fig. 17. Image feature in a) normal extraction, b) bias virtual sensor fault. 
 

 
a) 

 
b) 

Fig. 18. Tracking performance of visual servoing when the fault existed in the 
virtual sensor (feature point 4) without FTC. a) Image space, b) control inputs. 

 

 
Fig. 19. PF estimation error when the experimented visual servoing sytem in 
normal operation. 

 
incorrect fault decision due to the effect of uncertainties and 
noises, the threshold values Th  are selected to be bigger than 
the bound value of    . The selected thresholds are the red 
lines shown in Fig. 16.   

B. Visual Servoing System under Virtual Sensor Fault without 
Fault Tolerant Control  

In the presence of a bias fault, the controller system read a 
noise feature value instead of the true designed feature, as an 
example shown in Fig. 1. To simulate the bias fault, we change 
the displacement of the feature point 4 at the iteration  

 
a) 

 
b) 

Fig. 20. Tracking performance of the experimented visual servoing system 
when the fault existed in the feature point 4 with FTC. a) Image space, b) control 
inputs. 

 
25, as illustrated in Fig. 17. Fig. 18 shows the transition of the 
tracking performance when the system changing from normal 
operation to fault operation. From Fig. 18b), due to the presence 
of fault at the iteration 25, the computed control velocity input 
is changed suddenly. Due to the effects of the fault, the 
convergence of the PF estimation error is broken, as shown in 
Fig. 19. In the Fig. 19, the residual of the feature point 4 
overshoots the corresponding threshold at the iteration 25, and 
thus the fault decision is made.  

C. Visual Servoing with Fault Tolerant Control Under Virtual 
Sensor Fault 

The generated bias virtual sensor fault generates the 
discontinuous control input as shown in Fig. 18b). To tackle this 
problem, the developed FTC law in (20) is employed. Fig. 20 
shows the results of the fault compensation. By comparing Fig. 
20b) with 18b), we can see that the effects of the fault in the 
computed control input are much reduced. From this, we can 
conclude that the fault has been estimated precisely and its 
effects on the visual servoing system have been correctly 
compensated by the developed FTC law. 

VI. CONCLUSION 

This paper reviews the failure scenarios of the feature 
extraction task in visual servoing system, namely virtual sensor 
fault. Then, the PF-based FD is developed to monitor the 
presence of the fault. An AFTC is developed based on the 
estimated fault information. Both the designed FD and FTC 
schemes have a simple structure and easily implement in real 
application. Simulation and experimental results verify that the 
presence of the failures due to the feature extraction task can be 
detected accurately and its effects can be compensated 
effectively.  

According to [12], the failure of visual servoing system could 
be caused by incorrect robot motion. Fault estimation and 
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accommodation for the failures of incorrect robot motion will 
be investigated in our future work. 

 

REFERENCES 
[1] M. Keshmiri, W. F. Xie, and A. Mohebbi, “Augmented image-based 

visual servoing of a manipulator using acceleration command,” IEEE 
Trans. Ind. Electron., vol. 61, no. 10, pp. 5444-5452, 2014. 

[2] D. Ceglarek, M. Colledani, J. Vancza, D. Y. Kim, C. Marine, M. Kogel-
Hollacher, A. Mistry, L. Bolognese, “Rapid Deployment of Remote Laser 
Welding Processes in Automotive Assembly Systems,” Annals of the 
CIRP, vol. 64, no. 1, pp. 389-394, 2015. 

[3] Y. Ding, P. Kim, D. Ceglarek, J. Jin, “Optimal Sensor Distribution for 
Variation Diagnosis in Multi-station Manufacturing Processes,” IEEE 
Trans. Robot. Auto., vol. 19, no. 4, pp. 543-556, 2003. 

[4] A. Hajiloo, M. Keshmini, W. F. Xie, T. T. Wang, “Robust online model 
predictive control for a constrained image based visual servoing,” IEEE 
Trans. Ind. Electron., vol. 63, no. 4, pp. 2242-2250, 2016. 

[5] W. F. Xie, Z. Li, X. W. Tu, C. Perron, “Switching control of image-based 
visual servoing with laser pointer in robotic manufacturing systems,” 
IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 520-529, 2009. 

[6] P. Corke, F. Spindler, F. Chaumetter, "Combining Cartesian and polar 
coordinates in IBVS," in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 
(IROS’09), Oct. 2009, pp. 5962-5967. 

[7] J. Wang, H. Cho, “Micropeg and hole alignment using image moments 
based visual servoing method,” IEEE Trans. Ind. Electron., vol. 53, no. 
3, pp. 1286-1294, 2008. 

[8] N. G. Aracil, E. Malis, R. A. Santonja, C. P. Vidal, “Continuous visual 
servoing despite the changes of visibility in image features,”  IEEE Trans. 
Robot., vol. 20, no. 4, pp. 713-723, 2004. 

