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Abstract  
 
SF3B1 is the largest subunit of the SF3B complex and part of the U2 small nuclear 
ribosomal protein. It functions as an important part of spliceosomal assembly, 
converting pre-mRNA to mRNA ready for ribosomal translation. Mutations of SF3B1 
are commonly seen in myelodysplastic syndromes with ring sideroblasts (MDS-RS 
and MDS/MPN-RS-T). These mutations are typically heterozygous missense 
substitutions, of which, 55% involve K700E. MDS-RS and MDS/MPN-RS-T usually 
carry a more favourable prognosis than other subtypes of MDS. SF3B1 itself does not 
influence survival in these conditions, but does correlate with increase thrombotic 
risk. Mutated SF3B1 is present in 9-15% of CLL cases and on its own correlates with 
improved responsiveness to Ibrutinib, but is associated with additional adverse 
genetic abnormalities including TP53 and ATM mutations, which traditionally confer 
adverse outcomes. 
 
 
Introduction 
 
In humans, genes are expressed as precursor messenger RNA (pre-mRNA), which in 
turn are converted to messenger RNA (mRNA) by splicing. Splicing removes non-
coding introns and can also remove alternate exons from mRNA, leaving coding 
exons, which are ligated together ready for translation in the ribosome.  Pre-mRNA 
splicing is catalyzed by the spliceosome, a series of small nuclear ribonuclear proteins 
(snRNPs), which act in a step-wise fashion to remove introns.[1] 
 
 
Spliceosome Assembly 
 
Each snRNP consists of snRNA and a variable number of specific proteins. SnRNAs 
comprise a group of highly abundant, non-polyadenylated, non-coding transcripts that 
function in the nucleoplasm.[2] In humans, there are 2 spliceosome systems; the 
major U2-dependent and minor U12-dependent systems, which catalyze removal of 
U2-type introns and U12-type introns, respectively. These systems recognize different 
classes of splice sites and differ in snRNA composition.[3] 
 
Spliceosome assembly occurs anew on each pre-mRNA and results from the ordered 
interaction of snRNPs and other splicing factors.[1] The first step of spliceosome 
assembly within the major U2-dependent system is formation of the E complex, in 
which, U1 snRNP is recruited to the 5’splice site (5’ss) and non-snRNP factors such 
as SF3B1, U2AF and U2AF1 interact with the branch point site (BPS), 
polypyridamine tract (PPT) and 3’splice site (3’ss), respectively. Formation of 
complex E enhances U2 snRNP recruitment to the BPS, leading to formation of 
complex A.  The pre-assembled tri-snRNP U4/U6•U5 is then recruited to form 
complex B*. Complex B* then carries out the first catalytic step of splicing, 
generating complex C, which contains the free exon 1 and the intron-exon 2 lariat 
intermediate. Complex C catalyzes the second step of splicing, in which, the 
spliceosome dissociates, is remodeled, and the released U2, U5 and U6 snRNPs can 
then take part in additional rounds of splicing. Ultimately, the 5’ss and 3’ss exons are 
ligated together, forming mRNA, and the branch site is discarded.[1],[4],[5] The two-
step splicing process is illustrated in Figure 1.[4] 



 

 
 
Figure 1: Spliceosomal assembly and pre-mRNA splicing (Adapted from Matera & 
Wang, 2014). [4] 
 
 
Role of SF3B1 within the spliceosome 
 
Spliceosome Factor 3B (SF3B) is a heptameric protein complex that is essential for 
pre-mRNA splicing.  It comprises subunits SF3B1, SF3B130, SF3B145, SF3B49, 
SF3B14b, p14/SF3b14a, and SF3B10.[6] SF3B, in combination with SF3A and a 12S 
RNA unit.[7] SF3B1 is the largest subunit of the SF3B protein complex,[6] and forms 
the site of U2 snRNP-BPS recognition and selection, which is a key step in the early 
stages of spliceosome assembly.[8] The SF3B protein complex contacts the pre-
mRNA at or near the BPS, through interaction of SF3B1 with p14[9] and with C-
terminal RNA recognition motif of U2AF65 bound at the PPT.[9],[10] 

 
 
