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Abstract— In this paper, a novel finite time fault tolerant 

control (FTC) is proposed for uncertain robot manipulators with 
actuator faults. First, a finite time passive fault tolerant control 
(PFTC) based on a robust nonsingular fast terminal sliding mode 
control (NFTSMC) is investigated. Be analyzed for addressing 
the disadvantages of the PFTC, the AFTC are then investigated 
by combining NFTSMC with a simple fault diagnosis (FD) 
scheme. In this scheme, an online fault estimation algorithm 
based on time delay estimation (TDE) is proposed to 
approximate actuator faults. The estimated fault information is 
used to detect, isolate and accommodate the effect of the faults in 
the system. Then, a robust AFTC law is established by combining 
the obtained fault information and a robust NFTSMC. Finally, a 
high-order sliding mode (HOSM) control based on super-twisting 
algorithm is employed to eliminate the chattering. Compared to 
the PFTC and other state-of-the-art approaches, the proposed 
AFTC scheme possess several advantages such as high precision, 
strong robustness, no singularity, less chattering and fast finite-
time convergence due to the combined NFTSMC and HOSM 
control, and requires no prior knowledge of the fault due to 
TDE-based fault estimation. Finally, simulation results are 
obtained to verify the effectiveness of the proposed strategy. 
 

Index Terms—Fault diagnosis, fault tolerant control, time 
delay estimation, terminal sliding mode, robot manipulators.  
 

I. INTRODUCTION 

OWADAY, robotic technologies have been widely applied 
for real applications such as in military, industry, 

medicine, productivity, reliability, etc. However, applications 
that require robots to be placed in hazardous, remote 
environment and interaction with humans can lead to robot 
failure, which could degrade product quality and endanger 
users and other objects in the workspace. Hence, automated 
monitoring-diagnostics of the robotic system play a crucial 
role for the use of robotic manipulators as parts of 
autonomous system. In addition, in dangerous or remote 
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environments, it is difficult to repair the failed robot. Thus, it 
is important to develop a control scheme to guarantee that a 
robot can continue to reliably work in the presence of faults. 

Due to the aforementioned requirement, various fault 
diagnosis (FD) approaches for robotic systems have been 
studied over the last three decades. In the literature, model-
based analytical redundancy-based fault detection and 
isolation have been investigated [1-3]. Using intelligent 
learning techniques such as neural network (NN) or fuzzy 
logic, robust FD methods have also been proposed [4-10].The 
basic idea of these methods is to design a robust FD scheme 
using a model-based method and then use the NN [4-7] or 
fuzzy logic [8-10] to approximate the faults in the observer 
design. The intelligent learning techniques have the capability 
to approximate the unknown fault functions in robot 
dynamics; however, they introduce a number of weighting 
parameters or fuzzy rules that make implementation difficult 
and time consumption. Due to its inherent robustness to 
system uncertainties and external disturbances [11], sliding 
mode observer has been used in the design of fault diagnostic 
observers [12-15]. Although this technique is simple in design 
and has a fast convergence; however, the design system 
requires a prior knowledge of bounded faults, which could be, 
from a practical point of view, hard to acquire. In robotic 
system, faults usually occur at unknown time and with 
unknown magnitude. To relax the requirement of bounded 
faults of sliding mode observer, neural sliding mode 
observers, which combine the NN and the sliding mode 
observers, have been developed in our previous studies [16-
17]. However, these approaches still contain the intelligent 
learning technique; it may meet, as aforementioned, a 
difficulty in real implementation. Time delay estimation 
(TDE) technique developed in [18-19] is a simple but robust 
technique to approximate a nonlinear function without prior 
knowledge on bounded unknown input by using time delay 
information. This technique has been successfully used to 
approximate the unknown dynamic model of robot 
manipulators [20-22]. However, to the best of our knowledge, 
there is no study in literature on the use of TDE to carry out 
robust fault diagnosis. 
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In some applications that require robot to be worked in 
dangerous or remote environment, it is required that a fault 
should be automatically self-corrected after it is detected and 
isolated so as to enhance the system reliability and guarantee 
the control performance. This task is referred to as fault-
tolerant control (FTC). In general, FTC systems can be 
divided into two categories: active and passive approaches 
[23-24]. In passive FTC (PFTC) systems, one controller is 
used for both the normal case and the fault case without the 
need to detect the presence of a fault [25-28]. However, this 
approach requires partial knowledge of a possible system 
fault, so its use is limited in real applications. In contrast, 
active FTC (AFTC) is designed based on fault information [3-
9, 29-33]. FD is the first step to provide the fault information. 
The AFTC scheme is then designed based on the obtained 
fault information in order to compensate for the effect of a 
fault in the system. For this reason, the system performance of 
the AFTC depends on the accuracy of the fault information 
that has been obtained. With the correct fault information, the 
performance of AFTC system is more effective than that of a 
PFTC, and hence, is more desirable for practical applications.  

Although many FTC schemes have been developed in the 
literature for various linear and nonlinear systems, to the best 
knowledge of the authors, there have been only minor FTC 
investigations for robotic systems with fast finite time 
convergence. In fact, most of the developed FTC schemes for 
robot manipulators are designed based on modification of the 
nominal computed torque controller (CTC) [4-8, 16-17]. The 
basic idea behind these approaches is to use a CTC along with 
estimated fault compensation based on learning techniques. 
However, as aforesaid, the use of learning methods has a 
difficulty in real implementation. On the other hand, the use of 
CTC as a nominal controller has two major drawbacks in real 
robot applications. Firstly, it requires an exact model of the 
robot dynamics, which is usually challenging. Secondly, it is 
not robust to structured and unstructured uncertainties, which 
may result in poor performance. Therefore, these approaches 
do not compensate for the modeling uncertainty when 
designing the nominal controller for normal operation, 
although the uncertainty can be compensated when a fault 
occurs. Consequently, the tracking performance is decreased. 
Many advanced control approaches have been proposed to 
increase the performance of the robot system for normal 
operation, such as adaptive control [34-35], fuzzy control [36-
37], neural network control [38-39], optimal control [40] and 
sliding mode control (SMC) [41-42], etc. 

