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 
Abstract— In order to enhance the performance of bearing 

defect classification, feature extraction and dimensionality 
reduction have become important. In order to extract the 
effective features, wavelet kernel local fisher discriminant 
analysis (WKLFDA) is first proposed; herein, a new wavelet 
kernel function is proposed to construct the kernel function of 
LFDA. In order to automatically select the parameters of 
WKLFDA, a particle swarm optimization (PSO) algorithm is 
employed, yielding a new PSO-WKLFDA. When compared to 
the other state-of-the-art methods, the proposed PSO-WKLFDA 
yields better performance. However, the use of a single global 
transformation of PSO-WKLFDA for the multiclass task does 
not provide excellent classification accuracy due to the fact that 
the projected data still significantly overlap with each other in 
the projected subspace. In order to enhance the performance of 
bearing defect classification, a novel method is then proposed by 
transforming the multiclass task into all possible binary 
classification tasks using a one-against-one (OAO) strategy. 
Then, individual PSO-WKLFDA (I-PSO-WKLFDA) is used for 
extracting effective features of each binary class. The extracted 
effective features of each binary class are inputted to a support 
vector machine (SVM) classifier. Finally, a decision fusion 
mechanism is employed to merge the classification results from 
each SVM classifier in order to identify the bearing condition. 
Simulation results using synthetic data and experimental results 
using different bearing fault types show that the proposed 
method is well suited and effective for bearing defect 
classification. 
 

Index Terms—Local fisher discriminant analysis, bearing 
defect classification, wavelet kernel, feature extraction, 
dimensional reduction, pattern recognition.  

I. INTRODUCTION 

OTATING machines are widely used in the manufacturing 
industry. Bearings play a significant role in modern 

rotating machinery, and their carrying capacity and reliability 
are crucial for overall machine performance. Since bearings 
frequently fail and can consequently lead to catastrophic 
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system failure, it is important to be able to automatically 
detect and rapidly and accurately diagnose the existence and 
severity of bearing faults. 

During the past decades, signal analysis-based fault 
diagnosis methods have been widely used to identify multiple 
bearing defects. This tool extracts fault features and then 
identifies fault patterns. In this field, two major approaches 
have been widely developed for bearing fault diagnosis: 
acoustic signal analysis and vibration signal analysis [1]. 
Among these, vibration signal-based diagnosis has become the 
most popular monitoring technique because of its ease of 
measurement. However, the difficulty of defect detection and 
classification in bearings from vibration data is that the 
signature of a defective bearing presents a wide frequency 
band and can be overwhelmed by noise [2].  

In literature, there are two approaches to diagnose the 
bearing faults. The first approach is based on identifying the 
bearing characteristic frequency (BCF) of vibration spectra 
[3]. This approach, however, is not effective when the signal 
in heavy noise. It means that the absence of clear BCF due to 
noise should not be informed as a completely healthy 
condition of the bearing [10]. In the second approach, fault 
diagnosis can be regarded as a problem concerning pattern 
recognition, which mainly includes three important stages: 
feature calculation, feature extraction and dimensionality 
reduction, and pattern classification [4-5]. In order to acquire 
more fault information and improve the accuracy of the 
diagnosis system, many feature calculation methods have been 
developed based on three domains: time domain analysis, 
frequency domain analysis, and time-frequency domain 
analysis [6-7]. Recently, time-frequency analysis based on 
empirical mode decomposition (EMD) has been developed as 
an efficient method to extract bearing characteristics [8]. 
However, EMD is sensitive to measurement noise, which 
decreases the performance of feature extraction. To increase 
the performance of EMD for feature extraction, a hybrid 
nonlocal means (NLM) de-noising was developed in our 
previous work [9]. Based on three domains, many features can 
be calculated from a vibration signal to generate a rich feature 
set, which may contain many aspects to represent the bearing 
defect condition. In this way, the subjects of bearing defect 
identification can be transformed into a pattern recognition 
problem with high-dimensional data. However, dealing with 
high-dimensional data has always been a major problem in 
pattern recognition. High-dimensionality data processing 
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suffers many difficulties in real applications such as need to 
massive computational resources and storage capacity. 
Meanwhile, the constructed features are often correlated, and 
not all of them are useful for the specific classification task 
[10]. Therefore, before employing classification tasks, a 
second step, dimensionality reduction (DR), should be 
employed to increase the performance of the classification 
system. There are two approaches for dimensional reduction: 
feature selection [11-12] and feature transformation [13-14]. 
Feature selection aims to find the most important features 
from a given set of features, while feature transformation aim 
to obtain low-dimensional feature representation with 
enhanced discrimination power. Conventional dimensionality-
reduction techniques based on feature transformation include 
unsupervised approaches, such as principle component 
analysis (PCA), and supervised approaches, such as fisher 
discriminant analysis (FDA) [13]. Since FDA aims to identify 
projections with the most discriminant information, whereas 
PCA-based methods identify projections with minimal 
reconstruction errors, FDA-based methods generally perform 
better than PCA-based methods [13]. In [14], an orthogonal 
variant of FDA, which is called trace ratio linear discriminant 
analysis (TRLDA), has been developed in order to eliminate 
redundant information from the scatter matrices in LDA. 
However, the FDA and its variant TRLDA tend to produce 
undesired results if data samples in a class are multimodal. 
According to our experiment, measurement noise and feature 
extraction in different domain are the main sources generated 
multimodal of bearing vibrations signal. In [15], multimodal 
approach has been developed for gearbox fault diagnosis 
using deep learning. The idea of this approach is to classify 
the time domain, frequency domain, and time-frequency 
domain as separate modal feature representations, and then 
use the deep learning method to learn the modal feature 
representation. However, this approach also tends to produce 
undesired results if data samples in a class of a modal feature 
representation are multimodal. Another approach is to use 
local fisher discriminant analysis (LFDA) [16], which 
combines FDA and locality preserving projection (LPP). 
LFDA considers the local structure of the data samples so that 
the multimodal data can be appropriately embedded. 
However, LFDA is a linear method, which makes it difficult 
to use to describe a complex nonlinear system. To overcome 
this limitation, the kernel trick-based nonlinear LFDA 
extensions, called kernel LFDA (KLFDA), have attracted a 
great deal of attention. The basic idea is to nonlinearly map 
the input data from the input space to a higher dimensional 
feature space, where the complex distribution is expected to 
become linearly separable in the feature space, and then 
perform LFDA in the feature space. Linear, polynomial, and 
radial basis function (RBF) kernels are generally used in many 
applications, among which, RBF kernels are most commonly 
used [17].   