Structure of SF3B1 protein 
 
In the literature, SF3B1 has also been variously termed MDS, PRP10, Hsh155, 
PRPF10, SAP155 and SF3B155.  SF3B1 comprises a N-Terminal Domain (NTD) and 
a Carboxyl-terminal HEAT repeat domain (HD). The HD (amino acids 431-1304) is 
organized into 22 non-identical tandem HEAT repeats that form helical rod-like 
structures marking out an S-shaped path.[3],[8],  The NTD (amino acids 1-430) has a 
molecular mass of around 47kDa and appears to act as a scaffold with an elongated 
structure to maximize its interaction surface for binding many factors simultaneously, 
including U2AF65, SPF45, PUF60, p14, NIPP1 and cyclin E.[11]  
 
 
 



Location of SF3B1 gene 
 
SF3B1 is encoded by the SF3B1 gene located on chromosome 2 at position 2q33.1 
with the molecular location of base pairs 197,391,974 to 197,435,093.[12] The full 
length of SF3B1 is 27 exons, corresponding to a 146kDa protein of 1304 amino 
acids.[8],[13] 
 
 
The Role of SF3B1 in the Pathophysiology of Ring Sideroblasts 
 
Ring sideroblasts (RS) are defined as erythroblasts in which there are a minimum of 5 
siderotic granules covering at least a third of the nuclear circumference.[14] Ring 
sideroblasts result from abnormal accumulation of heavy-ferritin in the mitochondria 
of erythroblasts and has been shown in patients with both X-linked congenital 
sideroblastic anaemia (ALAS gene) and myelodysplastic syndromes with ring 
sideroblasts, but not in healthy controls. Gene expression analysis has shown 
upregulated ALAS (heme biosynthesis enzyme) and downregulated ABCB7 (involved 
in iron transport from mitochondria to cytoplasm) in myeloid cell lines from patients 
with mutated SF3B1. PPOX, which encodes an enzyme of heme biosynthesis, is 
another target of mutant SF3B1-associated misrecognition of 3′ splice sites that 
introduces a frameshift.[15,16]  
 
Primitive CD34+, CD45- lymphomyeloid haematopoietic stem cells appear to 
represent the origin and propagating cells of the SF3B1-mutated clone in MDS-
RS.[17] SF3B1K700E cells have defects in the splicing and cytoplasmic export of tRNA 
synthetases and RNA metabolism-related factors.  Better understanding of 
pathophysiology of MDS in the context of SF3B1 mutations may provide an 
opportunity for future development of therapies.[18] 
 
 
SF3B1 Mutations in Myelodysplastic Syndromes with Ring Sideroblasts 

 
In 2011, SF3B1 mutations were first described in patients with Myelodysplastic 
Syndromes (MDS).[19,20] MDS are a group of clonal haematopoietic stem cell 
diseases characterized by cytopenias, dysplasia in one or more major myeloid 
lineages, ineffective haematopoiesis, recurrent genetic abnormalities and increased 
risk of developing acute myeloid leukaemia (AML).[21] The high frequency of 
spliceosome mutations in MDS suggests a common impact on the initial steps of pre-
mRNA splicing, including 3’ss recognition and branch point usage during pre-mRNA 
processing, thereby inducing abnormal RNA splicing and resulting in abnormal 
haematopoiesis.[19,22]  
 
Papaemmanuil et al., 2011, identified SF3B1 mutations in 20% (72/354) of patients 
with MDS, with a higher frequency (65%) in those whose disease was characterized 
by the presence of ring sideroblasts.[20] A similar study found SF3B1 mutations in 
82.6% of patients with refractory anaemia with RS (re-classified by the World Health 
Organization in 2016 as MDS with single-lineage dysplasia and ring sideroblasts[23]) 
and in 76% of those with multilineage dysplasia and RS.[19] This association has also 
been shown in other studies.[24,25] 
 



A number of SF3B1 mutations have been described in MDS patients and nearly all 
are heterozygous missense substitutions within regions coding for the Huntingtin, 
elongation factor 3, protein phosphatase 2A, and yeast PI3-kinase TORI (HEAT) 
domains of SF3B1.[5,20] There are a number of mutational hotspots clustered around 
the 5th to 8th C-terminal domain HEAT repeats between exon 12 and exon 15 (Figure 
2).[26] The commonest of these is c.2098A>G leading to a substitution of K➞E at 
position 700, accounting for 58% of SF3B1 mutations in MDS.[24] Other amino acid 
hotspots for substitution mutations occur with lower frequency, including E622D, 
Y623C, R625H (also R625G, C or L), N626D, H662Q or D, K666E (also K666N, R 
or T), and I704V (also I704N).   
 
