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Abstract

Industry 4.0 encapsulates methods, technologies, and procedures that transform data into informed decisions and added value in
an industrial context. In this regard, technologies such as Virtual Metrology or Soft Sensing have gained much interest in the
last two decades due to their ability to provide valuable knowledge for production purposes at limited added expense. However,
these technologies have struggled to achieve wide-scale industrial adoption, largely due to the challenges associated with handling
complex data structures and the feature extraction phase of model building. This phase is generally hand-engineered and based
on specific domain knowledge, making it time consuming, difficult to automate, and prone to loss of information, thus ultimately
limiting portability. Moreover, in the presence of complex data structures, such as 2-dimensional input data, there are no established
procedures for feature extraction. In this paper, we present a Deep Learning approach for Virtual Metrology, called DeepVM,
that exploits semi-supervised feature extraction based on Convolutional Autoencoders. The proposed approach is demonstrated
using a real world semiconductor manufacturing dataset where the Virtual Metrology input data is 2-dimensional Optical Emission
Spectrometry data. The feature extraction method is tested with different types of state-of-the-art autoencoder.

Keywords: Advanced Process Control, Convolutional Autoencoder, Deep Learning, Etching, Feature Extraction, Industry 4.0,
Optical Emission Spectroscopy, Semiconductor Manufacturing, Soft Sensor, Virtual Metrology

1. Introduction

In recent years, industries have transitioned to collecting
and archiving huge amounts of data from their production pro-
cesses, leading to the so-called Big Data era. The challenges
that Big Data pose in industrial environments are various [1]
and the scientific community is in a continuous effort to propose
innovative solutions to address them. One of the main problems
in Industry 4.0 [2] is how to exploit the available data in or-
der to obtain information that has business value. Increasingly,
Machine Learning (ML) technologies that generate data-driven
statistical inference models are being considered as a means of
addressing this problem.

In Semiconductor Manufacturing, data-driven models play
an important role in Advanced Process Control (APC) [3] where
the complexity of the processes involved does not allow the cre-
ation of accurate physical models. Technologies such as Virtual
Metrology (VM) [4, 5, 6], Predictive Maintenance [7], Fault
Detection and Classification [8], and Yield Prediction [9] have
grown in popularity, with consistent improvement in perfor-
mance over time. In particular, VM, first proposed by Chen
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et al. [10] in 2005, is extensively applied in the semiconduc-
tor and other data-intensive manufacturing industries; its goal
is to exploit the information already present in the system (eg.
physical sensors measurements, tool settings) in order to infer
the value of a costly or unmeasurable variable that is important
for the operation of the production process or for characterizing
the production quality. Usually this goal is achieved by means
of supervised learning [11] methods where a Machine Learning
model is created by leveraging labeled data where both the input
and the output (the metrology prediction) have been physically
measured from past process runs. In the semiconductor manu-
facturing (SM) literature, various VM solutions have been pro-
posed for different output values such as thickness uniformity
for Chemical Vapor Deposition [12], plasma electron density
[13] and etch depth [14] for Plasma Etching, and removal rate
for Chemical-Mechanical Planarization [15]. Beyond SM, VM
technologies are now applied in many industries under different
names, such as Soft Sensing [16] and Virtual Sensing [17].

In VM problems, the input data often exhibit complex struc-
tures. In particular, it is common to encounter data in the form
of time series or with a multidimensional evolution, or both
[16]. Traditional ML techniques that are usually employed in
this context are not suitable for direct application to this sort of
input data; rather, a preliminary operation called feature extrac-
tion is required where a set of informative values are extracted
from the raw data and collected in a design matrix that can then
be easily handled by traditional ML algorithms. The feature

Preprint submitted to Journal of Process Control August 29, 2019



Hand-designed 
features

Mapping from 
features

Input Output
Classic 

Machine 
Learning Automatic 

Feature 
Extraction

Mapping from 
features

Input Output

Simple Features
Additional layers 
of more abstract 

features
Input OutputDeep 

Learning
Mapping from 

features

Figure 1: Flowchart comparing the approaches of classical Machine Learning
and Deep Learning in treating the feature extraction phase.

extraction phase can be performed in two ways (as depicted in
Fig. 1):

• Hand-designed: the raw data is manually inspected to
identify informative characteristics that can be represented
as single parameter features in a design matrix. Input
from equipment/ process experts is usually required so
that the process is guided by physical knowledge of the
system under examination. Semi-automatic feature ex-
traction methods [18, 19] are also included in this cat-
egory. Here subject matter expertise (SME) is incorpo-
rated in an automatic feature selection procedure in order
to improve the quality of the extracted quantities.

• Automatic: automatic procedures are employed to ex-
tract potentially important features from the data. Such
procedures are generally based on computing statistical
properties on the input variables, sub-sampling, or aver-
aging of different portions of the input data [20, 21, 22].