Compared to other methods, SMC has attractive advantages 
of robustness to uncertainties and disturbances and low 
sensitivity to the system parameter variations [10, 43]. This 
technique has been used for the design of FTC system [44-
45]. However, the uses of traditional SMC scheme do not 
converge to the equilibrium point in finite time because a 
linear surface is used. Recently, terminal sliding mode control 
(TSMC) methods [46-47], which use nonlinear sliding 
surfaces instead of linear surfaces, have been developed. By 
suitably designing the parameters, the TSMC assures the 

system states to reach the equilibrium point in finite time, and 
also offers some superior properties such as rapid response, 
robustness and higher precision. However, the initial TSMC 
has two disadvantages: the first is that it has slower 
convergence to the equilibrium than the traditional linear 
sliding mode control when the system state is far away from 
the equilibrium, and the second is the singularity problem. To 
overcome the first disadvantage of the traditional TSM, fast 
terminal sliding mode (FTSM) control has been developed 
[48-49]; however, these approaches still have a singular 
problem. In order to eliminate the singular problem, 
nonsingular TSMC (NTSMC) [50-53] and nonsingular fast 
terminal sliding mode control (NFTSMC) [54-57] have been 
proposed. Compared to the NTSMC, the NFTSMC has the 
same property but provides a faster state convergence. 
However, both SMC and TSMC techniques have a drawback 
that they produce the high-frequency oscillations of the 
controller output, known as chattering. In practical 
implementations, chattering is undesirable because it may 
excite unmodelled high frequency plant dynamics resulting in 
unforeseen instabilities. To remove the chattering, several 
solutions have been proposed. One solution is to use the 
boundary layer method that includes sigmoid function [56] or 
saturation function [58] instead of sign function. This 
approach, however, can only guarantee the existence 
condition of the sliding mode outside a small boundary layer 
around the sliding manifold, which will increase the steady 
state tracking errors. A second solution is to design of a 
continuous control law [49, 57]. However, this technique 
implies deterioration accuracy and/or robustness. A third 
solution proposed to decrease the chattering is the high-order 
sliding mode (HOSM) technique [59-66]. Unlike the SMC, 
which works on the first time derivative of the sliding mode 
variable, HOSM works with discontinuous control acting on 
the high-order time derivative. By moving the switching to the 
higher derivatives of the control, the control signal becomes 
continuous, so the chattering is much reduced. 

In light of the remarkable benefits and limitations, this 
paper investigates a finite time AFTC scheme for uncertain 
robot manipulator based on TDE and NFTSMC combined 
with a HOSM control technique so as to accommodate both 
the uncertainties and faults. To highlight the benefits of the 
proposed AFTC, the PFTC based on NFTSMC is first 
presented; and its benefits and limitations are analyzed. Then, 
based on the limitations, the AFTC based on NFTSMC and 
TDE is then proposed. In this scheme, TDE is proposed as a 
robust FD scheme to approximate the fault information; the 
obtained fault information is used to detect, isolate and 
accommodate the effects of faults. Then, NFTSMC is used to 
compensate for the TDE error and stabilize the control system. 
Finally, a super-twisting HOSM algorithm is employed to 
eliminate the chattering. 

Comparing to the existing approaches, the contribution of 
this paper can be marked as the following significant points: 
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 Unlike the intelligent learning techniques or sliding 
mode observer, TDE- based FD scheme is proposed 
for the first time. 

 A novel fast finite time AFTC scheme is proposed 
based on the combining of TDE-based fault 
diagnosis and NFTSMC and HOSM controllers.  

 The proposed FTC system considers and 
compensates for the effects of both the uncertainty 
and fault in both healthy and fault operations.  

 The proposed FTC scheme possess several 
advantages over other state-of-the-art approaches 
such as higher precision, robustness, no singularity, 
less chattering, fast finite time convergence and no 
need for prior knowledge of bounded faults. 

The rest of this paper is organized as follows. Section II 
formulates the problem and gives preliminaries. Section III 
and IV introduce the design of proposed PFTC based on 
NFTSMC and proposed AFTC based on NFTSMC and TDE, 
respectively. The simulation results for a PUMA560 robot are 
given in section V so as to verify the effectiveness of the 
proposed algorithms. Finally, the conclusions are given in 
Section VI. 

II. PROBLEM STATEMENT AND PREMILINARIES 

A. Problem statement 

Consider the robot dynamics described by 
 

 1( ) ( , ) ( ) ( )

( ) ( , , )
m d
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q M q V q q q F q G q

t T q q
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where nq  is the state vector, n   is the torque 

produced by the actuators, ( ) nxnM q   is the inertia matrix, 

( , ) n
mV q q &

 includes the Coriolis and centripetal forces, 

( ) nF q &
 is the friction matrix, d  

is a load disturbance 

matrix and ( ) nG q   is the vector of gravity terms. The term 

( , , ) nq q  &
 is a vector representing the faults, 

( ) n
ft T  

 
represents the time profile of the faults, and 

fT
 
is the time of occurrence of the faults. 

    The robot dynamics (1) have the following standard 
properties. The inertia matrix ( )M q  is symmetric positive 

define, and 
 

0 { ( )} { ( )} , 0m MM q M M q         (2) 

 
where   M M  and  m M are the maximum and minimum 

eigenvalues of matrix M . 
We let the time profile ( )   be a diagonal matrix of the 

form 
 

 1 2( ) ( ), ( ),..., ( )f f f n ft T diag t T t T t T         (3) 

 
where i  

is a fault function that represents the fault affecting 

the ith state equation. 
The faults with time profiles modeled are given by 
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where 0i   represents the unknown fault evolution rate. A 

small value of i
 
characterizes a slowly developing fault, 

also called an incipient fault. For a large value of i , the 

profile of i  approaches a step function that models abrupt 

faults. When i  , i  becomes a step function so that the 

incipient fault becomes an abrupt fault. 
In this paper, actuator faults are considered because it 

represents one of the most serious failures and usually occurs 
in robotic systems. In a robotic system, damage to the 
actuators can be caused by damage to an internal actuator, the 
power supply systems, or wirings, etc. This class of failure 
can be described by the difference between the nominal torque 

0  
and the actuator   acting at the robot joint; it can be 

expressed as: 
 

0( ) ( ) ( )t t t     (5) 

 
The actuator fault ( )t  can be represented by the fault 

function ( , , )q q &
 in (1) as: 1( , , ) ( ) ( )q q M q t  & . 