Since the wavelet technique emerged as a powerful tool for 
nonlinear signal approximation [19], it has been employed as 
a kernel function (called a wavelet kernel) for support vector 
machine (SVM) classifiers [18, 20]. The experimental results 
shown that the wavelet kernel can provide a better 
approximation than does the use of the RBF kernel when 

incorporated into the SVM classifier. This is a valuable 
motivation for us to study the application of a wavelet kernel 
for LFDA. However, when applied to a wavelet kernel for 
LFDA, a problem arises in terms of selection of wavelet 
kernel parameters so that the KLFDA can generate the highest 
performance. In addition, in practical applications of LFDA 
and KLFDA, one of the most important issues is selection of 
the nearest neighbor parameter k-th so that LFDA and 
KLFDA can be best utilized. Particle swarm optimization 
(PSO) was proposed by Kennedy and Eberhart [21] as a 
population-based, stochastic optimization technique inspired 
by the social behavior of bird flocks or fish schools. 
Compared to other heuristic optimization methods such as 
genetic algorithm, simulated annealing, etc., one advantage of 
the PSO technique, in addition to its high computational 
efficiency and rapid convergence, is its ability to successfully 
avoid local minima. PSO has been successfully applied to 
determine the optimal value of many optimization problems. 
Therefore, PSO can be used to effectively select the k-th and 
wavelet kernel parameters. 

In this paper, a wavelet kernel local fisher discriminant 
analysis (WKLFDA) is proposed to extract the effective 
features for bearing defect classification. The optimal 
parameters of WKLFDA are automatically selected by a PSO-
based-classifier, which constitutes a new PSO-WKLFDA. 
However, the use of a single global transformation of PSO-
WKLFDA for the multiclass task does not provide excellent 
classification accuracy due to the fact that the projected data 
still significantly overlap with each other in the projected 
subspace. In order to enhance the performance of bearing 
defect classification, a novel method is proposed by 
transforming the multiclass defect classification subject into a 
multi-binary defect classification subject. For each binary 
class, an individual PSO-WKLFDA (I-PSO-WKLFDA) is 
used to extract effective features. In the literature, the most 
popular strategies to convert the multiclass classification 
subject to a multi-binary classification subject are the one-
against-all (OAA) and one-against-one (OAO) methods [22]. 
In this paper, both strategies are employed and compared to 
evaluate these performances.  After employing PSO-
WKLFDA for each binary class, the effective features are 
used as the input to an SVM classifier. The SVM classifier is 
used in this paper because it is a well-known method that 
performs very well for binary classification problems and 
provides higher classification accuracy using fewer feature 
inputs compared to other classifiers [22]. Finally, a decision 
fusion mechanism is employed to merge the classification 
results from each SVM classifier to identify the bearing 
condition.   

The main contributions of this paper are summarized as 
follows: 

1) This paper claims that the conventional frequency 
domain approach fail to identify the bearing fault when the 
signal is immersed in heavy noise. 

2) This paper shows that the data, which contains the 
features extracted from the bearing vibration signal, is a type 
of multimodal data. Thus, the multimodal dimensional 
reduction would be a good choice to enhance the classification 
accuracy. 
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3) A new multimodal dimensional reduction, namely I-
PSO-WKLFDA (OAA-PSO-WKLFDA and OAO-PSO-
WKLFDA), is proposed to enhance the diagnosis 
performance. 

4) Experiments results for measured bearing vibration data 
show that the proposed I-PSO-WKLFDA outperforms 
conventional frequency domain approach, feature selection 
approach, and other state-of-the-art multimodal DR methods.  

The rest of this paper is organized as follows. Section II 
describes the proposed WKLFD and PSO-WKLFDA 
methods. The OAA and OAO strategies and the proposed I-
PSO-WKLFDA method are described in Section III. Section 
IV presents the construction of a feature set based on time, 
frequency, and time-frequency domains and the proposed 
bearing defect identification. Section V provides experimental 
data to verify the effectiveness of the proposed WKLFDA, 
PSO-WKLFDA, and I-PSO-WKLFDA algorithms. Finally, 
concluding remarks are given in Section VI. 

 

II. WAVELET KERNEL LOCAL FISHER DISCRIMINANT ANALYSIS 

A. Local Fisher Discriminant Analysis (LFDA) 

LFDA [16] is a recent extension of FDA that can 
effectively handle the multimodal problem. By combining the 
properties of FDA and an unsupervised manifold technique, 
i.e., Locality Preserving Projection (LPP), LFDA has the 
ability to simultaneously preserve both between-class 
separation and within-class local structure.   

Consider a data set with a training sample with p  features 

  1
,

n p
i ii

x x   and class labels   1
n

i i
y  ,  1, 2,...,iy c , 

where c  is the number of classes, and n  is the total number 
of training samples. Let ln  be the number of training samples 

available for the lth class, and 
1

c

l
l

n n


 . We define 

 , 0,1i jA   as the “affinity” between ix  and jx  given by  

2

, exp
i j

i j
i j

x x
A

 

    
 
 

 (1) 

where i  is the local scaling around ix , defined by 

k
i i ix x   , and k

ix  is the k-th nearest neighbor of ix . 

,i jA  is large if ix  and jx  are close to each other in the 

feature space, otherwise it is small. The parameter k-th is a 
tuning factor and is a function of the embedding space. A 
heuristic choice of k=7 has been shown to be effective [23]. 
However, this value is not applicable for general embedding 
spaces. In this paper, we use PSO to effectively select this 
parameter, as described later. In LFDA, the local between-

class ( )lbS  and within-class ( )lwS  scatter matrices are 
respectively defined as  

  ,
, 1

1

2

n Tlb lb
i j i j i j

i j

S W x x x x


    (2) 
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1

2

n Tlw lw
i j i j i j

i j
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

    (3) 

where ,
lbWi j  and ,

lwWi j  are n n  matrices respectively defined 

as 

,
,
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1 / if 

i j l i jlb
i j

i j

A n n y y l
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n y y
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 (4) 
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i j
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y y lnW
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 

 (5) 

The transformation matrix WLFDA  can then be computed by 

maximizing the local Fisher’s ratio   1T lw T lbW S W W S W


 as 

T lb

LFDA T lwW

W S W
W agrmax

W S W
  (6) 

The above optimization problem can be equivalently solved 

by the generalized eigenvalue decomposition lb lwS V S V , 
where   is the generalized eigenvalue, and V  denotes the 
eigenvector that corresponds to a Fisher discriminant 
direction. Assuming that the generalized eigenvalues 

...1 2 p     are arranged in descending order, the 

corresponding generalized eigenvectors ...1 2V V Vp   are the 

localized Fisher discriminant directions of decreasing class 
severability. 