Both these approaches present significant drawbacks: hand-
designed feature extraction is extremely time consuming since
it requires a thorough graphical inspection of the data in order to
understand which characteristics show variation that correlates
with the prediction target. Moreover, it is poorly scalable in
a complex environment like modern data-intensive and multi-
stage manufacturing production and typically process specific
since SME is included in the procedure. On the other hand,
automatic feature extraction methods are typically not able to
capture all the valuable information contained in the data lead-
ing to poor prediction capabilities. Recently, more sophisti-
cated feature extraction methods have been proposed in order
to overcome the aforementioned problem. In [23], a functional
learning solution is presented that tackles feature extraction in
a supervised fashion for time-series data embedding it in the
modeling phase. In [24], an approach based on regularization
[11] and Fused LASSO [25] is employed to deal with Optical
Emission Spectroscopy (OES) data [14]; OES data are paradig-
matic of the need for a sophisticated feature extraction mecha-
nism due to their 2-dimensional evolution with respect to time
and wavelength (as will be detailed in Section 4).

The 2-dimensional structure of OES data has characteristics
similar to an image, suggesting the use of Computer Vision in-
spired methodologies. In particular, the convolution operation
is highly effective at extracting local features from images. As
a consequence, Convolutional Neural Networks are extensively

employed for problems like object localization and recogni-
tion [26], face recognition [27], and text recognition [28]. For
this reason, in this paper a VM approach, called DeepVM, that
leverages an automatic feature procedure based on deep convo-
lutional autoencoders is proposed. An autoencoder is a spe-
cific type of Artificial Neural Network (ANN) topology that
is trained to reconstruct its input. Usually, the hidden layers
of the network perform dimensionality reduction on the input,
learning relevant features that allow satisfactory reconstruction.
Moreover, deep autoencoders exploit multiple non-linear repre-
sentational layers that learn complex hierarchical features from
the data features that can be highly informative with regard to
the underlying problem structure.

The main contributions of the present work are as follows:

• an exploration of the use of Convolutional Autoencoders
in the field of Semiconductor Manufacturing;

• a comparison of various Autoencoder typologies presented
in the literature but not previously employed in VM;

• a novel DeepVM multilayer feature extraction methodol-
goy: in contrast to other approaches that employ Autoen-
coders for VM or soft sensing, and that only exploit the
last layer of features extracted by the network, DeepVM
leverages all the layers of the network, potentially prov-
ing a broader set of informative features;

Furthermore, to foster reproducibility of the results obtained in
this work, the code and algorithm used to generate the results
has been shared in a public repository1.

The remainder of the paper is organized as follows: Section
2 provides an overview of Deep Learning for feature extraction.
DeepVM is introduced in Section 3.Autoencoder structures are
also reviewed in this section. In Section 4 the semiconductor
manufacturing case study and the experimental results are de-
scribed. Final remarks and directions for future work are pre-
sented in Section 5.

2. Deep Learning for feature extraction

Deep Learning models have been applied to a wide variety
of problems thanks to their inherent ability to treat complex in-
put data without the need for time consuming and poorly scal-
able feature extraction procedures. Often, these methods are
employed in a supervised fashion to solve the problem at hand.
The high representational capabilities of DL make it a powerful
automatic feature extraction method that can be used in combi-
nation with traditional ML techniques.

Feature embedding has a pivotal role in learning problems
that deal with extremely complex data. In recent years, the dif-
fusion of DL technologies has paved the way for sophisticated
automatic feature extraction methods that are able to effectively
compress the data in a lower dimensional representation with-
out loss of information. The advancements in Computer Vision

1The code repository for the work described in this paper is available at the
following link: https://gitlab.dei.unipd.it/dl_dei/DeepVM.
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are the foundation of the incredible success of these technolo-
gies where DL based feature extraction mechanisms are widely
employed: Romero et al. [29] employs a stacked convolu-
tional autoencoder for unsupervised feature learning on remote
sensing images. The unsupervised pre-training of the autoen-
coder, combined with a supervised fine-tuning, makes it pos-
sible to cope with the high-dimensionality of the data and the
limited dataset size. The proposed method outperforms tradi-
tional methods such as Principal Component Analysis (PCA)
and its kernel counterpart version, kPCA. Moreover, the deep
architecture performs significantly better than shallow alterna-
tives.

In [30] a Convolutional Neural network is used to extract
informative features from hyperspectral images. The employed
method is trained in a supervised way, layer-by-layer, for a clas-
sification problem. In particular, the task is to identify different
regions (e.g. water, tree, asphalt) in satellite images.

Sun et al. [31] employs DL for face representation. The
method relies on the use of CNNs to reduce the dimensionality
of the significant regions of the input face, yielding a series of
”DeepID” that collectively provides the input for a face verifi-
cation model.

