
Manipulation with Domino Effect for Cache- and Buffer-Enabled Social
IIoT: Preserving Stability in Tripartite Graphs

Sun, Y., Wang, B., Li, S., Sun, Z., Nguyen, H. M., & Duong, Q. (2019). Manipulation with Domino Effect for
Cache- and Buffer-Enabled Social IIoT: Preserving Stability in Tripartite Graphs. IEEE Transactions on Industrial
Informatics. Advance online publication. https://doi.org/10.1109/TII.2019.2935537

Published in:
IEEE Transactions on Industrial Informatics

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2019 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of
use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:28. Apr. 2024

https://doi.org/10.1109/TII.2019.2935537
https://pure.qub.ac.uk/en/publications/65539f90-d47b-44db-bc08-7905c4422bd6


1

Manipulation with Domino Effect for Cache- and
Buffer-Enabled Social IIoT: Preserving Stability in

Tripartite Graphs
Yanjing Sun, Member, IEEE, Bowen Wang, Song Li, Member, IEEE, Zhi Sun, Member, IEEE, Hien M. Nguyen,

Trung Q. Duong, Senior Member, IEEE

Abstract—As a new Internet of Things (IoT) paradigm where
smart devices work socially by exploiting social tie with adjacent
devices, the Social IoT (SIoT) can effectively meet the real-time
data sharing demands in Industrial IoT (IIoT) scenario, with
the inter-device social relations being incentives. Besides, pre-
caching on device level can potentially combat the backhaul
capacity bottlenecks. Considering the limited cache memory, we
may not use the whole capacity for caching, but leave a fraction
for buffering data packets. In this paper, we investigate how
to maximize the quality of experience (QoE) while minimizing
the energy consumption. Firstly, we design a proactive cache
placement scheme for cost minimization. Next, we conceive the
content sharing procedure with the framework of tripartite
graph and propose a ternary stable matching algorithm to let
devices self-organize the content sharing. Finally, we prove that
inconspicuously manipulation with domino effect can further
improve the system performance.

Index Terms—Social IoT, industrial IoT, cache and buffer,
tripartite graph, inconspicuously manipulation.

I. INTRODUCTION

THE Internet of Things (IoT) has shifted the paradigm
of user communication towards heterogeneity and perva-

siveness, where lots of data is generated and exchanged by
surrounding smart objects for particular applications, such as
smart manufacturing, fault diagnostics and health-care systems
[1]. The deployment of IoT in industry, termed as Industrial
IoT (IIoT), is an emerging domain that enables efficient and
sustainable production [1]. With the increasing number of in-
dustrial sensors across physical environments, it is challenging
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to handle the vast amounts of real-time data generated by IIoT
devices. Considering that most IIoT devices are carried by
human, we can leverage their owners’ social ties to improve
the performance of information exchange in IIoT. Besides,
by investigating the application of social networking in IoT,
smart devices can establish social ties and share information
socially with each other when they are in close proximity, no
matter whether their owners have any social interaction or not,
which conforms to the Social IoT paradigm [2]. The Social
IoT is defined as A Social Collaborative Internet of Things”
in [2], where smart devices can establish social ties, thereby
achieving shared goals. However, the integration of Social IoT
with IIoT is still in its infancy.

In IIoT scenarios such as surrounding rock structure moni-
toring of deep underground roadway in intelligent coal mining
and fault diagnostics in industrial field, the cloud data center
will collect different kinds of rough data from a mass of
sensors, then perform data analysis and processing. The IIoT
device requests the processed data packets from data center,
and decides which operation to perform. Since self-organized
decision making is the main goal in IoT, the importance of
inter-device social trust cannot be ignored. The authors in [3]
surveyed the recent advances and challenges in social-aware
networks. This survey argued that devices may not cooperate
for data sharing without any real incentives and enough social
trust. The authors in [4] designed an incentive scheme for dis-
tributed computation in cyber physical systems based on social
reputation. Besides the challenges in virtual social domain,
there are also some bottlenecks in real physical domain. If
the content delivery procedure requires downloading redundant
contents repeatedly during a period, enormous pressure will be
posed to the traffic load at the base stations (BSs). Intuitively,
if the popular contents can be pre-stored into the intermediate
nodes, known as caching, the redundant content transmission
will be avoided to a certain extent [5]. In [6], the authors
studied the caching in Social IoT scenario, where IoT devices
can pre-cache some desired contents and share them socially
with surrounding devices, which inspired us to integrate it in
IIoT scenario.