B. Kernel Local Fisher Discriminant Analysis (KLFDA) 

Since LFDA is a linear technique of dimensionality 
reduction and feature extraction, it tends to provide inaccurate 
results for complex nonlinear systems. In order to overcome 
this limitation, KLFDA [17, 18] is presented in this section. 
KLFDA has been shown to be a very effective feature 
reduction algorithm in Reproducing Kernel Hilbert Space 
(RKHS). The kernel trick for LFDA can be explained as 
follows. 

Let lmS  be the local mixture scatter matrix defined by 
lm lb lwS S S  . From (2)-(5), lmS  can be expressed as  

  ,
, 1

1

2

n Tlm lm
i j i j i j

i j

S W x x x x


    (7) 

where ,
lmWi j  is the n-dimensional matrix with the (i,j)-th 

element being 

,
,

/ , if

1 / if 

i j i jlm
i j

i j

A n y y l
W

n y y

   

 (8) 

From (7), lmS  can be expressed as 

 ,
, 1

, ,
1 1 , 1

1

2

n
lm lm T T T T

i j i i j j i j j i
i j

n n n
lm T lm T

i j i i i j i j
i j i j

S W x x x x x x x x

W x x W x x


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   

 
  
 
 



  

 (9) 

which can be expressed in matrix form as 
lm lm TS XL X  (10) 
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where lm lm lmL D W  , and lmD  is the n-dimensional matrix 

with the i-th diagonal element of , ,
1

n
lm lmD Wi i i j

j



 . Similarly, lbS  

can be expressed in the form lb lb TS XL X , where 
lb lb lbL D W  , and lbD  is an n-dimensional matrix with the i-

th diagonal element of , ,
1

N
lb lbD Wi i i j

j



  . Thus, the eigenvector 

problem lb lwS V S V  can be expressed as  
lb T lw TXL X V XL X V  (11) 

where lb lm lwL L L  . Since TX V  is in the range of TX , it can 

be expressed using some vector n   as 
T TX V XX K     

where K  is the n-dimensional matrix with the (i,j)-th element  

,
T

i j i jK x x  

Substituting this into (11) and multiplying the resulting 

equation by TX , we obtain 
lb lwKL K KL K    (12) 

This implies that   1
n

i i
x   appear only in terms of their inner 

products. Thus, we obtain a nonlinear variant of LFDA using 
the kernel trick. 

We further define a nonlinear mapping     from input 

space p  to a higher-dimensional RKHS   as follows 
: , ( )p x x       (13) 

Then, a kernel function K  is defined as 
( , ) ( ), ( )i j i jK x x x x    (14) 

where ,   is the inner product of two vectors. 

Commonly used kernel functions include linear, 
polynomial, and RBF kernels. Among these, the RBF kernel is 
the most popular and is defined as 

 
2

2
, exp

2

i j
i j

x x
K x x



    
 
 

 (15) 

where   is the dilation parameter, which is determined by 
users.  

C. Wavelet Kernel Local Fisher Discriminant Analysis 
(WKLFDA) 

The principle of wavelet analysis is to express or 
approximate a signal or function with a family of functions 
generated by dilations and translations of a mother wavelet 
function 

 
1

2,a c
x c

h x a h
a

    
 

 (16) 

where , ,x a c , a  is a dilation factor, c  is a translation 

factor, and ( )h x  is the mother wavelet, which satisfies the 

following condition [19] 
2

0

( )
h

F
W





    (17) 

where ( )F   is the Fourier transform of ( )h z . The wavelet 
transform of a function, ( )g z , can be expressed as 

, ,( ) ( ), ( )a c a cW g g x h x  (18) 

On the right-hand side of (18), , 
 
denotes the dot product. 

Equation (18) represents the decomposition of a function, 
( )g x , on a wavelet basis, , ( )a ch x .  

A wavelet function can be written in the following form: 

1

( ) ( )
N

i
i

h x h x


   (19) 

where 1 2, ,...,
T N

Nx x x x    . Then, if , Nx x , the dot-

product wavelet kernels can be expressed as 

1 1

( , ) ( ) ( )
N N

i i i i

i i

x c x c
K x x h h

a a 

  
     (20) 

and the translation-invariant wavelet kernels are expressed as 

1

( , )
N

i

i

x x
K x x h

a

    
 

  (21) 

Equation (21) represents a multidimensional wavelet function. 
Based on the wavelet function in [19], without loss of 

generality, we propose a Morlet wavelet function as the 
translation invariant wavelet kernel function  

 
2

( ) cos exp
2

x
h x x

 
    

 

 (22) 

Considering the mother wavelet defined in (22) and the 
dilation a , the wavelet kernel of this mother wavelet is 

 
1

2

2
1

( , )

cos exp
2

N
i

i

N
i ii i

i

x x
K x x h

a

x xx x

a a






    
 
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



 (23) 

where a  is a parameter of the RBF kernel, and   is a new 
parameter that controls the kernel shape and must be suitably 
selected. It can be seen that when 0  , ( , )K x x  represents 

a RBF kernel. When 1.5  , ( , )K x x  approximates the 

Mexhat kernel in the range of [-1,1].  

D. Particle Swarm Optimization (PSO) for Parameter 
Selection of WKLFDA (PSO-WKLFDA) 

The PSO algorithm was first developed by Eberhart and 
Kennedy in 1995. It is a powerful tool for dealing with global 
optimization problems [21]. PSO possesses several advantages 
compared with other heuristic optimization techniques such as 
simplicity, ease of implementation, robustness to control 
parameters, and computational efficiency. 