To simplify the design in the next section, the robot 
dynamics can be rewritten as 
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where 1( , ) ( ) ( , ) ( )mf q q M q V q q q G q    & &&
 

represents the 

known nominal robot dynamics and 
1( , , ) ( ) ( ) dq q M q F q      & &

 
represents the uncertainties 

in the nominal model. 
The objective of this paper is twofold: i) design a FD 

scheme to detect, isolate and estimate the fault ( , , )q q & ; and 

ii) design a fast finite time AFTC scheme based on the 
obtained fault information such that the system outputs can 
follow the desired trajectories well in the presence of both 
uncertainty and fault.   

B. Notations 
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[ ] ( )
ccx x sign x , where 0c   

 
It can be easily verified that as 1c   
 

  1ccd
x c x x

dt
 & 

 
The sign function is defined as 
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III. PFTC BASED ON NONSINGULAR FAST TERMINAL SLIDING 

MODE CONTROL (NFTSMC) 

Let 1
nx q  , 2

nx q & , in the presence of faults, 

equation (5) can be rewritten in the state space form as 
 

 

1 2

1
2 1 1 2 1 2 1 2

1

( ) ( , ) ( , , ) ( , , )

x x
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y x





    


&
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where u   is the control input and y  is the output vector. 

The design procedure of the NFTSMC consists of two main 
steps [55-57]. The first step involves constructing the 
appropriate nonsingular fast terminal sliding mode surfaces, 
which should have the prescribed desirable dynamical 
characteristics. The next step is to design a control law that 
forces the system states to reach the sliding surface in a finite 
time. For the first step, we let 
 

1 de x x   (8) 

 

where n
dx   is the desired trajectory.  

The sliding surface of the conventional sliding mode 
control is selected as [41]: 

 
s e e & , 0   (9) 
 
However, the uses of conventional SMC do not converge to 
the equilibrium point in finite time because a linear surface is 
used. 

To obtain a finite time convergence, the TSM and NTSM 
have been developed as follows [47, 49]: 

 
  , 0,0 1as e ke k a    &  (10a) 

 '' , ' 0,1 ' 2as e k e k a    &  (10b) 

 
The TSM and NTSM converge in a relatively slow rate 

when far away from the equilibrium point [55]. To enhance 

the convergence speed, the FTSM is designed by the 
following differential equation: 
 

   1 2
1 2

a as e k e k e  &  (11) 

 
where 1 0k  , 2 0k  , 1 1a   and 20 1a  . When 1 1a  , 

(11) has the form of FTSM [49], and (11) coincides with 
FTSM [48] if there exists positive odd integers ,v z  satisfying 

2 /a v z  with v z . The fast convergence property of (11) 

can be explained as follows: when the system state stays at a 

distance from equilibrium,   1
1

ak e  dominates over  2
2

ak e , 

(11) can be approximated by  1
1 0as e k e  & , which 

guarantees a high convergence rate. When the system state is 

close to the origin, the term  2
2

ak e  dominates over  1
1

ak e  , 

(11) can be approximated by  2
2 0as e k e  &  and 

determines finite-time convergence. By this way, the 
dynamics converges very quickly in the whole FTSM (11). 

However, the control signals contain 2 1ae e &, which may 
cause a singularity to occur if 0e &  and 0e  . 

Based on the properties of NTSM (10b) and FTSM (11), in 
this paper, a nonsingular fast terminal sliding mode surface is 
selected as 
 

[ ] [ / ]
1 2

l ps e e e    &  (12) 

 

where ns  is the sliding variable, 1 11 12( , ,...diag  
 

1, ) n n
n 

 
and  2 21 22 2, ,..., n n

ndiag       are 

positive definite matrices, respectively, l  and p  are positive 

odd numbers satisfying the relation 1 / 2l p   and 

/l p  ,  [ ] [ ] [ ]
1: ,...,

T n
ne e e    , and    / /

1: ( ,l p l pe e& &  

 /..., )l p T n
ne & .  

For the second step, to ensure that sliding motion occurs 
and that the error thus converge to zero in a finite time, the 
derivative of the sliding surface 0s &  should be satisfied such 
that 
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 11 1
1: ,..., n n

ne diag e e
       , 

     / 1/ 1 / 1

1: ,...,
l pl p l p

n n
ne diag e e

 
   

 
& & &  .

 
 

Substitute (7) into (13), we have 
 



 5

 

 

/ 11
1 2

1
1 1 2 1 2 1 2

ꞏ

ꞏ ( ) ( , ) ( , , ) ( , , )

l p

d

l
s e e e e

p

M x u f x x x x u x x u x

  







  

    

& & & &

&&

 (14) 

 
In (14), the total uncertainties take a form of 

1 2 1 2 1 2( , , ) ( , , ) ( , , )F x x u x x u x x u   . The following 

assumption is made: 
 

Assumption 1: There exists a positive constant   such that 
 

1 2 1 2 1 2( , , ) ( , , ) ( , , )F x x u x x u x x u          (15) 

 

where   and   are a known upper bound of uncertainties 

and faults, respectively. 
Under the assumption 1 and according to the terminal 

sliding mode design procedure, a PFTC can be designed as 
 

eq reu u u   (16) 
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is used to control nominal component, where  2 ( / ) :l pe  &
     2 ( / ) 2 ( / )

1 ,...,
T

l p l p n
ne e  & &  

 
and 
 

 1( ) ( )reu M x sign s     (18) 

 
is used to compensate for both uncertainties and faults, where  

 1( ) ( ),...., ( )
T n

nsign s sign s sign s  . 0   is a small 

constant value. The stability of the system under the PFTC 
scheme in (16) is demonstrated in Theorem 1. 