In the semiconductor industry, the diffusion of DL based
automatic feature extraction methods is still in its infancy, how-
ever, some recent papers have employed them to solve complex
problems in manufacturing, especially in the context of smart
monitoring. Lin et al. [32] developed a single layer autoen-
coder for screening test escapes. In particular, the autoencoder
is trained in an unsupervised fashion on non faulty chips only by
using the Euclidean distance as a cost function. Then, the faulty
chips are identified because of the higher reconstruction error.
Lee et al. [33] designed a denoising autoencoder for wafer fault
monitoring, showing the ability of the model to extract noise
tolerant features from the data that led to high predictive capa-
bilities. Two examples are also present in the literature for soft
sensing tasks: In [34] the authors leverage a structure based
again on Denoising Autoencoders to estimate oxygen levels in
a coal-fired thermal power plant, while in [35] Deep Autoen-
coders are applied to a VM system for etching, in which time-
series data are available as input. We remark, however, that
no previous work in VM has adopted deep autoencoder-based
solutions for OES or 2-dimensional input data.

In [16] we proposed a Deep Learning architecture for etch-
rate prediction based on CNNs. DeepVM differs substantially
from our previous work. In fact in [16] a CNN was trained
from scratch to predict the etch rate; DeepVM instead exploits
autoencoders trained on a reconstruction task in order to pro-
vide an automatic feature extraction method whose features are
then fed to various regression algorithms. Since DeepVM is an
automatic feature extractor, it also provides improved flexibility
in the sense that its features can also be used for tasks other that
etch rate prediction.

3. DeepVM

DeepVM consists of two main blocks (see Fig. 2), namely,
a feature extraction module and a modeling (regression) one.

RawData Modeling
Deep
Feature
extraction

DeepVM

X̄ VM
Prediction

Figure 2: The DeepVM architecture.

While such blocks are typically present in VM solutions, the pe-
culiarity of DeepVM is the feature extraction block that is based
on a deep autoencoder and does not require hand-engineered
procedures.

The proposed feature extraction method exploits the repre-
sentational power of a CNN composed of three convolutional
layers alternating with average pooling layers. The use of aver-
age pooling guarantees that smooth features are extracted, that
are usually suitable for regression problems. Fig. 3 depicts in
detail the proposed feature extraction procedure: The CNN is
trained as described in Section 3; then, the features extracted
by each average pooling layer are flattened and concatenated to
form a final feature vector whose size is one-third of the original
one.

The features from the autoencoder are fed to a modeling
regression block that is trained in a supervised way to perform
the VM target prediction.

We remark that the procedure is generic, that is, the deep
autoencoder and the regression approach can be arbitrarily cho-
sen. In this work we compare the performance of ’standard’
[36], denoising [37] and variational [38] autoencoders for the
feature extraction and of LASSO [11], Ridge Regression [11]
and Support Vector Regression (SVR) [39] for the modeling.

For the sake of self-containedness, we devote the rest of this
Section to providing a basic overview of Neural Networks and
Autoencoders, referring interested readers to the literature for
more detailed descriptions. Support Vector Regression is also
briefly described, as it is the best performing of the regression
algorithms investigated (as will be shown in Section 4).

3.1. Artificial Neural Networks

Artificial Neural Networks are the foundation of DL tech-
nologies. An ANN is the interconnection of simple units called
neurons in a multilayer structure that emulates, in a rudimen-
tary way, the human brain. We can distinguish three differ-
ent types of network layer, namely, input, hidden, and output
layers. The input layer provides the input values to the net-
work. The output layer provides the output of the network and
its structure is chosen to match the characteristics of the out-
put; in particular, a regression function is employed when the
output is continuous i.e. y ∈ R, while a classification function
(e.g. softmax) is used [11] when the output is categorical which
means y ∈ {0, 1, · · · ,K} where K is the number of classes. Hid-
den layers apply a transformation to the previous layer’s output,
with the transformation depending on the structure of the hid-
den layer itself.

Various ANN structures have been developed over the years.
The simplest one is the so-called Feedforward Neural Network
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(FNN) (Fig. 5) where the neurons are connected in a directed
graph without any feedback loop. In this case, the hidden neu-
rons apply a non-linear activation function σ to an affine trans-
formation of the previous layer output. We can thus associate
a matrix W l and a bias vector bl to each hidden layer l whose
output can be computed as follows:

yl = σ(W lyl−1 + bl) (1)

Here σ(·) denotes element-wise application of the activation
function σ. Given the number of neurons in lth layer ql, and
the number of neurons in layer l−1 ql−1, the matrix W l has size
ql × ql−1 and the bias vector b has length ql. The output of the
(l − 1)th layer is a column vector of dimension ql−1.

Common choices for activation functions σ are the sigmoid,
tanh and rectifier linear unit (ReLu) [40]. The ReLu function is
often a good choice because of its similarity to a linear function
and thanks to its constant gradient that does not vanish during
training [36]. The ReLu function is defined as:

σ(x) = max(0, x) (2)

X2

X1

Xm

… …

Y2

Y1

Yk

…

Input Hidden 1 Output

…

Hidden L

…

W0 WLW1…WL-1

Figure 5: Generic structure of a FNN. It is possible to distinguish the input
layer (blue) output layer (green) and L hidden layers (red).

i

yl�1
ql�1

yl�1
1

...