As the predominant solution for seamless coverage in future
heterogeneous networks, small-cell enabled architectures can
bring contents closer to the CRs. However, establishing and
maintaining the small base stations (SBSs) are costly [7].
For further traffic offloading, distributed caching allows pre-
caching and directly delivering contents via device-to-device
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(D2D) communications, which means that the IoT devices
can act as content helpers (CHs). The D2D caching has
recently gained momentum with a high number of recent
papers, covering both terrestrial D2D caching [6]–[8] and D2D
caching in the sky [9], [10]. In general, the entire content
sharing procedure comprises two stages: cache placement and
content delivery. In the first stage, popular contents will be pre-
cached during off-peak periods, and then these contents will be
delivered to the content requesters (CRs) in the second stage.
However, how to jointly solve both the cache placement and
content delivery by exploring social attributes has not been
studied in the existing studies [6]–[10]. The key challenge
of D2D caching of D2D in Social IIoT is how to efficiently
leverage social attributes to improve the system performance
in both cache placement and content delivery phases. Since
cache memory is usually limited on devices, some contents
may not be pre-cached. When delivering uncached contents,
the buffer can temporally store the contents as a short-term
memory [11]. Considering that CHs usually have a small
coverage, contents cached at these CHs (ahead of time) may
not be requested by CRs within coverage (later on). In this
setting, CHs will not use the whole memory space for file
caching, but leave a fraction of memory for buffering data
packets. The purpose of buffering is to enable adaptive link
selection and to combat channel fading, which eventually
enhances the transmission rate of content delivery. In [12],
the authors provided a detailed performance analysis of buffer-
aided relaying, and demonstrated that buffer-aided relay can
achieve significant performance gains compared to conven-
tional relaying. Considering both cache- and buffer-enabled
networks, the average delay was optimized with the fixed
buffer capacity constraint in [13]. In [11], the authors proposed
a joint spectrum allocation and cache placement scheme to
optimize the average latency considering the storage capacity
constraint. However, both of these two works investigated the
effect of buffer on SBS instead of on device level, and thus
ignored the effect of inter-device social relations on content
delivery. Considering that most mobile users (MUs) are selfish
and rational, it is impractical that selected CHs are willing
to consume power and storage capacity to provide cache
placement and delivery services for free, which is important
to achieve synergy between caching and communications.

The content sharing problem also belongs to the category of
resource allocation. Intuitively, virtual resources such as videos
and figures can be efficiently managed by exploiting social
characteristics. Based on these characteristics, game-theocratic
or graph-theocratic methods can be applied to allocate resource
in centralized/distributed manners. In [14], the authors worked
out the optimal solution using a three-dimensional matching
algorithm based on the Hungary algorithm. However, the
proposed method is centralized so that the BS may suffer
from excessive load. By relaxing the stability condition, the
author in [15] investigated how to find a k-ary stable matching
beyond bipartite graph and proved the NP-completeness of
determining the existence of stable matching, which inspired
us to describe the cache- and buffer-enabled relaying networks
as the tripartite graph.

However, the derived stable matching result may not meet

the requirement of resource owners’ (CHs in this paper)
revenues. Inspired by this, some works investigated how to
unilaterally improve the benefit of agents in one side by
manipulating the preference profile [16]. In [17], the authors
proved that manipulation in stable marriage problem is NP-
hard. A coalition strategy was proposed in [18] by using
the cheating strategy to benefit D2D users in heterogeneous
cellular networks. However, the resulting matching is not
stable with respect to the true preference after cheating so
that the stability is not guaranteed. Besides, the falsified list
is nearly entirely different from the true preference list of the
manipulator, which makes the manipulation easy to be de-
tected. The authors in [16] proposed an interesting standpoint
that a single woman can manipulate the men-proposing Gale-
Shapley (GS) algorithm in [19] to obtain the women-optimal
matching result, which motived us to study the interplay of
manipulators.

As discussed above, most related works on distributed
caching suffer from three major issues: 1) the effect of social
characteristics on distributed caching is ignored, which can
provide incentive for content sharing; 2) they overlook the
importance of real incentives such as social and monetary
rewards to encourage more MUs to act as CHs; and 3) they
focused more on the revenues of CRs instead of those of CHs.
Besides, maximizing the quality of service (QoE) is generally
energy costly, which encourages us to trade off both the QoE
performance and energy consumption. With these issues in
heart, we firstly leverage the social attributes to design the
incentive mechanism, and then we integrate social attributes
into matching phase, which promotes the content sharing
willingness of MUs. Finally, we propose an inconspicuous
manipulation strategy to unilaterally improve the benefit of
CRs with the QoE level guarantee. Our contributions are
fourfold:

• Modeling: We design a comprehensive content sharing
scheme in social IIoT scenario targeting at maximizing
the QoE while minimizing the energy consumption. We
depict the entire content sharing scheme as a tripar-
tite graph, thereby decoupling the optimization problem
into two separate problems: proactive cache placement
problem with the available cache and buffer capacity
constraint, and distributed content delivery problem.

• Algorithm: We propose a joint cache placement and
content delivery algorithm to solve above problems in two
stages. In the first stage, the proactive cache placement
scheme is proposed to balance cache and buffer. In the
second stage, we leverage social reputation to design
the incentive mechanism and propose a ternary stable
matching algorithm to solve the content delivery problem
in a distributed way.

• Manipulation: To further benefit more CHs, we study
how to manipulate the CR-proposing GS algorithm to
obtain the CH-optimal matching result. We first prove
that the existence of domino effect in two-sided stable
matching can guarantee that inconspicuously manipulat-
ing the matching result by single CH while preserving
the stability is feasible.
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• Validations: We provide comprehensive theoretical proofs
to prove that our proposed algorithm has better optimality,
stability, and complexity properties. Last but not least,
under various simulations based on realistic data set,
the proposed scheme always have superior performance
compared with other state-of-art benchmark methods,
which is able to compensate for the system performance
degradation caused by limited storage capacity.