Theorem 1: Considering the uncertain robot manipulators 
described in (7) under a faulty condition, the nonlinear sliding 
surface described in (12), the system trajectory will converge 
fast to zero within finite time and no occurring of singularity 
is ensured during the whole process under the controller 
defined in (16). 

Proof: Let the Lyapunov function be 1
1

2
TV s s . 

Differentiating 1V  with respect to time, we have 
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Subtracting (16)-(18) into (19), we have: 
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where  
 

 / 1
2

1
( ) : inf
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l
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p
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Since l  and p  are odd numbers and 1 / 2l p  , the term 
/ 1l p

e
&  has two possible cases: i) 

/ 1
0

l p
e

 &  for 0e &  and ii) 

/ 1
0

l p
e

 &  only for 0e & . Meanwhile, from (12) for 0s  , 

there are also two different cases: 1) 0e & , and 2) 0e &  but 
0e  . For the former case, i.e., 0s   and 0e & , there is 

( ) 0e &  and 1 0V & . Therefore, for 0e & , the condition for 

the Lyapunov stability is satisfied. The system will move fast 
to the sliding mode  0s   within finite time.  

For the latter case, 0s  , 0e &  but 0e  , by substituting 
(16)-(18) into the second equation of (7), one can obtain 

 

    
 

12 ( / ) 2 ( / )
1

2

1 2

1
ꞏ

( , , ) ( )

l p l pp
e e e e

l

F x x u sign s

 


 

   

  

&& & &
 (22) 

 
From 0e & , (22) can be rewritten as 
 

 1 2( , , ) ( )e F x x u sign s   &&  (23) 

 
For both 0s   and 0s  , it is obtained e  &&  and e && , 

respectively. It is easy to figure out that the system will not 
always stay on the points ( 0e   and 0e & ) . In addition, it is 
reasonable to assume that there exists a vicinity of 0e & ,  i.e. 

e &  (  is a small positive constant) such that e  &&  and 

e &&  for 0s   and 0s  , respectively. Thus, it follows that 

the crossing of trajectories between two boundaries of the 
vicinity e &  to e  &  for 0s   and from e  &  to e &  

for 0s   is executed in finite time, and also the dynamics 
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from the other regions where e &  converges to the 

boundaries in the finite time [50]. Therefore, it is concluded 
that the sliding mode 0s   can be reached from everywhere 
in the phase plane, 0 ee &

 , in finite time. In addition, it is also 
noted that the control (16) does not contain any negative 
fractional power since 1 / 2l p   and 1  ; thus it is 

singularity-free. Hence, we conclude that from any initial 
states, the closed-loop system may converge quickly to the 
origin along NFTSMC (12) in finite time without any 
singularity. This completes the proof. 
     

Remark 1: When the sliding mode 0s   is reached, the 
system is determined by the nonlinear differential equation: 

[ ] [ / ]
1 2 0l pe e e   & , where 0e   is the terminal attractor 

of the system. The finite time st  that is taken to travel from 

( ) 0re t   to ( ) 0r se t t   is given by [55]: 
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 (24) 

 
where  F   denotes Gauss' hypergeometric function. For 

more details on Gauss’ Hypergeometric function, one can 
refer to the work [67]. 

IV. AFTC BASED ON TIME DELAY ESTIMATION AND 

CONTINUOUS NONSINGULAR FAST TERMINAL SLIDING MODE 

CONTROL 

The basic idea of the developed PFTC in (16) is to treat the 

faulty term 1 2( , , )x x u  as an additional uncertainty and 

organize a control law to compensate for the effect of fault. 
Although this technique can handle the effects of faults in the 
system and might achieve stabilization performance, it is a 
conservative method in that its controllers are designed based 
on the faulty system without any change in control law even 
either faults occur or not. Due to the lack of FD information, 
the control system is designed based on the assumed fault 
magnitude. The tracking error of the NFTSMC converges to 
zero if its gain ( [ ]  in (18)) is bigger than the upper bound 

value of the assumed fault magnitude. However, the upper 
bound value is difficult to obtain in advance. In addition, if the 
upper bound value is assumed to be known but big, the sliding 
gain must be chosen as a big value; unfortunately, this large 
control gain may cause large chattering on the sliding surface 
and therefore deteriorate the PFTC system performance. To 
enhance the performance of the FTC system, we propose an 
AFTC based on TDE and continuous NFTSMC. The TDE is 

used here as a robust FD scheme to detect, isolate and 
estimate the unknown uncertainties and faults. The estimated 
uncertainties and faults are then used to reconfigure the 
control system rapidly. 

A. Design of a robust fault diagnosis based on time delay 
estimation (TDE) 

Assuming that the uncertainty 1 2( , , )x x u  and fault 

1 2( , , )x x u  are continuous or piecewise continuous and that 

the time delay L  is sufficiently small, the following 
approximation is satisfied: 

 

1 2 ( ) 1 2 ( )( , , ) ( , , )t t Lx x u x x u     (25) 

1 2 ( ) 1 2 ( )( , , ) ( , , )t t Lx x u x x u    (26) 

 
providing an effective estimation of 1 2 ( )( , , ) tx x u  and 

1 2 ( )( , , ) tx x u , i.e., 

 

1 2 ( ) 1 2 ( )
ˆ ( , , ) ( , , )t t Lx x u x x u  @  (27) 

1 2 ( ) 1 2 ( )
ˆ( , , ) ( , , )t t Lx x u x x u  @  (28) 

 

where 1 2 ( )
ˆ ( , , ) tx x u  and 1 2 ( )

ˆ( , , ) tx x u  are the estimation of 

uncertainty, 1 2 ( )( , , ) tx x u , and fault, 1 2 ( )( , , ) tx x u , at the 

time t , respectively. 
From (7) and (27), (28), the TDE can be obtained as: 

  

 ( )

1 2 ( ) ( ) 1 2 ( ) ( )

1
2 1 2 ( ) 1

( )

ˆˆ ( , , ) ( , , )

( , ) ( )
t L

t t t L t L

t L
t L

TDE

x x u x x u

x f x x M x u

H

 



 


 

   

  



@

&     (29) 

 
where TDEH

 
denotes the time delay estimation.  