...

yl
i = �(W l

i,: · yl�1 + bl
i)

Figure 6: Output of the ith neuron of the kth layer of a FNN. The notation W l
i,:

indicates the ith row of the matrix W l

In recent years, more complex networks called Convolutional
Neural Networks (CNNs) have gained popularity thanks to their
performance in Computer Vision applications. CNNs exploit a
multilayer structure similar to FNNs but with different types of
hidden layers, that appear in an alternating fashion. In particu-
lar we can distinguish three kinds of hidden layer: (i) convolu-
tional, (ii) pooling, (iii) fully connected.

(i) Convolutional layers are similar to the one employed in
FNNs but in this case, each neuron applies the activation func-
tion to the convolution of the previous layer output with a kernel
W l plus a bias term bl. The output of the lth convolutional layer
can then be computed as follows:

yl = σ(W l ∗ yl−1 + bl) (3)

Usually, multiple kernels are employed; therefore (3) is com-
puted multiple times. Since the convolution operation can be
applied in any dimension, it is common, in the presence of 2D
data (images) to preserve the original input structure. The dif-
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ferent outputs obtained using different kernels are then stacked
and treated as channels (for further details see [36]). (ii) Pool-
ing layers perform a subsampling of the previous layer output,
usually by averaging (average pooling) or taking the maximum
value (max-pooling) over a contiguous region of values. In Fig.
7 a graphical explanation of max-pooling is provided.

MAX

Figure 7: Representation of the max pooling operation over a two-dimensional
input using 2 × 2 regions.

(iii) Fully Connected (FC) layers are the same as those em-
ployed in FNNs. Usually FC layers are placed at the end of the
network. Since the structure of a FC layer is one-dimensional,
multi-dimensional data are usually first flattened into a 1D vec-
tor.

ANNs provide an approximation function y = f ∗(x; θ), that
is parametrized by a set of coefficients θ (matrices and biases
in FNNs, kernel/matrices and biases for CNNs) to an arbitrary
complex continuous function f [36]. The creation of the predic-
tive model thus requires the estimation of the parameters θ that
best approximate the desired output. The estimation process
consists of the minimization of a cost function defined accord-
ing to the output layer properties. Common choices are Mean
Squared Error for regression and cross-entropy for classifica-
tion. Usually, a gradient-descent based algorithm is adopted,
with the gradient computed using backpropagation [41].

3.2. Autoencoders

Autoencoders are composed of two main blocks: an en-
coder part that compresses the input into a low dimensional
representation containing the informative content of the data;
a decoder part that is trained to reconstruct the input from the
features extracted by the encoder. Once the unsupervised pre-
training is completed, the encoder part is thus a powerful auto-
matic feature extractor that, augmented with a suitable output
layer, can then be fine-tuned [36] in a supervised way to obtain
the desired estimation performance.

Fine-tuning allows the parameters of the encoder to be ad-
justed to extract features that are the most effective in address-
ing the specific target estimation problem. This operation is
performed by adding a further layer to the encoder block. Based
on the problem at hand (See Fig. 8(b)), the encoder can be fol-
lowed by either a classification or a regression output layer. In
this latter case, a linear output layer is added to the encoder and
the resulting network is trained in a supervised fashion. Note

that previously computed encoder weights provide the starting
point for the stochastic gradient descent algorithm. As a conse-
quence, fine tuning is expected to refine the features extracted
in an unsupervised fashion.

Encoder Decoder
X X̄ y = X̂

(a)

Encoder
X X̄

𝑤"𝑋$ + 𝑏

(b)

Figure 8: (a) Structure of an autoencoder. X is the input, X̄ is the compressed
version of X and X̂ is the reconstructed version of X. (b) Encoder employed in
the VM estimation. During fine tuning the pre-trained parameters of the encoder
network are adjusted in a supervised way to achieve better performance.

Autoencoders can be created using various Neural Network
structures. In this paper we propose a Convolutional Autoen-
coder where the underlying ANN exhibits a convolutional struc-
ture as described in Section 3.1. Various kinds of autoencoder
have been proposed in the literature, as briefly described in the
following subsubsections.

3.2.1. Standard Autoencoders
Standard autoencoders are simply trained to reconstruct the

provided input by employing the encoder-decoder structure de-
scribed above. In the following we will refer to standard au-
toencoders as ’autoencoders’.

3.2.2. Denoising Autoencoders
A Denoising Autoencoder (DAE) has the same structure as

a standard autoencoder but it uses an augmented version of the
original input where Gaussian noise has been added. The model
is then trained to reconstruct the original input removing the
noise. In this way, a set of features that effectively characterize
the structure of the data and are not affected by the presence of
noise is typically obtained. For more details on DAEs we refer
interested readers to [37].