The rest of this paper is organized as follows. The ar-
chitecture for social IIoT scenario is presented and then the
optimization problem is elaborated in Section II. The scheme
of joint cache placement and content delivery is proposed
in Section III. The inconspicuous manipulation is described
in Section IV. Simulation results are provided in Section V,
followed by conclusion in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig.1, we consider a Social IIoT scenario
consisting of a macro base station (MBS), K SBSs, and a
number of IIoT devices. In this paper, we consider the appli-
cation scenario such as surrounding rock structure monitoring
of deep underground roadway in intelligent coal mining, the
MBSs serving as cloud data center will periodically collect
various rough data from sensors, perform data analysis and
processing. Each SBS will pre-cache part of the data packets
from MBS for traffic offloading with limited cache storage
capacity [20]. The IIoT device acting as both a controller
and actuator, requests the processed data packets from MBS
or SBSs, and decides which operation to perform (such as
sending alerts, turning on/off a pump, moving a mechanical
arm to a certain position) based on the empirical dataset. For
example, the IIoT device for monitoring will send alerts if
the deformation of surrounding rock structure may potentially
cause the collapsing based on the received empirical dataset.
The total number of IIoT devices can be divided into N CHs
and M CRs. Let us denote by SBS = {sk}Kk=1 the set of
SBSs, CH = {hi}Ni=1 the set of CHs, CR = {rj}Mj=1 the
set of CRs. Both CHs and CRs need to request processed
data packets for service execution. In such a three-tier caching
scenario, the MBS as cloud data center will first push contents
into SBSs to reduce the traffic load. Since caching at SBSs
sometimes suffers from longer latency and cannot cover all
the cell’s area, the SBSs wish to employ some IoT devices,
termed as CHs, for further traffic offloading. Note that the
IoT devices who have high social trust and storage capacity
will be selected as CR. Since cache memory is limited at
user equipments, some contents may not be pre-cached and
the delivery of uncached contents may lead to more delay.
To overcome this performance bottleneck, CHs may not use
the whole memory space for caching, but leave a fraction of
memory for buffering data packets. Based on the multi-tier
caching scheme in [20], we mainly consider three transmission
modes: 1) D2D mode: if the requested content has been pre-
cached entirely and directly transmission can provide better
QoE performance, the CR will request it from CH; 2) Cellular
mode: in the first case, if the D2D link fails or the CR can
get better QoE by directly downloading from nearby SBS

rather than D2D link, the CR will request it from SBS. In
the second case, if the CR cannot received the entire content
from adjacent CHs, and the delay caused by buffer-aided relay
for delivering the remaining fraction in the second stage is
longer than downloading it from SBS, the CR will request it
from SBS. In the third case, if adjacent SBS and CHs cannot
provide the requested content, the CR will download it from
MBS; 3) D2D+Relay mode: if requested content has not been
pre-cached entirely and buffer-aided relay can provide better
QoE performance than downloading it from SBS, the CH will
firstly deliver the cached fraction of requested content, and
then deliver the remaining fraction by acting as a buffer relay
for this CR.

Let F = {1, ..., f, ..., F} denote the complete file library,
where each file Lf with unequal size also represents one
type of tasks or applications. The popularity distribution
Q = {q1, ..., qf , ..., qF } following the Zipf distribution in a
certain connection period is assumed to be identical for all IoT
devices, which is expressed as qf = f−γ/

∑F
l=1 l

−γ , where γ
represents the Zipf parameter, referring to different popularity.
This popularity represents that CRs request different contents
according to their current application. The available storage
capacity of CH i is denoted by Ci. Due to the limited storage
capacity, each CH can only cache some of the file library. The
proportion of file f cached at CH i is denoted by xif ∈ [0, 1].
In this paper, we consider the scenario in which some idle
users will firstly be recruited as CH and pre-cache some
popular contents in off-peak period to relieve the offloading
of SBSs in the peak period [5], [6]. The CRs on task will
request needed data packets from CHs, SBSs or MBS, to
perform corresponding operations. We also consider the self-
caching for CRs and thus those CRs having cached their
desired contents can act as CHs potentially.

As aforementioned, the storage capacity comprises both the
cache as long term memory and buffer capacity as short-
term memory. Besides, the cache chip that can store files in
a long time and buffer chip that can temporally store files are
interchangeable [21]. Naturally, the buffer capacity of CH i
is denoted by Ci −

∑
f∈F xifLf . From Fig.1, CH i located

in SBS k’s coverage first catches xif proportion of file f
from SBS k. When file f is requested, the remaining 1− xif
proportion will be delivered to CH i from the SBS k and then
relayed to CR j from SBS k via buffering. If xif equals to 1,
the transmission cost of CH i will be significantly reduced via
D2D link instead of relay link. Hence, the proactive caching
scheme is crucial to make sure that the required contents will
be always entirely pre-cached so that the cost will be reduced.

A. Physical Domain

Considering that the dynamically changing interference will
affect both the cache placement and content delivery states
when sharing spectrum with different users. Since bandwidth
allocation problem is not the main focus in this paper, we
mainly study the content sharing scheme with fixed bandwidth
allocation1. Similarly, we adopt the method in [22], which
utilizes the signal-to-interference-and-noise ratio (SINR) in

1The dynamics can be solved in the similar way as our previous work [6].
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initial announcement sending stage and the mitigation factor
to suppress the co-channel interference, so that we need not
focus on the complex dynamic process of the interference
itself. Similar as [11], we assume that all the SBSs, CHs,
and CRs share the same bandwidth W , while the cellular
links and D2D links in each cell are allocated with orthogonal
bandwidth with equal size so that the interference is simplified.
For CH hi served by the SBS Sk, the transmission rate for
CR rj is given by Ri,j = Bk log2(1+

pi,jhi,j∑
m∈Gi\i

εpm,jhm,j+σ2 ),
where ε denotes the mitigation factor, Gi denotes the users
sharing the same sub-channel with hi, Bk = W/Qk is
the normalised bandwidth allocated to each served user by
Sk, Qk denotes the quota that one SBS can serve different
transmission mode, hi,j = Kδi,jξi,jd