In PSO, the population is referred to as a swarm, and the 
individuals are classed as particles. The thi  particle is 
characterized by its current position vector, 

1 2( ) ( ( ), ( ),..., ( ))i i i iDx t x t x t x t , in the search space, where D  

is the dimensionality of the search space, and the velocity 
vector is 1 2( ) ( ( ), ( ),..., ( ))i i i iDv t v t v t v t . Each particle 

maintains a record of its personal best position, 

, , 1 , 2 ,( ) ( ( ), ( ),..., ( ))best i best i best i best iDp t p t p t p t , and the whole 

swarm of particles maintains a record of the global best 
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position, ,1 ,2 ,( ) ( ( ), ( ),..., ( ))best best best best DG t g t g t g t . Particles 

move in the search space in order to search for the optimal 
solution. During the movement, each particle updates its 
position and velocity according to the distance to its personal 
best position and the distance to the global best position with 
the following equations: 

max min
max

max
k iter

iter

 
 


    (24) 

1
1 1 , 2 2 ,( ) ( )t t t t t t

id id best id id best d idv v c r p x c r g x           (25) 
1 1t t t

id id idx x v    (26) 

where min  is the minimal inertia weight, and max  is the 

maximal inertia weight. iter  is the current iteration number, 

maxiter  is the maximum iteration number. t  represents the tth 

iteration in the evolutionary process, while d D represents 
the dth dimension in the search space. 1c  and 2c  are 

acceleration constants, and 1r  and 2r  are random values 

uniformly distributed in [0, 1]. 
The WKLFDA feature extraction constructed using the 

wavelet kernel function defined in (23) has three determined 
parameters, a nearest neighbor parameter k(-th) and two 
wavelet kernel parameters   and a . In this study, we employ 
a PSO-based SVM classifier; herein, the classification 
accuracy of an SVM classifier is used as a fitness function to 
automatically select the parameters of the WKLFDA feature 
extraction. The step-by-step implementation details are 
described below: 
Step 1:  Initialization The upper and lower limits of the 

position and the velocity of the particles and 
parameters such as 1c , 2c , maxiter , max , min  

are initialized. Further, particle swarm with 
population N is initialized, as is the position and 
velocity of each particle ( k ,   and a - parameters 
for WKLFDA). 

Step 2:  Evaluation of initial population All the particles are 
evaluated for fitness based on a cost function. In 
this step, the following work is performed to obtain 
the fitness function. The training and validation 
data are projected onto the modeling WKLFDA 
subspace to obtain training and validation features. 
Then, the training and validation features are input 
into the SVM classifier to obtain classification 
accuracy. The classification accuracy is used as the 
fitness function and is defined as follows 

                 t

t f

N
fitness function

N N



 (27) 

                 where tN  and fN  denote the number of true and 

false classifications, respectively. A particle with 
the high classification accuracy value produces a 
high fitness value. The bestp  of the individual 

particles and bestg  of the population are identified. 

Step 3:     Updating For each particle, update particle velocity 
according to Eq. (25) and particle position 
according to Eq. (26) in order to generate a new 
swarm. 

Step 4:   Evaluation of updated population Evaluate the fitness 
value of the newly updated particles in a process 
similar to Step 2, and then update the ,best ip  and 

bestG  of the swarm. For an individual particle, if the  
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Fig. 1 Structure diagram of individual PSO-WKLFDA. 

 
               newly updated fitness value is greater than the 

historical local best value, the local best 
position, ,best ip , will be replaced by the current 

position. For the swarm of particles, if the current 
fitness value is greater than the global best, the 
global best position, bestG , will be replaced by the 

current position. 
Step 5:  If the maximum number of iterations is not yet 

reached, return to Step 3. Otherwise, go to Step 6. 
Step 6:     Select the global best position, bestG , in the swarm 

as the ultimate solution. The value encoded from 
the global best position, bestG , is assigned as the 

optimal value for the parameters of the WKLFDA 
algorithm. 

In order to increase the robustness, a k-fold CV method [24] is 
employed to compute the fitness function in Step 2. In the k- 
fold CV estimation procedure, the training data is randomly 
divided into k equal size subsamples. Of the k subsamples, the 
k-1 subsamples are used as the training data, and the 
remaining subsample is retained as the validation data for 
testing the model. We repeat this procedure until each of the 
subsamples  
is used as a validation set. The k results are then averaged to 
produce a single estimation. The averaged classification 
accuracy is used to gauge the fitness of the PSO algorithm. In 
this study, k is set to 5. This is a reasonable compromise 
considering the computational complexity and modeling 
robustness. 
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III. INDIVIDUAL PSO-WKLFDA 

A. One-Against-All (OAA) Strategy 

The OAA strategy [22] has been applied widely for SVM 
classification, in which an m class classification problem is 
divided into m binary class classification problems. Each 
problem involves a binary classifier, which is responsible for 
distinguishing one of the classes from all other classes 
combined. Using a Winner-Takes-All strategy, each binary 
classifier is trained considering the samples from one of the 
classes as positive and the samples from all other classes as 
negative. The decision of the multiclassifier is chosen from 
the class whose binary classifier provides the greatest output. 
Formally, given a vector ( )y f x  with the outputs of the 

binary classifiers, the multiclassifier generates a vector 

1( ,..., )mL l l  in the following way 

 1,...,
max ( )

1 , 1, ...,

1

i
i m

i

i agr f x

if i i i m
L

otherwise









   


 (28) 

B. One-Against-One (OAO) Strategy 

The OAO strategy divides an m class classification problem 
into ( 1) / 2m m 

 

binary class classification problems. Each 

problem involves a binary classifier, which is responsible for 
distinguishing the samples of one class from the samples of 
another class. Each binary classifier is trained considering the 
samples from one of the classes as positive and the other class 
as negative. Formally, each classifier considers two 
information classes l  and s  (  , 1, 2, ..., ,l s C l s  ) via a 

decision function , ( )l sg x . The global decision function is 

 
,

1

( ) sgn( ( ))
C

l l s
s
s l

N x g x



   (29) 

where ( )lN x  is the number of times that class l  is assigned 

for the testing vector x . The final class label is assigned 
according to 

1,...,arg max ( )i m ly N x
  (30) 