3.2.3. Variational Autoencoders
Variational Autoencoders (VAEs) have been proposed in

[38] as a generative model that learns a model of the data dis-
tribution to generate new samples from it. Their auto-encoding
structure makes them appealing from a feature extraction per-
spective, since they provide an embedded representation of the
input. The idea behind VAEs is to implement a probabilistic
model described by the Bayesian network of Fig. 9 where X
represents the data and Z is a latent vector that is not avail-
able in the dataset. The joint probability density induced by
the network of Fig. 9 is p(x, z) = p(x|z)p(z) where p(z) is a
prior distribution, typically multivariate Gaussian. Training the
model by maximum likelihood would require marginalizing out

5
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Figure 9: Bayesian network describing a VAE.

the latent variables z but this is not feasible due to the size of z,
hence, a variational approximation is made, introducing an ap-
proximate posterior q(z|x). In particular, in a VAE, both p(x|z)
and q(z|x) are modeled with neural networks parametrized by θ
and φ, respectively. The model is then trained by maximizing
the variational lower bound [38]:

L(θ,φ) = Eqφ(z|x)
[
log pθ(x|z)

]
− DKL

(
qφ(z|x)) || p(z)

)
(4)

For more details on VAEs we refer interested readers to
[42].

3.3. Regularization

Linear regression is a well known prediction algorithm that
assumes a linear input-output relationship y = θT x parametrized
by the vector θ that is learned during training in order to min-
imize the prediction error, usually measured in terms of the
MSE, on a training set. This simple method is however prone to
overfitting when the number of features is high with respect to
the number of training samples or in the presence of collinear-
ity between features. For this reason, regularization approaches
are employed where a penalty on the parameters vector norm
is introduced in the cost function reducing the model complex-
ity and biasing it towards simpler functions. The most com-
mon regularization approaches are Ridge regression, which in-
troduces the L2 norm of the parameters ||θ||22 as the penalty term,
and LASSO, which employs the L1 norm of the parameters ||θ||1
as the penalty term. LASSO also has the attractive property of
inducing sparsity in the solution. Over the years, these meth-
ods have been extended and adapted to different use cases. Of
particular interest is the Fused LASSO [25] which provides an
effective approach to dealing with data that exhibit a tempo-
ral evolution. Specifically, a penalty on the difference of con-
secutive coefficients

∑T
t=1 ||θt−1 − θt ||

2
2 is added to the normal

LASSO cost function. This generates a sparse model thanks
to the LASSO regularization while encouraging the coefficients
for consecutive time instants to be ”similar”. This is a desirable
property since it promotes selection of entire portions of the
time series that are relevant for the prediction task while dis-
carding the others, making the final model more interpretable.
The same does not apply for the standard LASSO which instead
treats different time instants independently without taking into
account their temporal evolution.

3.4. Support Vector Regression
Support Vector Regression aims at finding a hyperplane y =

< w, x > +b such that the prediction error on the output vari-
able y is less then a predefined constant ε. To obtain a smooth
function, the norm of the parameters w is required to be small.
This problem can be expressed as a convex optimization task:

min
1
2
||w||2

subject to

yi− < w, xi > −b ≤ ε
< w, xi > +b − yi ≤ ε

(5)

To make the solution feasible, a set of slack variables ξi, ξ
∗
i are

included in the problem resulting in:

min
1
2
||w||2

subject to

yi− < w, xi > −b ≤ ε + ξi

< w, xi > +b − yi ≤ ε + ξ∗i

(6)

This problem is then solved by using Lagrangian multipliers to
give an effective linear regression method, that can also be ex-
tended to non-linear problems by using non-linear kernels [39].

4. Experimental results

4.1. Semiconductor Manufacturing Case Study

Figure 10: Comparison between Directional Etching (left) and Isotropic Etch-
ing (right).

Etching is a key step in the realization of integrated circuits,
in which a masked silicon wafer is hit by a high-speed stream
of plasma of an appropriate ionized gas mixture in a vacuum
chamber. The exposed surface is thus etched away because of
the chemical and mechanical stress released in the collision. In
modern manufacturing, the majority of etching processes re-
quire directional etching, where the material is etched perpen-
dicularly to the wafer surface (Fig. 10). This is achieved by
accelerating the ions with a voltage bias [43]. Plasma etch-
ing processes suffer from the influence of various factors that
may alter the final quality of the product, in particular, cham-
ber mismatch, non-uniformity across the wafer and within die,
and surface composition/roughness [44]. For this reason, it is
important for process control and quality assessment to under-
stand the resolution and directionality of etching. In this regard,
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Figure 11: An example of OES data during the Etching process.

the etch rate, i.e., the thickness of the eroded surface per unit
time, provides important information. However, measuring the
etch rate requires a post-processing metrology step that is both
time-consuming and extremely costly. It is thus pivotal for cost
reduction and production performance to estimate the etch rate
from cheap and easy to obtain measurements. To this end, Opti-
cal Emission Spectroscopy (OES) sensing of the plasma can be
used to observe changes in the plasma chemistry during etch-
ing, thus providing the foundation for VM solutions that exploit
historical data to build predictive models for etch rate estima-
tion.