−η
i,j presents the channel

gain, where K denotes the tunable parameter, the fast fad-
ing gain δi,j obeys the exponential distribution, the slowing
fading gain ξi,j obeys the log-normal distribution, di,j is
the distance between hi and rj , η represents the path loss
exponent, and σ2

n is the noise variance. The content delivery
rate from Sk to hi, termed as cellular link, is formulated as
Rk,i = Bk log2(1+

pkhk,i∑
m∈Gk\k

εpm,ihm,i+σ2 ), where Gk denotes
the users sharing the same sub-channel with SBS k.

As mentioned before, when the request proportion of file
f in hi is complete, i.e., xif = 1, CH can directly deliver it
to CR . When xif < 1, the hi served by Sk completes the
content delivery procedure in two stages. In the first stage,
the CR rj downloads pre-cached xifLf bits from hi. In
the second stage, hi fetches the remained (1 − xif )Lf bits
from Sk, and then delivers these (1 − xif )Lf bits to the
CR i. In general, highest QoE levels may cause a significant
amount of energy consumption in IoT scenarios [23]. Hence,
it is more meaningful to jointly achieve the satisfactory QoE
performance and energy saving. Inspired by this, we define
the energy consumption as the cost, and minimize the cost
in both cache placement and content delivery process2. The
energy consumption for CH i served by SBS k delivering file

2Generally, the energy consumed by content delivery is several orders of
magnitudes higher than that of the context exchange, where the latter can be
ignored to reduce the computation complexity.

f to CR j can be formulated as

ckij =
αPijxifLf

Rij︸ ︷︷ ︸
Transmission cost in the first stage

+
αPki(1− xif )Lf

Rki︸ ︷︷ ︸
Transmission cost in the second stage

+
βPbD(1− xif )Lf
Ci −

∑
f∈F xifLf︸ ︷︷ ︸

Buffer cost in the second stage

+
αPij(1− xif )Lf

Rij︸ ︷︷ ︸
Transmission cost in the second stage

(1)

where Pb denotes the buffer power dissipation and D denotes
the buffer delay [11]. α and β are the adjustment coefficient
of consumed energy for transmission and buffer. For ease
of exposition, we consider the static power dissipation for
data generating, storing, and removing. The third term in
equation (1) denotes the buffer energy consumed at hi. Since
the

∑
f∈F xifLf fraction of capacity is used for caching, the

Ci −
∑
f∈F xifLf fraction of capacity is allocated to buffer.

To deliver uncached (1− xif )Lf bits, the average portion of
time required for buffer is (1−xif )Lf

Ci−
∑

f∈F xifLf
. When the storage

capacity of the hi is full, i.e., Ci −
∑
f∈F xifLf = 0, the

hi cannot fetch uncached files since it does not have extra
capacity for buffering. Based on Littles law [24], the average
delay for buffering file f (the period that a data packet is
stored in the buffer capacity), is denoted by D(1−xif )Lf

Ci−
∑

f∈F xifLf
,

which means that small buffer leads to long queue, and thus
causes large delay time. Considering the effect of popularity
distribution, the average cost of hi can be given by cavgi =∑
j∈CR

∑
f∈F qfcij .

B. Social Domain

Different from the static social attributes in [2], we consider
both static and dynamic social attributes involving not only
their owners’ inter-human social relations, but also the inter-
device social relations, which can be categorized into three
types: (i) co-work object relationship, which measures the
similarity in task cooperation or application; (ii) social object
relationship, which weights the strength of social interaction,
and (iii) social reputation, which evaluates the contribution in
historical task execution process. For simplicity, we use Γij
to denotes the social attributes except for social reputation.

The reward can provide incentives for CHs to accept the
content sharing request. Herein, the reward function is influ-
enced by social reputation and user evaluation. By analogy
to the QoE evaluation methods in [25], we adopt the Mean
Opinion Score (MOS) method to reflect the satisfaction for
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service quality. We assume that CRs can evaluate service
quality and give marks to the CHs on a scale of one to five,
which indicate Bad, Not so bad, Acceptable, Good, and Perfect
for users QoE, respectively. E = {1, 2, 3, 4, 5} represents
the set of evaluation vale. In this paper, we assume that the
CH i’s social reputation SRi before finishing the service is
reflected by the service quality evaluation. Similar to [4], we
consider two case for the reputation increment based on users’
satisfactory level, which can be given by

4 SRij =

{
MOS(Rij)
sum(E) SRi, if MOS(Rij) > 1

− n1
i

sum(E)SRi others.
(2)

where sum(E) denotes the sum of evaluation vale, n1i is the
number of times that hi provide bad service quality. This
update strategy can encourage CHs to provide better service
quality. The social reputation SR′i after finishing the service
can be represented by min{1, SRi +4SRij}, which means
that the social reputation SRi ∈ [0, 1].