[9] G. Chesi, K. Hashimoto, D. Prattichizzo, and A. Vicino, “Keeping 
features in the field of view in Eye-In-Hand visual servoing: A switch 
approach,”  IEEE Trans. Robot., vol. 20, no. 5, pp. 908-913, 2004. 

[10] M. Kazemi, K. K. Gupta, M. Mehrandezh, “Randomized kinodynamic 
planning for robust visual servoing,” IEEE Trans. Robot., vol. 29, no. 5, 
pp. 195-200, 2010. 

[11] M. Baumann, S. Leonard, E. A. Croft, J. J. Little, “Path planning for 
improved visibility using a probabilistic road map,” IEEE Trans. Robot., 
vol. 26, no. 1, pp. 1197-1211, 2013. 

[12] M. Van, D. Wu, S. S. Ge, H. Ren, "Fault Diagnosis in Image-Based Visual 
Servoing with Eye-in-Hand Configuration Using Kalman Filter," IEEE 
Trans. Ind. Inform., vol.PP, no.99, pp.1-1, doi: 
10.1109/TII.2016.2590338, 2016. 

[13] L. C. B. Preciado, O. Y. Sergiyenko, J. C. R. Quinonex, X. Garcia, V. V. 
Tyrase, M. R. Lopez, D. H. Balbuena, P. Mercorelli, M. Podrygalo, A. 
Gurko, I. Tabakova, O. Starostenko, “Optical 3D laser measurement 
system for navigation of autonomous mobile robot,” Optics and Lasers in 
Engineering, vol. 54, pp. 159-169, 2014.  

[14] M. Van, D. Wu, S. S. Ge, H. Ren, “Condition monitoring for image based 
visual servoing using Kalman Filter,” Advances in Visual Computing, pp. 
842-850, 2015. 

[15] M. S. Arulampalam, S. Maskell, N. Gordon, ans T. Clapp, "A tutorial on 
particle filters for online nonlinear/non-Gaussian Bayesian tracking," 
IEEE Trans. Signal Process., vol. 50, no. 12, pp. 174-188, 2012.  

[16] T. Wei, Y. Huang, C. L. Philip Chen, “Adaptive sensor fault detection and 
identification using particle filter algorithms,” IEEE Trans. Syst. Man 
Cyber., vol. 39, no. 2, pp. 201-213, 2009. 

[17] N. Widynski, M. Mignotte, “A multiscale particle filter framework for 
contour detection,” IEEE Trans. Pattern. Analy. Machine. Intel., vol. 36, 
no. 10, pp. 1922-1935, 2014. 

[18] B. Zhao, R. Skjetne, M. Blanke, and F. Dukan, "Particle filter for fault 
diagnosis and robust navigation of underwater robot," IEEE Trans. 
Control Syst. Tech., vol. 22, no. 6, pp. 2399-2407, 2014.  

[19] S. Laghrouche, J. Liu, F. S. Ahmed, M. Harmouche and M. Wack, 
"Adaptive Second-Order Sliding Mode Observer-Based Fault 
Reconstruction for PEM Fuel Cell Air-Feed System," IEEE Trans. 
Control Syst. Tech., vol. 23, no. 3, pp. 1098-1109, 2015. 

[20] J. Liu, W. Luo, X. Yang and L. Wu, "Robust Model-Based Fault 
Diagnosis for PEM Fuel Cell Air-Feed System," IEEE Trans. Ind. 
Electron., vol. 63, no. 5, pp. 3261-3270, 2016. 

[21] Z. Gao, C. Cecati, S. X. Ding, "A survey of fault diagnosis and fault-
tolerant control techniques Part I: Fault diagnosis with model-based and 

signal-based approaches," IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 
3757-3767, 2015. 

[22] M. Van, S. S. Ge, H. Ren, "Robust Fault-Tolerant Control for a Class of 
Second-Order Nonlinear Systems Using an Adaptive Third-Order Sliding 
Mode Control," IEEE Trans. Systems, Man, and Cybern.: Systems , 
vol.PP, no.99, pp.1-8 
doi: 10.1109/TSMC.2016.2557220, 2016. 

[23] M. Van, H. J. Kang, K. S. Shin, “Robust fault tolerant control for 
uncertain robot manipulators based on adaptive quasi-continuous high-
order sliding mode and neural network,” Part C: Journal of Mechanical 
Engineering Scienece, doi:10.1177/0954406214544311, 2015. 

[24] M. Van, S. S. Ge, H. Ren, "Finite Time Fault Tolerant Control for Robot 
Manipulators Using Time Delay Estimation and Continuous Nonsingular 
Fast Terminal Sliding Mode Control," IEEE Trans. Cybern., vol.PP, 
no.99, pp.1-13, 
doi: 10.1109/TCYB.2016.2555307, 2016. 

[25] C. Fitzgerald, "Developing baxter," in Proc. Int. Conf. technol. Practical 
Robot Appl., Woburn MA, USA, 2013, pp. 1-6. 
 

 