We propose using the DeepVM algorithm described in the
previous sections to build such a VM solution. In particular,
different structures corresponding to different choices of the
autoencoder and the regression module will be analyzed and
their performance compared using a case study provided by an
industrial partner involved in the manufacture of storage me-
dia. The case study dataset consists of OES spectra and asso-
ciated etch rate values for N = 1554 wafers processed through
a single etch chamber. The OES data, which serves as the VM
model input, has a complex 2-dimensional structure, with time
and wavelength evolution, as depicted in Fig. 11 and 12. The
2-dimensional structure of OES suggests the use of Computer
Vision inspired technologies, thus motivating the use of mod-
els based on CNNs, that have outperformed other methods in
many Computer Vision tasks [45]. CNNs are able to extract hi-
erarchical sparse features [36] from complex data like images.
As such, the proposed method is expected to provide a powerful
feature extraction model for OES data.

4.2. Experimental Settings
Since, to the best of our knowledege, there are no publicly

available datasets for comparing Deep Learning based VM ap-
proaches in semiconductor manufacturing, it is difficult to de-
fine the state-of-the-art. Consequently, to asses the quality of
the proposed procedure, DeepVM will be compared with popu-
lar VM approaches that exploit simple feature extraction proce-
dures. Also, a comparison is proposed with a recent approach
for VM with OES data based on Fused LASSO [24].

The simple automatic feature extraction approach exploited
for comparison can be summarized as follows: (i) a set of statis-
tics is defined (mean, variance, skewness, kurtosis, maximum
and minimum value); (ii) these statistics are computed over the
time evolution of each wavelength of the OES data. The re-
sulting ’simple features’ are then used in our experiments as
inputs to the LASSO and Ridge Regression models. The ap-
proach based on Fused LASSO proposed in [24] can be divided
in the following main steps: (i) a dimensionality reduction of
the wavelengths is performed and the ’most informative’ wave-
lengths selected; (ii) Fused LASSO is performed on the retained
wavelengths. We refer interested readers to [24] for details of
the procedure.

The training and development of the proposed algorithm has
been realized using Keras [46] with Tensorflow [47]. An adam
optimizer has been employed using Mean Squared Error (MSE)
as the cost function. Specifically, the training operation has
been performed in two steps: unsupervised pre-training, where
the MSE measures the reconstruction error of the AE followed
by supervised fine-tuning where the MSE measures the predic-
tion error of the model for the targets y. It is worth remarking
that a fine-tuning procedure (as discussed in Section 3.2) is em-
ployed to obtain more representative features, while the final
prediction algorithm is realized using a SVR that takes as input
the concatenation of all the features coming from the pooling
layers of the encoder as depicted in Fig. 3.

The performance of the proposed method has been assessed
using 20 Monte-Carlo cross validation (MCCV) [48] cycles with
a test set composed of 30% of the total number of process runs
available, i.e. Ntest = 0.3·N and Ntrain = 0.7·N = N − Ntest. The
same procedure has been employed to estimate the performance
of the benchmark methods.

To estimate the hyperparameters of the employed regression
algorithms, 5 Monte-Carlo cross validation cycles have been
performed on a validation set composed of 30% of the available
training data, i.e Nval test = 0.3·Ntrain.

The metrics employed to quantify model prediction capa-
bilities are the MSE and R2 score.

4.3. Results

The mean and standard deviation of the performance in-
dexes computed over 20 MC cross validation cycles are re-
ported in Table 1. DeepVM with ’standard’ autoencoder plus
SVR is the best approach both in terms of R2 and MSE. More-
over, it can be seen that irrespective of the type of autoencoder
employed, DeepVM provides at least one solution that outper-
forms the other approaches. These two considerations confirm
the ability of deep learning methods to provide good feature ex-
traction capabilities for VM. The lower performance provided
by VAEs may be explained by the generative nature of such
models that typically require more data to be trained. Moreover,
the KL term in the lower bound tends to limit the capacity of the
encoder; this effect could be reduced by adding a hyperparam-
eter that tunes the capacity of the model. However, such an ap-
proach has not been explored in this paper since validating the
added hyperparameter would be extremely expensive in terms
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Figure 12: An example of OES data during the Etching process for a fixed time sample (left) and a fixed wavelength (right).

Conv Fused DeepVM DeepVM DeepVM DeepVM DeepVM DeepVM DeepVM DeepVM DeepVM
Net LASSO LASSO AE + AE + AE + DAE + DAE + DAE + VAE + VAE + VAE +

SVR LASSO Ridge SVR LASSO Ridge SVR LASSO Ridge

R2 0.36 ± 0.42 ± 0.39 ± 0.52 ± 0.44 ± 0.51 ± 0.48 ± 0.43 ± 0.49 ± 0.42 ± 0.40 ± 0.46 ±
0.07 0.04 0.01 0.08 0.13 0.13 0.15 0.12 0.16 0.11 0.09 0.13

MSE 2.78 ± 2.66 ± 2.59 ± 2.34 ± 2.74 ± 2.39 ± 2.44 ± 2.65 ± 2.37 ± 2.64 ± 2.71 ± 2.44 ±
[10−5] 0.52 0.36 0.56 0.56 0.76 0.76 0.93 0.73 0.95 0.57 0.53 0.58

Table 1: Performance comparison of the considered VM approaches: the best performances are reported in bold. Results are averaged over 20 MCCV cycles and
reported in the format ”mean ± 1 · std”.