In order to trade off both the QoE level and energy con-
sumption, The reward function is determined by the social
reputation increment, the service quality evaluation from CRs
to be served, and the transmission cost, which is defined
as rwij = ε 4 SRij − ζckij , where ε and ζ denotes the
price coefficient, which can transform reputation increment
energy consumption cost into a unified unit. On the one hand,
the CHs will provide better QoE to obtain more reputation
increment. On the other hand, the CHs will minimize the
energy cost as much as possible. Based on above descriptions
and assumptions, we formulate the joint cache placement and
content delivery problem to maximize the rewards of CHs
while guaranteeing the QoE of CRs, which can be given by

max
ω,x,ν

N∑
i=1

M∑
j=1

K∑
k=1

εωi,j 4 SRij − ζωi,jνi,kckij (3a)

s.t. C1 : rwij ≥ 0; (3b)

C2 :

N∑
i=1

ωi,j 6 1,

M∑
j=1

ωi,j 6 1; (3c)

C3 :

N∑
i=1

νi,k 6 Qk,

K∑
k=1

νi,k 6 1; (3d)

C4 :
∑
f∈F

xifLf ≤ Ci, 0 ≤ xif ≤ 1. (3e)

where ω and ν are binary variables to determine the CH-
CR pairing and user-cell association. C1 can guarantee the
feasibility of incentive mechanism. C2 indicates that each CH
can serve at most one CR and each CR can only download
desired content from at most one CH per time. C3 indicates
that one CH can be associated to at most one SBS and one SBS
can serve at most Qk CHs. C4 make sure that the sum size of
cached files cannot beyond the available storage capacity and
the proportion of each cached file cannot beyond the file size.

Note that problem (3) is determined by two binary variables
ω and ν as well as the continuous variable x, which are
related to the content delivery problem and cache placement
problem, indicating that we should concurrently solve both the
combinatorial optimization and linear optimization problems.

Further more, it can be observed that there exists different
relationships between both two of SBS, CH, and CR, which
beyonds the scope of bipartite graph. Hence, we depict the
complex relationships as the tripartite graph as shown in Fig.
2 and solve it in the next section.

III. JOINT CACHE PLACEMENT AND CONTENT DELIVERY

In this section, considering that the popular contents should
be fetched at CHs before content delivery, we first propose
a proactive cache placement scheme to minimize the average
cost ahead of time. We prove that the average cost minimiza-
tion problem is not influenced by the variations in content
delivery process, i.e., providing service for which CR. Hence,
we can decouple the optimization problem (3) into a cache
placement sub-problem and a content delivery sub-problem.
After solving the first sub-problem, we further propose a
ternary stable matching algorithm to solve the user pairing
sub-problem in content delivery process.

A. Optimal Cache Placement Scheme

The proactive cache placement targets at potentially mini-
mizing the average cost in the later content delivery procedure.
Based on equation (1), we can observed that if the requested
file is cached at this CH ahead of time, the cost will be
reduced with the less buffer cost. Intuitively, the optimal cache
placement scheme is determined by the popularity distribution
in a certain time since those popular ones are more possibly
requested by more CRs. Note that the combination of the first
term and forth term in equation (1) can be represented as
αPijLf

Rij
, which is not determined by the variable x and thus can

be ignored in cache placement scheme. Meanwhile, consider-
ing that the CH has determined to fetch cached contents from
the SBS k, which means that Rik is given. Considering that
the each CH will perform their own cache placement scheme
in a distributed manner, the processes are independent of each
other [11]. Hence, average cost minimization problem has a
decoupled objective function and decoupled constraints. We
decouple this problem into N subproblems, and subproblem i
for cache placement of in hi is formulated as

min
xi

∑
f∈F

qf (
αPki(1− xif )Lf

Rki
+
βPbD(1− xif )Lf
Ci −

∑
f∈F xifLf

) (4a)

s.t. C1 :
∑
f∈F

xifLf ≤ Ci; (4b)

C2 : 0 ≤ xif ≤ 1,∀f ∈ F. (4c)

where xi = [xi1, ..., xiF ]T . Let f(y, z) = y
Ci−Lf+y−z , where

y = Lf (1− xif ) and z =
∑
l∈F\f silLl. Problem (4) can be

proved to be non-convex due to the Hessian matrix 52f(y, z)
is not positive semi-definite.

Our proposed cache placement we can still obtain a closed
form for each CH despite the non-convexity of problem (4).
Theorem 1 reveals the special structure of optimal solution,
which demonstrates the existence of the finite solution space.

Theorem 1: For the optimal cache placement scheme x∗i
of CH i, at most one file f has the probability form with
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the range x∗if ∈ (0, 1), and the other file l satisfies xil = 0 or
1,∀l ∈ F \f . Beyond that, x∗i satisfies x∗i1 ≥ x∗i2 ≥, ...,≥ x∗iF .

The Theorem 1 can simply be proved by lagrangian multi-
plier method. Due to the page limit, we omit the proof here.
Theorem 1 indicates that there must exist a finite solution
space for the optimal solution. Given all possibly optimal
solutions, Theorem 2 denotes the optimal scheme.

Theorem 2: The optimal x∗i can be chosen from one
of the following Fi1 − Fi2 + 1 possibly solution space:
(1f−1, x

∗
if , 0F−f ), f = Fi2, ..., Fi1.