B. Fault detection and isolation 

The proposed TDE-based fault diagnosis observer is able to 
detect system faults in the presence of uncertainties. The fault 
diagnosis system must be robust against system uncertainties, 
but must also be sensitive to any fault. In this paper, the 
obtained TDE defined in (29) is used as a residual to detect 
and isolate the faults.  

According to (7), 1 2( , , ) 0x x u   when ft T . Then, from 

(29) we have 
 

( , , )TDE thH q q H   &@  (30) 

 

By choosing thH  as the threshold, the robustness property of 

the fault detection scheme is guaranteed. A fault is detected 
and isolated whenever the residual TDEH  overshoots its 

corresponding threshold ( thH ). 
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C. AFTC based on TDE and NFTSMC 

From (29), the unknown function that includes uncertainties 

and faults can be described by an estimated TDE TDEH : 

 

   1 2 1 2, , , , TDEx x u x x u H      (31) 

 
where   is the time delay estimation error. From this, the 
robot dynamics described in (7) can be rewritten as 
 

1 2

1
2 1( ) TDE

x x

x M x u H 



  

&

&
 (32) 

 
Assumption 2: There exist a positive constant   such that 

 
   (33) 

 
where   is a known upper bound of time delay estimation 
error. Based on the analyses in Refs. [18-21], this assumption 
is reasonable for a sufficiently small L . 

For the system (32), the derivative of the sliding surface 
defined in (13) can be rewritten as 
 

 

 

/ 11
1 2

1
1 1 2( ) ( , )

l p

TDE d

l
s e e e e

p

M x u f x x H x

  







   

    

& & & &

&&

 (34) 

 
Based on the derivative of the sliding surface in (34), the 
AFTC is now designed based on TDE compensation and 
NFTSMC to accommodate both the uncertainties and faults: 
 

eq TDE reu u u u    (35) 

 
where equ  is designed as the same as (17). And the TDE-

based fault compensation term is 
 

1( )TDE TDEu M x H   (36) 

 
and reu  is now designed as 

 

 1( ) ( )reu M x sign s     (37) 

 
The stability of the system under the proposed AFTC in (35) 
is demonstrated in Theorem 2. 

Theorem 2: Considering the uncertain robot manipulators 
described in (7) under a faulty condition, the nonlinear sliding 
surface described in (12) and the control law defined in (35), 
the system trajectory will converge fast to zero within finite 
time and no occurring of singularity is ensured during the 
whole process. 

Proof: Let the Lyapunov function be 2
1

2
TV s s . 

Differentiating 2V  with respect to time, we have 

 

 

2

/ 1 / 1
2 2

/ 1
2

1

[ ] ( )

( )

T

l p l pT

n
l p

i
i i

V s s

l l
s e e sign s

p p

l
s e

p

e s

    

   



 







 
    

 

 
   

 

 



& &

& &

&

&

 (38) 

 
Based on (38) and the proof for Theorem 1, we can verify that 
the origins 0s   of the sliding mode dynamics (34) are 
globally finite-time-stable equilibrium points and the 
trajectories of (34) converge to zero in the finite time without 
singularity under the control law defined in (35). This 
completes proof for Theorem 2. 

Due to the capability of the TDE to estimate a nonlinear 
function, the TDE error is much smaller than that of its 
estimation function (uncertainties and faults), i.e,   = . 

Therefore,     = , the sliding gain of the AFTC 

(   ) can be selected as a much smaller value compared 

with the sliding gain of the PFTC (  ). Hence, the 

chattering generated by the AFTC is much smaller compared 
with PFTC, and hence increasing the performance of the FTC 
system.  

D.  AFTC based on TDE and continuous NFTSMC 

In the proposed PFTC in (16) and AFTC in (35), chattering 
is present due to the discontinuity of the sign function. In 
order to eliminate the chattering, we consider the following 
techniques: 

i) The reaching control reu  is designed based on a 

continuous function [49, 57]: 
 

  
1 1 2( )[ ]reu M x k s k s     (39) 

 
where 1 2, 0k k  , 0 1  . However, this approach reduces 

the robustness of the system. 
   ii) The sign(s) function is replaced by a sigmoid 

function,
1

1

bs

bs

e

e




 [56]. That is the reaching control, reu , is now 

designed as  
 

 1
1

( )
1

bs

re bs

e
u M x

e
  

  


, 0b   (40) 

 
However, the technique implies deterioration accuracy and 
robustness. 

iii) In this paper, we propose to exploit the HOSM control 
to eliminate the chattering since this technique not only 
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eliminates the chattering but also increase the accuracy. 
Unlike other HOSMs, such as the suboptimal algorithm [59-
60], the twisting algorithm [61], or the quasi-continuous 
algorithm [62] is the necessity of using the first time 
derivative of the sliding variable, the super-twisting (STW) 
algorithm [63-66] does not require the time derivative of the 
sliding variable. Thus, we employ it to eliminate the 
chattering. The reaching control, reu , is now designed as: 

 
1/2

1 1

2

( )[ ( ) ]

( )
reu M x K s sign s z

z K sign s

  

 &
 (41) 

 
where 1K  and 2K  are chosen as [66]: 

 

1
1 2 1

1

5 4
2 and

(2 4 )

k
K K K

k


 




 


 (42) 

 
The stability and convergence of the STW algorithm can be 
proved based on the idea of the design of majorant curves [69] 
or Lyapunov approach [64-66]. 