C. Individual PSO-WKLFDA 

Although the proposed WKLFDA and PSO-WKLFDA 
algorithms yield better performance than previous state-of-
the- 
art approaches, the use of a single global transformation for 
the multiclass task does not provide excellent classification 
accuracy due to the fact that the projected data still overlap 
with each other in the projected subspace. In this paper, we 
consider the OAA and OAO strategies to reduce the 
overlapped data in the projected subspace. In the following, 
we present the proposed method based on OAA frame work 
(the method based on OAO frame work can be executed as a 
similar way). Fig. 1 illustrates the proposed classification 
framework based on OAA strategy. In this way, the m class 
classification subject is first transformed into an m binary 
class classification subject. For each binary class, an 
individual PSO-WKLFDA is used to extract the effective 

feature. In contrast to the conventional approach, which uses 
FDA, LFDA, or WKLFDA for the m class classification 
problem to obtain a single global transformation, this paper 
use m individual PSO-WKLFDAs for the m binary class 
classification problem in order to obtain m single 
transformations. The parameters of each WKLFDA are 
individually selected by PSO so that the corresponding binary 
classifier yields the best classification accuracy. The effective 
features extracted by each WKLFDA are used as the input to  

TABLE I 
 PARAMETERS OF TIME-DOMAIN FEATURES. 

Feature Equation 

Standard deviation 
2( ( ) )1

N x n xmnxstd N




 

Peak max ( )x x nP   

Skewness 

3( ( ) )1
3( 1)

N x n xmnxske
N xstd





 

Kurtosis 

4( ( ) )1
4( 1)

N x n xmnxkur
N xstd





 

Crest factor 
xPCF

xrms
  

Root mean square 
2( ( ))1

N x nnxrms N



 

Clearance factor 21
( )1

xPCLF
N x nnN


 
  


 

Shape factor 1
( )1

xrmsSF
N x nnN




 

Impulse factor 1
( )1

xPIF
N x nnN




 

where ( )x n  is a signal series for 1,2,...,n N , and N  is the 

number of data points. 

 
 
the classifier. In this paper, the SVM classifier is used. 
Finally, a decision-fusion mechanism is employed to merge 
the classification results from each classifier based on the 
OAA strategy.  

IV. PROPOSED DIAGNOSIS METHODOLOGY 

A. Feature Calculation 

In order to measure the changes in vibration signal due to 
diverse bearing defects, a vibration sensor is generally 
attached to a non-rotating part of the machinery, (e.g., bearing 
housing). Although the bearing housing is the closest element 
on which to place a vibration sensor, the distance from the 
source of bearing failures causes the vibration signal to be 
overwhelmed by noise due to the effects of other components. 
Thus, the vibration signal should be effectively de-noised 
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before being used for analysis. In this paper, we employed the 
hybrid NLM and EMD method, which had been effectively 
developed in our previous work [9], to extract the effective 
features. In this method, the raw vibration signal is first 
preprocessed using the NLM algorithm to eliminate or reduce 
the measurement noise; the de-noised signal is then 
decomposed using EMD to obtain a number of reliable 
intrinsic mode functions (IMFs). Based on the EMD 
algorithm, the de-noised signal, ( )x t , can be decomposed into 

a number of IMFs, ( )C t : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

( ) ( ) ( )
n

j n
j

x t C t r t


   (31) 

The first IMF, ( )1C t , contains mostly high-frequency 

components. The IMFs ( ), ( ),..., ( )2 3C t C t C tn  include different 

frequency bands ranging from high to low, and ( )r tn  usually 

does not contain any signal information. Since the diverse 
bearing failures exists primarily in mid-and high frequency 
bands [12], we choose the first four IMFs as the most 
components for calculating fault signature because they 
represent the mid- and high-frequency components. 

When a rolling bearing with different faults is used in the 
operation, different resonance frequency components are 
produced in the vibration signals. The energy of the fault 
vibration signal depends on the frequency band. To illustrate 
this change, IMF energy features are introduced in this paper. 

For the first four IMF components, the total signal energy 
of each IMF component can be calculated. The energy of 

( )jC t
 
is expressed as ( )jE t , so 

2
( )j jE C t dt   (32) 

To encompass the large value of ( )jE t , the normalized 

energy of the IMF is defined as 
j

j
E

T T  (33) 

where T  is defined as 

1/2
4 2

1
j

j

T E


 
 
 
 
  (34) 

When faults occur in rotating machinery, the vibration 
signals may change. The amplitude and distribution of the 
time-domain signals may be different from those of normal 
bearings. In this paper, the nine time-domain dimensionless 
parameters including standard deviation, peak, skewness, 
kurtosis, crest factor, root mean square, clearance factor, 
shape factor and impulsive factor, described in Table I are 
extracted  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from the de-noised signal and the first four IMFs. These 
features represent the energy, vibration amplitude and time 
series distribution of the signal in the time domain. Finally, a 
feature set containing 49 features (4 + 9 + 9 x 4 = 49, i.e., four 
energy features, nine time-domain features extracted from the 
de-noised signal, and 9 x 4 =36 time-domain features 
extracted from the first four IMFs) is generated to represent a 
bearing condition. 

B. Support Vector Machine (SVM) Classifier 

The SVM binary classifier locates a hyperplane between the 
two categories with the largest margin in the feature space. 
This hyperplane is used to classify test samples into one of the 
two categories. 

Given a training set of instances and class label pairs 

( , )i ix y , 1...i l , where n
ix  and  1, 1

l
iy   , the 

following minimization optimal problem can be solved to find 
the optimal hyperplane to separate the two categories: 

 

2

, , 1

1
min

2

( ) 1 , ( ) 0

l

i
w b i

T
i i i i

w C

subject to y w x b i




  



 
   

 

    

  (35) 

where w  is a normal vector to the hyperplane, b  is a constant 

such that b
w

 represents the Euclidean distance between the 
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Fig. 2. Structure diagram of bearing defect classification. 
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hyperplane and the original of the feature space,   is a 

nonlinear function to map the original feature space into the 
high-dimensional nonlinear feature space. Parameter 0C   is 
the penalty factor of the error term and may be seen as a factor 
that controls the tradeoff between separation margin and 
training errors, and i  are slack variables that measure the 

degree of misclassification.  
The minimization optimal problem defined in (35) can be 

written in dual form by applying Lagrange optimization as 
follows: 

   
1 , 1

1

1
max

2

0, 0 , 1, 2, ..., ,

i

l l
T

i i j i j i j
i i j

l

i i i
i

y y x x

subject to y C i l


    

 

 



   
  

    

 



 (36) 

where the j s   are Lagrange multipliers, and ix
 
and jx  are 

any two different samples in the training dataset. Furthermore, 

   ( , )
T

i j i jK x x x x   represents the kernel function. 