Fi1 =

{
minf∈F,∑f

l=1 Ll=Ci
f, if ∃f&

∑f
l=1 Ll = Ci

minf∈F,∑f
l=1 Ll>Ci

f, Otherwise.
(5a)

Fi2 = max
f∈F,Ci≥

∑f
l=1 Ll+

∑F
l=f+1

qlLl
qf

f (5b)

Where Fi1 represents all the potential solutions of problem
(5) and Fi2 represents the solutions to be reduced. Let C∗i =∑f
l=1 Ll +

∑F
l=f+1

qlLl

qf
, the candidate solutions of x∗if can

be given as follows:

x∗if =



xmaxif if Ci ≥ C∗i
arg minxif∈{xif (1),xmax

if }g(xif ) if Ci < C∗i
arg minxif∈{0,xmax

if }g(xif ) if Ci < C∗i and
xif (1) ≤ 0

xmaxif if Ci < C∗i and xif (1) ≥ xmaxif

(6)

Proof: Please refer to Appendix A.
Theorem 2 indicates that the optimal solution is one of the

Fi1 − Fi2 + 1 potential solutions.

B. Distributed Content Delivery Scheme

Based on the aforementioned discussions, the entire caching
scheme can be depicted as a tripartite graph as shown in Fig.
2. Binary matching in bipartite graphs and its extensions have
been well studied in [19]. Different from the bipartite graph,
a k-partite graph can be defined as a graph G whose nodes
can be partitioned into k disjoint sets Gi, i = 1, 2, ..., k, i.e.,
k genders. Hence, no two vertices within the same set are
adjacent, which indicates that each member in a gender only
has a preference list for all members in other k − 1 genders.
This graph is reduced to a bipartite graph when k = 2, and
a tripartite graph when k = 3. To make this model more
applicable to our content sharing scheme, the k-ary matching
in this paper is defined as a set of n k-tuples, where each
tuple has one member from k disjoint sets and each member
belongs to at least one tuple. Based on above definitions,
we can naturally formulate the entire content sharing scheme
as the ternary matching since every two sets among CHs,
CRs, and SBSs have relationships (vertices) with each other.
The reason is that the relationship content placement between
SBS and CH means that each selected CH will pre-cache the
popular contents or act as buffer relay, the relationship content
delivery between CH and CR implies the D2D pairing, and the
relationship user-cell association between SBS and CR means
that the CR can download the desired contents from SBS if
the D2D link fails, to achieve the better QoE.

Definition 1: Given a set of triples, a triple is called a
blocking family if each member in this triple strictly prefers
each of the members in other triple to the corresponding
partners the current triple. A stable ternary matching means a
matching without blocking family.

In this paper, the preference profile is defined for members
of each individual gender, which can be given by Ui(j) =
rwij , Ui(k) = Rki, Uj(i) = (SRi + Γij)Rij , and Uk(i) =
Ci ·SRi, where Ci denotes the storage capacity. Since we will
prove that the k − 1 round matching is enough for stability,
the (k − 1)2 number of preference values is enough. Without
loss of generality, we write hi �rj hi′ to represent that rj
prefers hi to hi′ , which is defined ashi �rj hi′ ⇔ Uj(i) >
Uj(i

′), where � denotes a binary preference relation. Thus,
rj’s preference list over hi is ranked by the preference value
Uj(i) in a descending order.

We can observe from Fig. 2 that the ternary stable matching
consists of two different type of matching game. We formulate
the user-cell association and CH selection problems as a many-
to-one matching game, and the CH-CR pairing problem as an
one-to-one matching game. To find a stable ternary matching,
we will prove that 2-round binary matching among three
genders is enough. Besides, we will prove that more than 2-
round bindings may not always exist with strengthened family
tie and any less than 2-round bindings with loosened family tie
may cause instability. In a word, 2-round matching is enough
to guarantee the stability.

Our proposed approach to find a stable ternary matching
is based on the Gale-Shapley (GS) algorithm in [19] and
MSU algorithm in [6] for tripartite graphs, by iteratively
and pairwisely binding all disjoint sets in a binary matching
through a spanning tree. The GS algorithm consists of a
number of rounds of proposing, accepting/rejecting to find a
stable ternary matching. In each round, the unaccepted CRs
requests to the most preferred CHs to whom he has not yet
requested, and then each CHs accepted the most preferred
suitor while rejects the rest. The iteration terminates until there
exists any CH who still has vacancy. Similarly, the difference
between GS algorithm and MSU algorithm is that each SBS
can accept more than one proposer (CH) within a fixed quota.
In particular, one application of the GS algorithm on CH and
CR is denoted as GS(i, j), to find the one-to-one stable binary
matching. And one application of the MSU algorithm on CH
and SBS is defined as MSU(i, k) aiming at obtaining a many-
to-one stable matching with quota. Relation i − j presents
the binding of CH and CR. Two rounds of the approach are
implemented, thereby a spanning binding tree T is constructed
in this way. V (T ), E(T ), P represents the node set, edge set
of T , and pairwisely bindings, respectively in Algorithm 1.

Theorem 3: The DTSM algorithm generates a stable ternary
matching.