DeepVM DeepVM DeepVM DeepVM DeepVM DeepVM DeepVM DeepVM DeepVM
SVR LASSO Ridge AE + AE + AE + DAE + DAE + DAE + VAE + VAE + VAE +

SVR LASSO Ridge SVR LASSO Ridge SVR LASSO Ridge

% ± 10% 99.36 92.07 99.35 98.93 99.14 98.72 98.93 99.36 98.93 98.50 98.71 98.71
% ± 5% 82.65 63.59 83.94 89.29 87.15 90.57 88.86 85.22 88.65 88.44 86.73 91.01

Table 2: Percentage of predictions with an error less then 10% and 5% of the real value.

AE (All Layers)
+ SVR

AE (Last 2 Lay-
ers) + SVR

AE (All Layers)
+ LASSO

AE (Last 2 Lay-
ers) + LASSO

AE (All Layers)
+ Ridge

AE (Last 2 Lay-
ers) + Ridge

R2 0.52 ± 0.08 0.41 ± 0.11 0.44 ± 0.13 0.42 ± 0.09 0.51 ± 0.13 0.44 ± 0.12
MSE [10−5] 2.34 ± 0.56 2.83 ± 0.56 2.74 ± 0.77 2.83 ± 0.57 2.39 ± 0.76 2.71 ± 0.61

Table 3: Performance comparison of DeepVM and AE for various feature selection (all or only the features from the last two layers) and modeling approaches
(SVR, LASSO and Ridge). Results are averaged over 20 MCCV cycles and reported in the format ”mean ± 1 · std”.

DAE (All Lay-
ers) + SVR

DAE (Last 2
Layers) + SVR

DAE (All Lay-
ers) + LASSO

DAE (Last
2 Layers) +

LASSO

DAE (All Lay-
ers) + Ridge

DAE (Last
2 Layers) +

Ridge
R2 0.48 ± 0.15 0.43 ± 0.10 0.43 ± 0.12 0.42 ± 0.09 0.49 ± 0.16 0.45 ± 0.09
MSE [10−5] 2.44 ± 0.93 2.68 ± 0.73 2.65 ± 0.73 2.69 ± 0.69 2.37 ± 0.95 2.52 ± 0.49

Table 4: Performance comparison of DeepVM and DAE for various feature selection (all or only the features from the last two layers) and modeling approaches
(SVR, LASSO and Ridge). Results are averaged over 20 MCCV cycles and reported in the format ”mean ± 1 · std”.

of computational resources. A more detailed performance com-
parison is reported in Fig. 13. This shows the boxplots of the

distribution of the performance indexes for each method over
20 MC cross validation cycles. In Fig. 14 we plot the predicted
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Figure 13: Prediction performance on the OES etching dataset over 20 MC cross validation cycles.
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Figure 14: Scatter plot of the predicted values of the etch rate on the test set.

VAE (All Lay-
ers) + SVR

VAE (Last 2
Layers) + SVR

VAE (All Lay-
ers) + LASSO

VAE (Last
2 Layers) +

LASSO

VAE (All Lay-
ers) + Ridge

VAE (Last
2 Layers) +

Ridge
R2 0.42 ± 0.11 0.39 ± 0.09 0.40 ± 0.08 0.40 ± 0.08 0.46 ± 0.13 0.41 ± 0.08
MSE [10−5] 2.64 ± 0.57 2.77 ± 0.54 2.71 ± 0.53 2.74 ± 0.49 2.44 ± 0.58 2.71 ± 0.54

Table 5: Performance comparison of DeepVM and VAE for various feature selection (all or only the features from the last two layers) and modeling approaches
(SVR, LASSO and Ridge). Results are averaged over 20 MCCV cycles and reported in the format ”mean ± 1 · std”.

etch rates against the true values for the proposed DeepVM and
the methods based on statistical features. It is noticeable how
the points are all around the y = x line, meaning that the pre-
dictions provide useful information about the real value of the
etch-rate. Of course, the methods based on statistical features
have more dispersed scatter plots, reflecting the inferior perfor-
mance of these methods, as observed in the boxplots and tables.

In Tables 3, 4 and 5 we report the performance of DeepVM
when only the features coming from the last two layers of the
feature extraction module are used to perform the prediction.
Such a strategy may be desirable to reduce the prediction time
and model complexity. A performance drop can be observed
with all the modeling techniques, however, DeepVM with AE
and SVR continues to have superior performance to the other
methods. It is thus possible to define a trade-off between pre-
diction accuracy and complexity, based on the automatic fea-
ture selection method. We remark that in real industrial envi-
ronments, it may be important to reduce the time required to
compute the VM prediction, in particular when they are used