Kernels, which are often selected based on the data structure 
and type of the boundaries between classes, can take many 
forms such as linear, polynomial, radial basis function, and 
sigmoid. In this paper, the RBF kernel is used: 

( , ) i jx x
i jK x x e

 
  (37) 

where   is an adjustable parameter to be carefully tuned.  

C. Bearing Defect Classification based on Individual PSO-
WKLFDA and SVM Classifier 

Based on the above presented feature extraction method and 
proposed individual PSO-WKLFDA approach, a new bearing 
fault diagnosis approach is proposed to classify the data mixed 
with both normal and multiple types of faulty data. The 
bearing defect classification is based on NLM and EMD-
based feature calculation, individual PSO-WKLFDA-based 
feature extraction and dimensionality reduction, and the SVM 
classifier. The proposed procedure is described in Fig. 2 and 
includes the following steps. 
Step 1:  Vibration signals acquired from the machine are 

preprocessed using NLM algorithm and EMD in 
order to obtain IMFs effectively. 

Step 2:  Extract the energy- and time-domain dimensionless 
feature parameters from the de-noised signal and 
the                  first four IMFs in order to obtain a 
combined feature set. 

Step 3:  Building data set and partition into a training data 
set and testing data set. 

Step 4:  Convert multiclass classification problem into a 
number of binary class classification problem based 
on OAA (or OAO) strategy.  

Step 5:  Offline Training: this step is done to obtain the 
optimal PSO-WKLFDA model for each binary 
class. The training data is used at this step. For each  

                 binary class, select the wavelet kernel function for 
WKLFDA feature extraction as in (23) and then 
select its parameters using the PSO- based SVM 
classifier in order to establish an optimal               

WKLFDA model for each binary class. After this 
step, we will obtain an m optimized PSO-
WKLFDA model for corresponding m binary class, 
and then use it for the online fault diagnosis. 

Step 6:  Online Fault Diagnosis:  
i)      For each binary class, project the training and 

testing data sets onto the optimized WKLFDA 
to obtain testing features and training features 
for each binary class. 

ii)  The training and testing features are inputted 
into the SVM classifiers. 

 
Fig. 3. Experimental setup for vibration monitoring in the Case Western 
Reserve University Bearing Data [25]. 
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Fig. 4. (a) De-noised signal of a window after NLM de-noising, and b) its IMF 
components after EMD decomposition. 

 
iii)  Finally, a decision fusion mechanism is 

employed to merge the classification results 
from each SVM classifier to identify the 
bearing condition (labels). 

V. EXPERIMENTAL RESULTS 

A. Training and Test Data Configuration 

To validate the proposed method for bearing defect 
recognition, measured bearing vibration data is used as an 
example. The vibration data used for analysis are taken from 
the Case Western Reserve University Bearing Data Center 
(2014) [25]. The test stand, shown in Fig. 3, consists of a 2hp 
motor (left), a torque transducer/encoder (center), a 
dynamometer (right), and control electronics (not show). Test 
bearings support the motor shaft. Single-point faults with 
diameters of 7, 14, and 21 mil were introduced in the test 
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bearings using electro-discharge machining (1 
mil=0.001inches). Vibration data is collected using 
accelerometers, which are attached to the housing with 
magnetic bases. Accelerometers were placed at the three 
o’clock position on the drive end of the motor housing. 
Vibration signals were collected using a 16-channel operating 
conditions: {1} normal condition, {2} outer race fault (ORF), 
{3} inner race fault (IRF), and {4} ball fault (BF). Each fault 
condition includes three different sizes, 0.007, 0.014, and 
0.021 in. Hence, there are ten conditions (10 classes) that need 
to be identified in this experiment. All the experiments were 
done for one load condition (3 hp), where the rotation speed 
was 1730 r/min. The sampling rate was 12,000 Hz. The 
collected raw vibration signals were divided into sections of 
equal window lengths. Each window contains 1024 point. For 
each window, NLM and EMD are employed to obtain IMF 
components. Fig. 4a) shows the time domain of a window 
after NLM de-noising, and Fig. 4b) shows the de-noised 
signal IMF components after EMD decomposition. From this 
figure, we can see that the first four IMF components 
represent the mid- and high frequency components of the 
original signal. Hence, we used the first four IMFs for analysis 
as discussed above. Then, a set of features (49 features) as 
defined in Section III was then constructed from each de-
noised signal and the first four IMFs of each window were 
used to represent the characteristic of the vibration signals. 
For each condition, 100 samples were used, and therefore the 
whole dataset corresponding to the ten signal conditions 
consists of 1000 samples. 

B. Performance Evaluation 

In order verify the four main contributions of this paper, as 
described in the introduction part, the experiment set is 
divided into four subsets: 1) the performance of the 
conventional frequency domain analysis is analyzed, 2) 
verifies that the bearing fault data is a type of multimodal 
data, 3) the performance of the proposed method is compared 
with other state-of-the-art multimodal dimensional reduction 
methods, and 4) we compare the performance of the proposed 
method with the used of lower dimensional data and feature 
selection methods.   

Firstly, we analyze the performance of the conventional 
frequency domain analysis to see its performance. According 
to [9], after NLM and EMD decomposition, the first IMF is 
passed through the envelope to identify the BCFs, which can 
be used to detect and isolate the fault. First, we consider the 
inner race faults that are  0.007, 0.014, and 0.021 inches thick. 
The results of the FFT plots of the first IMF are shown in Fig. 
5a), b), c), respectively. From these figures, we can see that 
the peaks corresponding to the inner race fault frequency can 
be easily identified in Fig. 5a) and Fig. 5c), but fail to identify 
in Fig. 5b). Similar analysis is executed for outer race faults of 
0.007, 0.014, and 0.021 inches thick. The FFT plots are shown 
in Fig. 5d), e) and f), respectively. From the results, we can 
see that the characteristic frequency of the outer race fault and 
its harmonic are obvious in Figs. 5d) and 5f), but unseen in 
Fig. 5e). From the results, we can conclude that the 

conventional frequency domain analysis is sometime fail to 
extract BCFs for the noisy vibration signal. 