Proof: Assuming that the final matching Ψ contains at least
one blocking family, there must exist two tuples: (Sk, hi, rj)
and (S′k, hi′ , rj′), ∃m ∈ (Sk, hi, rj) and ∃m′ ∈ (S′k, hi′ , rj′),
satisfying m′ � mΨ(m) and m � m′Ψ(m′). This condi-
tion contradicts the fact that both GS algorithm and MSU
algorithm generate binary stable matchings. Theorem 3 also
demonstrates that k − 1 rounds of binding is tight enough to
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Algorithm 1 Distributed Ternary Stable Matching Algorithm
(DTSM)

1: Establish the preference list PLk for SBSs, PLi for CHs,
and PLj for CRs. Let V (T ) = {i} and E(T ) = P = {}

2: while T is not a spanning tree do
3: V (T ) = V (T )∪ j ∪ k, E(T ) = E(T )∪ (i, j)∪ (i, k);
4: Let CR as requester in the GS algorithm and CH as

proposer in the MSU algorithm, P = P ∪ GS(i, j) ∪
MSU(i, k);

5: end while
6: Obtain the ternary stable matching Ψ derived from P .

make sure the stability. The stability with loop tie may not
exist so that more than k − 1 rounds is not needed, and less
than k−1 round will cause instability because there may exist
a blocking family if any member without any binding. As for
our model, although we eliminate the tie between SBSs and
CRs, the binding between CRs and CHs can guarantee that
the user-cell association is stable.

IV. INCONSPICUOUS MANIPULATION AND ANALYSIS

In this section, we will investigate an interesting and
challenging topic: ”How to inconspicuously manipulate the
matching result in above section to further benefit more CHs?”.
In detail, suppose a CH can manipulate by permuting it’s
true preference list, can we obtain a CH-optimal one-to-one
matching while preserving stability? Besides optimality and
stability, the manipulator may also want to get rid of the
suspicion of misreporting. In practice, it is reasonable to
expect that sometimes the scheme designer glances through the
true preference lists of all members and ignores some minor
changes, say from past resulting data of the algorithm. In this
case, misreporting can be easily detected if the misreported
lists looks significantly different from the estimate. However,
the lack of necessary theoretical proof cannot prove this
standpoint since we cannot know why this strategy works.
Inspired by this work, we prove for the first time that the
CH-optimal matching can be obtained with the existence of
domino effect and then we can derive an equivalent incon-
spicuous manipulation for optimal manipulation leading to the
same result from the true list by promoting only one CR in
this CH’s preference list. We first give some notations. The
preference profile �= {�i,�−i,�j ,�−j} consisting of the
preference lists of all CHs and CRs, where �−i represents the
preference lists of all CHs except CH i. As defined before,
we use j �i j′ to denote that CH i prefers CR j′ to j, and
j �i j′ to denote that CH i prefers CR j′ at least as j. The
matching result obtained in GS algorithm is Ω = GS(�).
Ω admits a blocking pair with regard to � if there exists a
pair (i, j) satisfying that j �i Ω(i) and i �j Ω(j). Ω is
stable if containing none blocking pair with respect to �.
G� represents the set of all stable matchings with respect
to �. For any Ω ∈ G�, Ω is CR-optimal if Ω(j) �j Ω′(j)
and for all CRs and Ω′(i) �i Ω(i) and for all CHs, which
conforms to the concept of CH-optimal matching. Next, We
let Suitor(CH,�) denote the CRs requesting to CH i during

the run of GS algorithm with preference lists �. In addition,
we let Suitor(CH,�, j) denote the j-th preferable CR of CH
in Suitor(CH,�). Naturally, Suitor(CH,�, 1) = Ω(i) for
Ω = GS(�).

Without loss of generality, we can manipulate the stable
matching by an agent i, i.e., manipulator, if there exists
� and �′ differing only in the preferences of i, such that
Ω′(i) �i Ω(i), where Ω and Ω′ are the matching results before
and after the manipulation, respectively. Similarly, we use
�′= {�′i,�−i} and Ω′ = GS(�′) to denote the manipulated
preference and the matching result, respectively. The manipu-
lation �′i with respect to � is stability-preserving if Ω′ ∈ G�.
Given a preference profile �, an optimal manipulation of GS
algorithm by i with regard to � is denoted as �′i that satisfies
Ω′(i) �i Ω(i), and Ω′(i) �i Ω′′(i) for any other preference
list �′′ where Ω′′ = GS(�′′). We call �′′i an inconspicuous
equivalent of a manipulation �′i if �′′i can be derived from �i
by permuting only one position and Ω′′(i) = Ω′(i).

Theorem 4: Suppose that �′i is an optimal manipulation
with regard to � for CH i and Ω′ = GS(�′). �′i is stability-
preserving because Ω′ ∈ G� .

Proof: Before giving the proof, we can observe that those
CRs proposing to CH i in the procedure GS(�) will also
propose to i in the procedure GS(�′),i.e., j ∈ Suitor(i,�
) ⇒ j ∈ Suitor(i,�′). Because these CRs will be matched
with the less preferred or present CH in Ω′ and thus they will
still propose to the CHs in GS(�).

Then we prove Theorem 4 by contradiction. Assuming
that Ω′ /∈ G�, there must exist a blocking pair (i′, j′) that
satisfying j′ �i′ Ω′(i′) and i′ �j′ Ω′(j′). We first consider
the case i′ = i. Given Ω′ ∈ G�′ , we have either Ω′(j′) �′j′ i′
or Ω′(i′) �′i′ j′. If i′ 6= i, we have �′i′=�i′ and �′j′=�j′ .
We further obtain that Ω′(j′) �j′ i′ or Ω′(i′) �i′ j′, which
contradicts to the precondition of blocking pair. Hence, we
have i′ = i. Considering that the �′′i is derived from �′i
by moving j′ to the first position, we have �′′= {�′′i ,�−i}
and Ω′′ = GS(�′′). Given i′ = i, we have j′ �i Ω′(i) or
i �j′ Ω′(j′). Since �′j′=�j′ , we also have i �′j′ Ω′(j′).
As a result, during the run of GS(�′), j′ must propose to
and be rejected by i before matched with Ω′(j′) due to the
transformation that j′ ∈ Suitor(i,�′)⇒ j′ ∈ Suitor(i,�′′).
Based on the precondition that j′ is in the first position of
�′′i , we have Ω′′(i) = j′, which contradicts to the optimality
of manipulation �′i due to the fact that j′ �i Ω′(i).