 

 
Figure 2: Mutations of SF3B1 in MDS and CLL are largely localized to its C-terminal 
domain 5th to 8th HEAT repeats (exons 12 to 15). 
 
 
In MDS, mutated SF3B1 correlates with presence of ring sideroblasts, normal or 
elevated platelet counts, increased bone marrow cellularity, red cell transfusion 
dependency[27] and increased incidence of thrombotic events.[23,28] It negatively 
correlates with presence of multilineage dysplasia and high-risk karyotype.[27] In one 
large study, SF3B1 mutations had a positive predictive value for formation of RS of 
97.7% (95% confidence interval 93.5-99.5%).  The proportion of patients with a 
WHO RS-subtype was significantly higher in those with a mutant allele burden of 
≥25%, than those with <25%.[27] In MDS-RS with mutated SF3B1, the percentage of 
RS does not affect prognosis.[27] Therefore, in the 2016 classification, the WHO has 
reduced the percentage of RS required for a diagnosis of MDS-RS from 15% to 5%, 
where there is an identified SF3B1 mutation.[23]  
 
MDS-RS carries a more favourable prognosis than other forms of MDS, with lower 
risk of transformation to acute myeloid leukaemia, and better overall survival.[24] 
The prognostic significance of SF3B1 mutation in MDS remains controversial.  Some 
studies have suggested improved outcomes in patients with MDS-RS harbouring the 



SF3B1 mutation[24,29]. However, recent large meta-analyses have found that, by 
multivariate analysis, SF3B1 mutations in MDS are not independently prognostically 
significant.[30,31]  
 
Patients with MDS/MPN-RS-T have features of MDS-RS together with a persistent 
thrombocytosis (platelets >450x109/L) and large atypical megakaryocytes similar to 
those seen in myeloproliferative neoplasms.[21,23] The diagnosis requires ≥15% RS 
irrespective of SF3B1 mutation status. In one study, 90.7% of cases harboured the 
SF3B1 mutation and 79% of cases harboured >1 genetic abnormality. JAK2 V617F 
mutation was seen in 57% of cases, with a number of other mutations of activated 
signalling, epigenetic modifiers, and transcription, also found including MPL, TET2, 
ASXL1, and ETV6.[32] SF3B1 mutation reduces thrombosis free survival in patients 
with MDS/MPN-RS-T, but with no effect on overall survival. The effect on 
thrombosis risk in this group requires further study.[33] 
 
 
SF3B1 Mutations in other Myeloid Neoplasms 
 
Chronic myelomonocytic leukaemia (CMML) is a clonal haematopoietic malignancy 
characterized by persistent monocytosis, combining myeloid cell proliferation with 
myeloid cell dysplasia and ineffective haematopoiesis.[34] It is classified by the 
WHO in 2016 as a myelodysplastic/myeloproliferative neoplasm (MDS/MPN) 
overlap syndrome.[23] Six percent of CMML cases express mutated SF3B1, with 
K700E again being the most common mutation, followed by H662Q and K666N.  
Again, there is a strong correlation with presence of bone marrow RS but no impact 
on overall survival (median 17 months).[35,36] 
 
Data is more limited on the prevalence of SF3B1 mutations in patients with 
myeloproliferative neoplasms (MPN).  A recent study found that 10% of patients with 
BCR-ABL1-negative MPN possess SF3B1 mutations, concurrent with their underlying 
driver mutation (JAK2, CALR, MPL, or triple-negative).  Its presence in this group 
was associated with the RS phenotype (40% of SF3B1-mutated patients), did not 
appear to increase rates of dysplastic change and was more commonly found in the 
primary myelofibrosis subtype.[37] 
 