Secondly, the distribution of the samples of the bearing data 
is analyzed. Fig. 6 shows the sample distribution of three 
example classes. It is obvious to see that the data, which 
contains the extracted features of the bearing fault signal, is a 
type of multimodal data. Thus, multimodal dimensional 
reduction technique would be a good choice to enhance the 
performance of the bearing fault diagnosis. 

Thirdly, we compare the performance of the proposed 
methods with other state-of-the-art multimodal dimensional 
reduction   methods. In   this  paper,  we   developed   three  
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Fig. 5. Frequency domain analysis based on hybrid NLM and EMD []. (a) IR 
Fault-0.007in, (b) IR Fault-0.014in, (c) IR Fault-0.021in, (d) OR Fault-
0.007in, (e) OR Fault-0.014in and (f) OR Fault-0.021in. 
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multimodal dimensional reduction methods, WKLFDA, PSO-
WKLFDA and I-PSO-WKLFDA (OAA-PSO-WKLFDA and 
OAO-PSO-WKLFDA), in which the I-PSO-WKLFDA 
algorithm is particularly concerned. To validate the 
effectiveness of the proposed feature extraction algorithms, 
we compared classification performance of the proposed 
method with seven other state-of-the-art feature analysis 
approaches, including global FDA, global TRLDA, global 
LFDA, global KLFDA (RBF kernel), global WKLFDA, 
global PSO-KLFDA (PSO is used to identify the sigma 
parameter of RBF kernel) and global PSO-WKLFDA 
algorithms. For LFDA, KLFDA  
and WKLFDA, the nearest neighbor parameter k(-th) were 
chosen as k(-th) =7. 

To evaluate the performance of the methods, the extracted 
feature vectors are used as input for the SVM classifier to 
obtain classification accuracy. The classification accuracy in 
this study is computed as follows: 

(a)  (b)  (c)  

(d)  (e)  (f)  



 10

100(%)
TP

L
accuracy

samples

N

C
N

 


 (36) 

where L  is the number of classes (L=10) in this study, TPN  

is the number of true positives (TP), defined as the total 
number of faults in class i that are correctly classified as class 
i,    and  

samplesN

 

is the total number of samples used to evaluate the 

performance of the proposed bearing failure diagnosis. 
To estimate the generalized classification accuracy, l-fold 

CV, described in section II.D, is also employed in this 
validation step. In the l-fold CV estimation procedure, the 
training data is randomly divided into l equal size folds. The 
classification performance is measured using one fold for  
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Fig. 7. Recognition accuracy versus reduced dimensionality using 25 training 
samples. 

 
training, and the remaining folds for testing. In this 
experiment, l is set to 4. This is a reasonable compromise 
considering the computational complexity and modeling 
robustness. More specifically, 100 samples of created feature 
vectors are divided into four mutual folds (each fold includes 
25 randomly samples for each bearing condition), and one 
fold (25 samples for each bearing condition) are used for the 
training set. The remaining folds (75 samples for each bearing 
condition) are used as the testing set. To obtain precise 
classification results, l-fold CV is performed ten times in this 
study. To select the WKLFDA parameters using PSO, the 
training set is used. In our experiments, the PSO had a 
population size set at 20 particles, with 1c  and 2c  both set to 

2.0. The inertial weight decreased linearly from 0.9 to 0.4 over 
the number of iterations, as defined in (24). To select the 

parameters for each binary SVM classifier, grid search 
algorithm is employed. In this paper, the searching range of 

parameters are  3 2 1 2 3 6 8 10 132 ,2 ,2 ,2,2 ,2 ,2 ,2 ,2 ,2C     and 

 3 2 1 2 3 4 5 62 ,2 ,2 ,1,2,2 ,2 ,2 ,2 ,2    . Finally, the grid 

search algorithm gives the best combination of pair  ,C  , 

yielding the highest classification accuracy. 
Fig. 7 show the test accuracies of the dimensional reduction 

method in the d-dimensional subspace, where d=1,2,…,20. 
From Fig. 7 we can see that the performance of each method 
varies with reduced dimensions. The mean and best results of 
each method are also reported in Table II for easy in 
comparison. The subspaces according to the best records are  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE II 

 PERFORMANCE COMPARISON (%) AMONG MULTIMODAL DIMENSIONAL 

REDUCTION METHODS 
 

                    Results 
Methods 

SVM 
Mean Max Position 

FDA 81.12 94.67 15 
TRLDA 82.78 95.00 18 
LFDA 83.02 95.33 13 
KLFDA 84.57 96.00 6 
WKLFDA 86.51 96.16 12 
PSO-KLFDA 86.20 96.70 8 
PSO-WKLFDA 89.34 97.20 7 
OAA-PSO-
WKLFDA 

91.07 97.80 10 

OAO-PSO-
WKLFDA 

93.38 98.80 8 

 
assigned as the optimal subspaces. Observing from Fig. 7 and 
Table II, we conclude that the I-PSO-WKLFDA (OAA-PSO-
WKLFDA and OAO-PSO-WKLFDA) method yields the 
highest accuracy, in which the OAO-PSO-WKLFDA provides 
better performance than OAA-PSO-WKLFDA. The 
experimental results coincided with theoretical analysis and 
can be explained as follows. Due to the limitation in the data, 
in which samples in a class are multimodal or samples 
between classes are nonlinearly separated in the input space, 
FDA generates the worst accuracy, 81.12%. Using the trace 
ratio criteria instead of the ratio trace criteria to obtain 
transformation, the TRLDA (82.78%) perform betters than 

 NM ORF1 IRF1 BF1 ORF2 IRF2 BF2 ORF3 IRF3 BF3 
NM 2916 3 5 0 7 0 39 0 0 26 
ORF1 15 2950 10 0 0 0 23 0 0 2 
IRF1 0 0 2983 0 0 0 5 0 11 5 
BF1 0 0 1 2985 0 0 0 13 0 0 
ORF2 0 0 1 6 2989 0 4 0 0 0 
IRF2 0 4 0 0 0 2996 0 0 0 5 
BF2 18 0 0 0 4 4 2929 34 0 0 
ORF3 24 23 0 2 0 0 0 2946 5 0 
IRF3 2 1 0 7 0 0 0 7 2984 0 
BF3 25 19 0 0 0 0 0 0 0 2962 
Sensitivity(%) 97.20 98.33 99.43 99.5 99.63 99.87 97.63 98.20 99.47 98.73 
Specificity(%) 99.70 99.80 99.92 99.95 99.96 99.97 99.98 99.80 99.94 99.84 