E. Acceleration and velocity estimator 

The developed finite time AFTC defined in (35) requires 
the measurement of position, velocity and acceleration. 
However, in the robot system defined in (7), only the position 
measurement is available. Hence, an acceleration and velocity 
estimator is essential for practical implementation of the 
controller. The velocity and acceleration signals can be 
calculated by backward differentiator (BD) technique, as [18-
21]: 
 

1( ) 1( )
1( )

t t L
t

x x
x

L


&  (43) 

1( ) 1( ) 1( 2 )
1( ) 2

2t t L t L
t

x x x
x

L

  
&&  (44) 

 
However, it should be noted that the measured position signal 
contains quantization noise due to the employed encoder [68], 
which when differentiated would induce significant estimation 
error. To effectively estimate the velocity and acceleration, 
second-order exact differentiation (SOED) [69] is introduced 
in this paper:  

 

0 0

2/3
0 1 0 1 0 1

1 1

1/2
1 2 1 0 1 0 2

2 3 2 1

,

( )

( )

( )

z

z x sign z s z

z

z sign z z

z sign z



 



   

 



    



    

  

&

&

&

 (45) 

 
Using suitably chosen parameter i , the SOED can achieve 

 

0 1 1 1 2 1, ,z x z x z x  & && (46) 

 
Remark 2: From (7), the fault estimation can simply be 

obtained as 
 

 ( )
1

1 2 ( ) ( ) 2 1 2 ( )
( )

( , , ) ( , ) ( )
tt t t

t
x x u x f x x M q u     & (47) 

 
This fault estimation can be used to detect and isolate the 
faults; however, it cannot be used for the design of AFTC 
defined in (35) because the control input u  appears in both 
sides of (35). 

Remark 3: It should be addressed here that the SOED (45) 
can achieve finite time error convergence no matter what the 
kind of controller used. This means that the proposed 
controller and the observer (45) can be designed separately, so 
that the combined observer-controller output feedback 
preserves the main features of the controller with the full state 
available.  

Remark 4: From (25) and (26), we can see that the smaller 
value of L is, the continuous system become and thus the 
better TDE achieve. In practice, L is chosen as the sampling 
time. A digital control system behaves reasonably close to the 
continuous system if the sampling rate is faster than 30 times 
the bandwidth [70]. 

Remark 5: The selection of l , p  and   of the proposed 

nonlinear sliding surface in (12) should satisfy the conditions 
1 / 2l p   and /l p   to obtain fast convergence and no 

singularity. In general, the relative parameters can be tuned by 
some adaptive methods [55, 56].  

Remark 6: In the developed PFTC in (16), the control 
system has a fast response with the occurrence of fault since it 
does not require the fault diagnosis information. However, the 
proposed AFTC based on the TDE-based fault estimation can 
compensate the effects of fault rapidly without any time delay 
due to fault diagnosis. Hence, the proposed AFTC scheme can 
reduce the time delay between fault occurrence and 
accommodation. Thus, the proposed AFTC scheme has the 
advantages of AFTC as well as fast response property of 
PFTC. In addition, unlike the design of PFTC, the proposed 
AFTC does not require the prior knowledge of the bound 
value of fault, which may increases the application capability. 

Remark 7: Different from previous FTC approaches [4-8], 
which do not compensate for the uncertainties in normal 
operation, although the uncertainties can be compensated 
when a fault occurs, consequently, the performance of the 
system in normal operation is reduced, the proposed algorithm 
developed in this paper can compensate for the uncertainties 
in normal operation and both uncertainties and faults when a 
fault occurs.    

Remark 8: In practical applications, the encoder signal is 
always contaminated by noise and the control effort has a 
chattering. The noise and chattering effects can be amplified 
by numerical differentiation, which is used to calculate the 
velocity and accelerator either by using BD ((43) and (44)) or 
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SOED (45). To reduce the noise and chattering effects, we use 
a low-pass filter that has the form 
 
 

 
Fig. 1. 3-DOF PUMA robot 

 

( ) ( ) ( )TDE TDE TDEjH t H t H t &  (48) 

 

where j  is the filter time constant, and TDEH  is the output of 

( )TDEH t  after filtration. 

V.  RESULTS 

In order to verify the effectiveness of the proposed FD and 
FTC algorithms, its overall procedure is simulated for a 
PUMA560 robot, in which the first three joints are used. The 
PUMA560 robot is a well-known industrial robot that has 
been widely used in industrial applications and robotic 
research. The explicit dynamic model and parameter values 
necessary to control the robot are given in Ref. [71]. 

The three degree of freedom (3-DOF) PUMA560 robot is 
considered with the last three joints locked. A kinematic 
description of the robot is given in Fig.1. The uncertainties 
used in this simulation are as follows: 
 

1 1

2 2

3 3

0.5 sin(3 )

( ) 1.3 1.8sin(2 )

1.8 2sin( )

q q

F q q q

q q

 
   
   

&

& &

&

               (49) 

 
and  
 

1

2

3

0.5sin( )

1.1sin( )

0.15sin( )
d

q

q

q


 
   
  

&

&

&

                   (50) 

 
Simulation were conducted in Matlab/Simulink 

environment by using Runge-Kutta algorithm; the sampling 

time was set as 310 s . Through this simulation, five major 
contributions of this paper are verified: 1) the use of TDE for 
fault detection, isolation and estimation; 2) the use of SOED 
method instead of BD method to estimate the velocity and 
acceleration; 3) the effectiveness of the proposed AFTC 
compared to the proposed PFTC; 4) the use of STW algorithm 
defined in (41) to eliminate the chattering compared to the 
previous developed methods defined in (39) and (40); 5) the 

use of NFTSMC defined in (12) compared to the use of 
NTSMC defined in (10b) and FTSMC defined in (11) for the 
design of finite time FTC. 