SF3B1 mutations are seen in 2-6% of adult de novo AML cases, but in 15% of those 
with AML inv(3)(q1q26.2).  K700E, K666N, K666Q, T663I, R625C mutations have 
all been reported.[38,39] 
 
 
SF3B1 Mutations in Chronic Lymphocytic Leukaemia (CLL)  
 
The prevalence of SF3B1 mutations in CLL ranges from 9-15%.[40,41] Wang et al, 
demonstrated that 50% of mutations involve the K700E missense amino acid change 
and whilst many of the others are heterozygous mutations localized within the C-
terminal PP2A-repeat regions 5 to 8.[40] This finding was later supported by a much 
larger study of 1160 CLL patients, where 104/1160 (9%) harbored the somatic SF3B1 
mutation in exons 13-16, with 44% of these being K700E and a median mutation 
allele burden of 35%.  Other mutations such as K666E and G742D occur and are 
clustered in selected HEAT repeats of the SF3B1 protein. [41] 



 
In a murine model, SF3B1 K700E mutation induced a phenotype of cellular 
senescence and defective cell proliferation, but on its own was insufficient to induce 
CLL. However, when combined with ATM mutation, lead to intron retention, genomic 
instability and ultimately CLL developed in 9% of subjects. This suggests that SF3B1 
induces a senescent B-cell in waiting, which when exposed to further genomic 
aberrations, overcomes cancer checkpoints to induce a CLL clone.[42] 
 
Karyotype not only influences prognosis in CLL but now helps guide therapeutic 
options, in particular del(17p) or TP53 mutations, which confer adverse 
prognosis.[43] Eighteen percent of CLL cases with an SF3B1 mutation also carry a 
TP53 mutation. SF3B1 mutations as the sole abnormality in CLL are strongly 
associated with male gender, advanced clinical stage at diagnosis, and faster rate of 
disease progression leading to time to first treatment.  The type of SF3B1 mutation 
does not appear to influence this.[44] SF3B1 mutations are most frequently associated 
with a normal karyotype in CLL.[41] SF3B1 mutation is associated with down-
regulation of B-cell receptor (BCR).  This appears to increase sensitivity of SF3B1- 
mutated CLL to Ibrutinib, a Bruton’s tyrosine kinase inhibitor.[42] 
 
However, 20% of patients will have a co-existent del 11q22.3 (the locus for the ATM 
gene),[41] which reduces time to first treatment compared to wild-type patients.[44] 
The presence of del 11q22.3 as the sole abnormality confers shorter treatment-free 
survival in those receiving conventional chemotherapy,[45] but novel therapies, such 
as ibrutinib, have significantly improved progression-free survival in this group 
also.[46] 
 
 
Conclusion 
 
SF3B1, as the largest component part of the SF3B protein complex, plays an 
important role in spliceosome assembly, in particular, BPS recognition.   SF3B1 
mutations in MDS are strongly correlated with the presence of ring sideroblasts, but it 
appears that it is the RS phenotype, rather than the presence of the SF3B1 mutation 
itself, that is responsible for its favourable outlook. It is much less prevalent within 
myeloid neoplasms, which lack RS, such as CMML, MPN and AML.  Within CLL, 
however, mutant SF3B1 is commonly found and is associated with advanced disease 
at presentation as well as shorter time to first treatment.  It is often present concurrent 
with other unfavourable genetic abnormalities, such as TP53 mutation or del 11q22.3.  
Other malignancies such as uveal melanoma and breast cancer also commonly exhibit 
mutated SF3B1[47–50]. 
 
 
Take Home Messages 
 

 Splicing removes non-coding introns from pre-mRNA, leaving 
coding exons ready for mRNA translation in the ribosome.   

 SF3B1 plays an important role in spliceosome assembly, particularly 
branch point site recognition and selection.   

 Missense substitutions involving SF3B1 are associated with MDS-
RS, which carries a favourable prognosis.   



 The most common mutation of SF3B1 is a missense substitution of 
K➞E at position 700.   

 In CLL, SF3B1 mutation is associated with male gender and faster 
time to first treatment.   

 It is commonly co-mutated with important prognostically 
unfavourable genes such as TP53 or ATM.  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