TABLE III 
CONFUSION MATRIX FOR SHOWING CLASSIFICATION RESULTS OF THE PROPOSED OAO-PSO-WKLFDA 
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FDA. By preserving the information within a class, the LFDA 
(83.01%) provides better performance compared to FDA. By 
employing a kernel trick to map the data into higher 
dimension in which the nonlinear data possibly becomes 
linear separation, the KLFDA (84.57%), WKLFDA (86.51%), 
PSO-KLFDA (86.20%) and PSO-WKLFDA (89.34%) have 
much better performances. However, due to the capability of 
the wavelet kernel over the RBF kernel to approximate the 
nonlinear function, WKLFDA and PSO-WKLFDA yields 
better performance compared to KLFDA and PSO-KLFDA, 
respectively. Meanwhile, by using PSO to select the optimized 
WKLFDA parameters corresponding to the reduced 
dimension, the proposed PSO-WKLFDA algorithm yields 
better performance than WKLFDA. However, due to the 
capability of the wavelet kernel over the RBF kernel to 
approximate the nonlinear function, WKLFDA and PSO- 

TABLE IV 
 PERFORMANCE COMPARISON (%) BETWEEN FEATURE TRANSFORMATIONA 

AND FEATURE SELECTION METHODS 

Fault diagnosis methods 
Classification 
accuracy(%) 

Three selected features (kurtosis, crest 
factor, skewness) of the raw vibration 
signal 

76.50 

Nine features of the raw vibration signal 89.10 
All 49 features 82.83 
DET-Feature selection 94.10 
OAO-DET-Feature selection 95.56 
PSO-FS 96.40 
OAO-PSO-FS 98.17 
PSO-WKLFDA 97.20 
OAO-PSO-WKLFDA 98.80 

 
 
WKLFDA yields better performance compared to KLFDA 
and PSO-KLFDA, respectively. Meanwhile, by using PSO to 
select the optimized WKLFDA parameters corresponding to 
the reduced dimension, the proposed PSO-WKLFDA 
algorithm yields better performance than WKLFDA. 
However, the use of single global PSO-WKLFDA 
transformation does not give excellent accuracy due to the 
data overlap in the projected subspace. Using an individual 
approach, the data show less overlap in the projected 
subspace. Therefore, OAA-PSO-WKLFDA (91.07%) and 
OAO-PSO-WKLFDA (93.38%) yields higher accuracy and 
outperforms other methods. Since the OSO-PSO-WKLFDA 
provides the highest classification accuracy, it is suggested as 
an efficient method for bearing defect classification. 
Confusion matrix for showing classification results at the max 
value (98.80%) of the proposed OAO-PSO-WKLFDA is 
described in Table III.   

Finally, we compare the performance of the proposed 
feature transformation algorithm with the lower dimensional 
data and feature selection methods. In general, feature 
selection methods are classified into two categories: the filter 
and wrapper methods. In the filter methods, the optimal 
features are selected based on evaluation criteria, which does 

not require feedback from the classification system. In this 
paper, distance evaluation technique-based feature selection 
(DET-FS), which has been developed for bearing fault 
diagnosis [12], is used to compare. Wrapper methods use 
classification accuracy to evaluate feature subsets. Based on 
the wrapper method, the uses of intelligent optimization 
algorithms such as PSO have been proposed in conjunction 
with an intelligent classifier for feature selection, called PSO-
based feature selection (PSO-FS) [12]. In addition, to justify 
the approach transforming the vibration signals into high 
dimension data, we compare the proposed method with the 
approach which used lower dimensional data. The comparison 
results are shown in Table IV. From the results, we can see 
that the used of the three selected features (kurtosis, skewness 
and crest factor) as the input of SVM classifier, the 
classification accuracy is just 76.50%. When using nine 
features extracted from the raw vibration signal, the 
classification accuracy is increased up to 89.10%. This means 
that the set of nine features provides more information than 
that of the set of three features. Due to the extracted feature 
set of 45 features contains more irrelevant and redundant 
features compared to the used of nine features, the accuracy is 
just 82.83%. This is an evaluation motivation for us to study 
the application of feature selection and dimensional reduction. 
When the DET-FS and PSO-FS are employed to select the 
feature subset, the classification accuracy is increased up to 
94.10% and 96.40%, respectively. Using our proposed 
dimensional reduction technique, PSO-WKLFDA, the 
classification accuracy is higher, 97.20%. If we employ the 
individual feature selection technique for DET-FS and PSO-
FS, yielding two new feature selection techniques, OAO-
DET-FS and OAO-PSO-FS, the classification accuracy is 
increased up to 95.56% and 98.17%, respectively. Meanwhile, 
the proposed method OAO-PSO-WKLFDA outperforms other 
method with classification accuracy up to 98.80%.  

VI. CONCLUSION 

This paper started by analyzing the performance of the 
conventional frequency domain analysis for different vibration 
signals. The results show that the technique fails to identify 
the BCF for some noisy vibration signals. Then, the 
distribution of the bearing data was analyzed. The results 
show that the distribution of the bearing data is a type of 
multimodal data. Thus, to enhance defect classification 
performance, a new multimodal dimensional reduction 
method, namely I-PSO-WKLFDA, was proposed. First, fault 
features based on NLM and EMD methods, was computed to 
represent diverse symptoms of bearing defects. The multiclass 
bearing defect classification problem was then converted to a 
multi-binary class bearing defect classification problem based 
on an OAO strategy. The I-PSO-WKLFDA was then applied 
for each binary class to extract the corresponding effective 
features. The effective features were used as the input to the 
SVM classifier. Finally, a decision fusion mechanism was 
employed to merge the classification results from each SVM 
classifier to identify the bearing condition. Experimental 
results indicated that the proposed fault diagnosis 
methodology achieves excellent classification accuracy. On 



 12

the other hand, the main contribution of this paper is to 
propose a new effective dimensionality reduction method, 
thus the proposed methods can be applied for other pattern 
recognition problems. 
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