A. TDE for fault detection, isolation and estimation 

In this section, the capability of TDE for fault detection, 
isolation and estimation is verified. In order to detect and 
isolate the faults, the thresholds are first selected. Because the 
fault diagnosis process does not depend on the type of 
controller used, we use traditional CTC control as the nominal 
control for this simulation step. The CTC can be designed as 

 

 1 1 2 1 2( ) ( ) ( ) ( , )d P d V dM x x K x x K x x f x x      && &     (51) 

 
where the gains 3 315pK I  , 3 310dK I  , where n nI   
represents an identity matrix of dimension n n , are selected. 
The goal of the control system is to follow the desired 

trajectory 1 2 3[ , , ]Td d d dx x x x  with 1 cos( / 5 ) 1dx t   , 

2 cos( / 5 / 2)dx t     and 3 sin( / 5 / 2) 1dx t      as 

shown in Fig. 3 (dashed blue line). When the robot in normal 
operation, 1 2( , , ) 0x x u  , TDE is the uncertainty estimation, 

( , , )TDEH q q  &@ . Fig. 2 show the uncertainty estimation 

based on TDE. From this figure we can see that the TDE 
technique give a good capability to estimate an unknown 
nonlinear function. For this reason, it is used as the residual to 
detect and isolate the faults. Then, from (30), the thresholds 
are selected as shown in Fig. 2 (dashed red line). A fault is 
detected and isolated whenever the residual exceeds its 
selected thresholds. 

To verify the capability of the proposed TDE-based fault 
diagnosis scheme for fault detection, isolation and estimation, 
two kind of explicit faults are generated: actuator bias faults 
and part loss of effectiveness. First, an arbitrary abrupt fault 

 1 12(10 ), 0, 0
T

s 
 
is generated. It means that we supply a 

bias fault in the first actuator with the magnitude 12Nm  at the 
time 10t s . The angle trajectories when the robot in normal 

operation ( 10t s ) and when the fault 1  ( 10t s ) 

occurred are shown in Fig. 3. Two observations can be drawn 
from this figure: 1) under the effect of the fault 1 , the 

tracking performance is reduced significantly, and 2) the CTC 
controller do not compensate for the uncertainties in normal 
operation and both uncertainties and faults when the fault 
occurs; consequently, the tracking performance of the system 
is very low (as shown in Table I and II). The response of the 
residuals under the effect of the given fault is illustrated in 
Fig. 4. We can see that only the first residual overshoots the 
corresponding selected threshold, which indicates that the 
fault has been occurring in the first actuator. Therefore, it can 
be concluded that the fault is correctly detected and isolated. 
Then, we supply an another complex fault 

2 2
2 1 1 1 30, 20 15 25cos( ) (10 ), 0.75 (20 )

T
q q q s u s     & ; it 

means we supply in the second actuator a bias fault 
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2 2
22 1 1 120 15 25cos( )q q q   &

 at 10s , and 75% partial loss 

fault in the third actuator at 20s . Under the effects of fault  
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Fig. 2 Residuals of a healthy system and the selection thresholds. (a) Residual 
1. (b) Residual 2. (c) Residual 3. 
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Fig. 3. The desired trajectories and joint angles of the robot manipulator when 

the actuator fault 1  occurs. (a) Joint 1. (b) Joint 2. (c) Joint 3. 

 

2 , the tracking performance under CTC is much reduced as 

shown in Fig. 5. The corresponding responses of the three 
residuals are shown in Fig. 6. From Fig. 6, we see that the 
second and third residuals overshoot the corresponding 
thresholds. Thus, we can conclude that the fault has been 
detected and isolated successfully. 

B. Comparison between BD and SOED for velocity and 
acceleration estimation 

In this section, we compare the performance of the SOED 
with BD technique in terms of velocity and acceleration 

estimation. The parameter of BD is selected as 310L  (this 
value is selected as the sampling time) and the parameters of 
SOED are all set to 5  . The velocity estimation using BD 
and SOED techniques are shown in Fig. 7. From this figure, it 

can be seen that the SOED technique give a better 
performance compared to the BD technique. 
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Fig. 4. The response of the residuals of a faulty system under the effect of 

fault 1 . (a) Residual 1. (b) Residual 2. (c) Residual 3. 
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Fig. 5. The desired trajectories and joint angles of the robot manipulator when 

an actuator fault 2  occurs. (a) Joint 1. (b) Joint 2. (c) Joint 3. 
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Fig. 6. The response of the residuals of a faulty system under the effect of 

fault 2 . (a) Residual 1. (b) Residual 2. (c) Residual 3. 

 

C. Comparison between PFTC and AFTC controllers along 
with chattering elimination techniques 

In this section, the performance of the proposed PFTC and 
AFTC controllers along with chattering elimination 
techniques such as super-twisting HOSM algorithm (as 
defined in (41)), continuous control law (as defined in (39)), 
and sigmoid approach (as defined in (40)) are compared. That 
means, we compare the performance of six developed 
controllers: 1) the proposed PFTC combined with super-
twisting HOSM (PFTC- STW), 2) the proposed AFTC 
combined with super-twisting HOSM (AFTC-STW), 3) the 
proposed PFTC combined with continuous law (PFTC-
Continuous), 4) the proposed AFTC combined with 
continuous law (AFTC-Continuous), 5) the proposed PFTC 
combined with sigmoid function approach (PFTC-Sigmoid), 
and 6) the proposed AFTC combined with sigmoid function 
approach (AFTC-Sigmoid). These controllers are also 
compared with the conventional CTC controller.  To easily 
compare the performance of PFTC and  

 

 
 

 
 

 
 
Fig. 7. Real and estimated velocities using BD and SOED techniques. (a) Joint 
1. (b) Joint 2. (c) Joint 3. 

 

 
 

 
 

 
 

Fig. 8. Comparison in tracking error among CTC, PFTC-Continuous, AFTC-
Continuous, PFTC-Sigmoid, AFTC-Sigmoid, PFTC-STW and AFTC-STW 

when the actuator fault 1  occurs. (a) Error 1. (b) Error 2. (c) Error 3. 