for control purposes [49]. In Table 2 we report the percentage
of predictions with an error within 5 and 10 % of the real value.
It is noticeable that for the 10% case all the methods achieve
results close to 99% while for the 5% case DeepVM has sub-
stantially better performance that, for the application at hand,
are considered acceptable for real use. It is important to remark
that the performance of our model is achieved without includ-
ing ’subject matter expertise’ in the process, hence the method
can be easily adapted to different processes/machines. Further-
more, the etch rate predictions obtained can be generated for
every wafer during production, whereas physical measurements
are usually taken only on a per-lot basis. It has been shown that
controller performance can be greatly improved by exploiting
these estimates [50, 51]. The low values obtained for the R2

metric are justified by the complexity of the process at hand.
This is a multi-step production process [52] and what we are
addressing here is an early stage prediction i.e. we are trying
to predict the etch rate for the first step of the process while
the actual metrology measurement is performed at the end of
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the multi-step process. Hence the measured value incorporates
variations introduced by the other steps that cannot be predicted
by the OES data recorded for the first step.

In Table 6 we report the execution time for the statistical
feature extraction method and the DeepVM approach. The eval-
uation time on a single CPU is 6 times greater with the deep
learning based approach. However, the advantage of the DL
methods is that they can be easily parallelized on GPUs. In this
case, the execution time of DeepVM improves by a factor of 10
(3.5 ms versus 37 ms). In practical terms, both execution times
are sufficiently fast to have no impact on performance in an
etch chamber run-to-run control scenario, hence the proposed
method is suitable for deployment in production. Training of
the DeepVM model is a computationally demanding exercise,
but this can be completed off-line. The the full cross validated
training of the DeepVM model takes approximately 23 hours
on a machine with a single Titan Xp GPU and an Intel Core
i7-6800K CPU.

A common problem in industrial environments is keeping
VM models up-to-date in the presence of process drifts that
may compromise their prediction capabilities. Deep Learning
models are able to learn increasingly complex features of the
data thanks to their multilayer structure. This means that, at
least the first layers of the architecture, tend to extract general
features (e.g. edges in images) that may still remain valid in
the presence of changes in the distribution of the input. Thanks
to this property, re-training the model periodically is a feasible
approach to coping with distribution drifts, because it typically
takes much less time to train a deep neural network when its
weights have been initialized on a similar dataset. Furthermore,
as process drift phenomena usually develop slowly, a model up-
dating frequency of once per day is likely to be adequate.

Stat features DeepVM CPU DeepVM GPU
Execution 6.67 ± 36.97 ± 3.52 ±
Time [ms] 0.02 0.33 0.18

Table 6: Exection time of the different feature extraction methods.

As a final remark, we note that Ridge Regression consis-
tently outperforms LASSO for this case study; this is usually
associated with a high level of collinearity among the features,
an issue that can be mitigated by preprocessing with a feature
selection method such as [53].

5. Conclusion

DeepVM is an approach to Virtual Metrology that exploits
an automated feature extraction method based on convolutional
autencoders. Combined with traditional Machine Learning al-
gorithms, DeepVM is able to effectively deal with the data com-
plexity typical of the semiconductor industry, as shown by its
application to the design of a VM module for etch rate estima-
tion from OES data. In contrast to traditional ML algorithms
that require the input to be organized in a design matrix where
each row represents a single data observation, DeepVM can be
applied in scenarios where each observation is a matrix itself
with a 2-dimensional evolution.

DeepVM (standard AE and DAE implementations) outper-
forms classical shallow regression technologies, providing an
accurate prediction of the required target (etch rate). The level
of performance justifies the use of a complex DL model that, by
exploiting the representational power of CNNs, is able to deal
with the inherent 2-dimensional interdependence of OES data
that exhibit both time and wavelength evolution. The proposed
method presents considerable advantages over methods using
hand crafted features, since it does not require any domain spe-
cific knowledge and is able to treat the input complexity in a
natural and scalable way. Furthermore, the proposed solution
is well suited to the Big Data context where historical data is
in continuous growth, since a characteristic of DL algorithms is
that their performance improves with increasing data availabil-
ity [36].

We remark that the proposed DeepVM approach is intended
for input data that exhibit complex 2-dimensional structure (such
as images) and is likely not to offer any advantages over ’shal-
low’ Machine Learning approaches on more conventional tab-
ular process data. When both types of data are available, our
method can easily be extended by concatenating the features
coming from the autoencoder with the tabular data before feed-
ing them to the regression algorithm at the end of the pipeline. It
is worth highlighting that, whether SME can be included in the
feature selection process, the performace of our model and all
the others can be improved. However, SME was not available
in this work and the proposed model has more general applica-
bility since it can be trained also on data from a different pro-
cess provided that they exhibit a similar structure. As a byprod-
uct of the proposed approach, the autoencoders can also be ex-
ploited for compression purposes to optimize storage resources
for tasks other than Virtual Metrology (e.g. quality monitor-
ing, anomaly detection and smart monitoring). We remark that
this capability does not exist with conventional feature extrac-
tion methods. Future work will seek to quantify this additional
benefit. In addition, other feature selection approaches such
as FSCA [53] will be investigated. These have the potential to
improve prediction performance and may be useful for optimiz-
ing the trade-off between prediction performance and execution
time.
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