 

 
 

 
 

 
 

Fig. 9. Comparison in tracking error among CTC, PFTC-Continuous, AFTC-
Continuous, PFTC-Sigmoid, AFTC-Sigmoid, PFTC-STW and AFTC-STW 

when the actuator fault 2  occurs. (a) Error 1. (b) Error 2. (c) Error 3. 
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Fig. 10. Control efforts of the controllers (CTC, PFTC-Continuous, AFTC-
Continuous, PFTC-Sigmoid, AFTC-Sigmoid, PFTC-STW and AFTC-STW) 

when the system under the effect of actuator fault 2 . (a) Joint 1. (b) Joint 2. 

(c) Joint 3. 

 
AFTC, the parameters of these controllers are chosen as the 
same value. In addition, the parameters of the chattering 
reducing techniques are fairly selected. The parameters of 
these controllers are   selected   as  9l  ,   7p  ,   1.5  ,  

 1 0.8,0.8,0.8diag   and  2 1,1,1diag   for NFTSMC, 

1 2 7k k   for continuous law approach (defined in (39)), 

1 5K   and 2 6K   for supper-twisting HOSM approach, and 

6   , 1000b   for  the  sigmoid  function  approach.  

The tracking errors of those controllers for the robot system 
under the faults 1

 
and 2 are shown in Figs. 8 and 9, 

respectively. For easy in comparison, the root mean square 
error of those controllers for the robot system under the faults 

1
 

and 2
 

are also shown in Table I and Table II, 

respectively. From these figures and tables, two important 
observations can be given to verify the effectiveness of the 
proposed algorithm: 1) with the use of TDE for fault 
diagnosis, the proposed AFTC has a much better performance 
compared to the PFTC in both fault-free and fault operation; 
for example: the performance of the AFTC-Continuous is 
better than the PFTC-Continuous, the AFTC-Sigmoid is better 
than the PFTC-Sigmoid, and the AFTC-STW is better than the 
PFTC-STW, and 2) the used of super-twisting HOSM give a 
better performance compared to the used of continuous law 
and sigmoid approaches; for example: the performance of 
PFTC-STW is better than PFTC-Continuous and PFTC-
Sigmoid,  and the AFTC-STW is better than that of AFTC-
Continuous and AFTC-Sigmoid. The smooth control efforts of 
these controllers for the system under the fault 2  are shown 

in Fig. 10.    

D. Comparison between the proposed NFTSMC and NTSMC 
and FTSMC 

In this section, we compare the performance of the AFTC 
based on the uses of the proposed NFTSMC, the NTSMC (the 
sliding surface is selected as in (10b)) [47] and the FTSMC 
(the sliding surface is selected as in (11)) [49]. The super-

twisting   HOSM    algorithm    is    employed   to   reduce   
the  

TABLE I 
COMPARISON IN ROOT MEAN SQUARE ERROR OF THE CTC, PFTC-

CONTINUOUS, AFTC-CONTINUOUS, PFTC-SIGMOID, AFTC-
SIGMOID, PFTC-STW AND AFTC-STW WHEN THE ACTUATOR 

FAULT 1   OCCURS 

 Link 1 Link 2 Link 3 

CTC 0.1764  0.0203  0.0831  
PFTC-Continuous 0.0728  0.0024  0.0222  
AFTC-Continuous 45.8044 10  45.4804 10  45.7779 10  
PFTC-Sigmoid 0.0016  43.9113 10  46.3513 10  
AFTC-Sigmoid 45.2023 10  45.1494 10  45.2716 10  
PFTC-STW 0.0015  43.3972 10  44.0745 10  
AFTC-STW 44.3931 10  43.4311 10  44.0185 10  

 
TABLE II 

COMPARISON IN ROOT MEAN SQUARE ERROR OF THE CTC, PFTC-
CONTINUOUS, AFTC-CONTINUOUS, PFTC-SIGMOID, AFTC-

SIGMOID, PFTC-STW AND AFTC-STW WHEN THE ACTUATOR 

FAULT 2   OCCURS 

 Link 1 Link 2 Link 3 

CTC 0.0191  0.1204  0.1650  
PFTC-Continuous 0.0021  0.0423  0.0788  
AFTC-Continuous 45.8002 10  45.4817 10  45.7931 10  
PFTC-Sigmoid 46.2305 10  48.1293 10  0.3315  
AFTC-Sigmoid 45.2099 10  45.1482 10  44.7869 10  
PFTC-STW 44.3993 10  48.9438 10  0.0020  
AFTC-STW 44.3930 10  43.4318 10  44.3169 10  
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Fig. 11. Comparison in tracking error among NTSMC, FTSMC, and 
NFTSMC. (a) Error 1. (b) Error 2. (c) Error 3. 
 

chattering. The tracking errors of these controllers for the 
robot system when the fault 1  occurred are shown in Fig. 

11. From Fig. 11, it is obvious to see that all the controllers 
provided a fast finite time convergent. However, the FTSMC 
and NFTSMC have a quite similar convergence but have a 
faster convergence compared to the NTSMC. However, as 
aforementioned analysis in section III, the FTSMC may meet 
a singularity problem during operation. Thus, the NFTSMC 
would be a good choice to design a fast finite time FTC. 

 

VI. CONCLUSION 

A fast finite time AFTC has been developed in this paper 
for robot manipulator. Comparing with the existing approach, 
the proposed approach has several significant improvements: 
1) Unlike the previous fault diagnosis approaches based on 
intelligent learning techniques or sliding mode observer, the 
prosed TDE-based fault diagnosis has a simple and easy in 
implement and no need for prior knowledge of bound value of 
fault; 2) Unlike the existing FTC approaches, the proposed 
AFTC based on NFTSMC guarantees a fast finite time 
convergence and nonsingular; 3) the proposed approach 
consider and compensate both the uncertainty and fault  in 
both normal and fault operations; 4) By combining the TDE-
based fault estimation and NFTSMC, the proposed FTC 
scheme possess several advantages over other state-of-the-art 
approaches such as higher precision, robustness, no 
singularity, less chattering, fast finite time convergence and no 
need for prior knowledge of bounded faults. Simulation 
results for a PUMA560 verify all the mentioned advantages of 
the proposed strategy. 
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