Lemma 1: If CH i swaps the position j ∈ Suitor(i,�, 1)
and j′ ∈ Suitor(i,�, 2). There may exists a circle in which
all involved CHs rotation-swap their matched CRs and then
all involved CHs get preferable CRs.

To prove Lemma 1, we analyze the Example 1 in Table I.
Note that when applying GS algorithm with the true preference
list, h1 receives requesting only from r4 and r5. Therefore,
any manipulation by h1 must involve the order swap of r4
and r5. By rejecting r4 and accepting r5, r4 is forced to
request to h3, and then replacing the r3 as the current partner
of h3. Therefore, this replacement force r3 to request to h1.
Now h1 has already been matched to a preferred partner r3
than original partner r4. However, h1 can still get better by
pretending to prefer r5 to r3 . This manipulation forces r3 to
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request to h4 and thus replacing r2, who in turn is forced to
request to h1, thereby giving h1 a better match.

Example 1 points out that swapping the position of first
and the second-best requesters can result in at most one new
requester, which is more preferred by the manipulator. In the
result matching of optimal manipulation, at least two CHs
( h1, h3, and h4 in example 1) will rotationally swap their
matched CRs. h1 is matched with h4’s original partner r2,
h4 is matched with h3’s original partner r3, and h3 get h1’s
original partner r4. If the manipulator is involved in this
loop, the manipulator will get desired CR by swapping the
position of the first and second-best requesters. Otherwise,
the manipulator will get less preferred CR. Based on above
discussions, we can iteratively utilize the Domino effect until
obtaining an optimal manipulation. Note that it is still possible

TABLE I: Example 1(The existence of Domino Effect)
True preferences of CRs True preferences of CHs
r1 : h2 h1 h3 h4 h5 h1 : r1 r2 r3 r4 r5
r2 : h4 h1 h5 h3 h2 h2 : r3 r2 r4 r5 r1
r3 : h3 h1 h4 h5 h2 h3 : r4 r2 r1 r5 r3
r4 : h1 h3 h4 h5 h2 h4 : r5 r1 r4 r3 r2
r5 : h1 h5 h4 h3 h2 h5 : r1 r2 r3 r4 r5
Optimal + Non-Inconspicuous Optimal + Inconspicuous
h1 : r2 r5 r4 r3 r1 h1 : r1 r2 r5 r3 r4
h2 : r3 r2 r4 r5 r1 h2 : r3 r2 r4 r5 r1
h3 : r4 r2 r1 r5 r3 h3 : r4 r2 r1 r5 r3
h4 : r5 r1 r4 r3 r2 h4 : r5 r1 r4 r3 r2
h5 : r1 r2 r3 r4 r5 h5 : r1 r2 r3 r4 r5

that the list misreported in optimal manipulation might look
very different from the true list, which motives us to find a
inconspicuous manipulation. Theorem 5 demonstrates that the
optimal manipulation must has an inconspicuous equivalent
leading to the same matching result while differing from the
true list in only one position.

Theorem 5: Assume that�′i is an optimal manipulation with
regard to � for i and �′i is another preference list derived from
�i by moving the j ∈ Suitor(i,�′, 2) to the position right
after j′ ∈ Suitor(i,�′, 1) while making no other changes.
As a result, �′i is the inconspicuous equivalent of �′i, i.e.,
Ω′′(i) = Ω′(i).

Proof: Theorem 5 can be easily proved by Lemma 1. Mov-
ing the Suitor(i,�′, 2) to the position right after Suitor(i,�′
, 1) can make sure that the Suitor(i,�′, 1) will request to
i and i will reject the requesters in the position between
Suitor(i,�′, 1) and Suitor(i,�′, 2) with respect to the true
preference list. Finally, we have Ω′′(i) = Ω′(i).

Based on the discussion, the entire content sharing scheme
can be summarized in Algorithm 2.

Since Theorem 4 prove that the optimal manipulation with
respect to the true preference list and thus the Λ is stability-
preserving, we only provide analysis on complexity properties.

Complexity Analysis: The computational complexity
of the proposed JCPD algorithm is formulated as
O(log(d)

∑
i∈CH(Fi1 − Fi2) + M2N2 + max{MN,KN})

in the worst case. Considering the combinatorial nature, the
computational complexity of each sub-algorithm included in
JCPD algorithm will be analysed in turn. For the optimal
cache placement scheme in first stage, the optimal x∗i
is one of the Fi1 − Fi2 potential solutions. According
to [26], the complexity of obtaining k-th root for each
potential solution is O((2 log(k)) log(d)) using the Newtons

Algorithm 2 Joint Content Placement and Delivery Algorithm
(JCPD)

1: Step 1: CH Selection and Cache Placement:
2: CHs exchanges context information with SBSs, and obtain

the stable matching using MSU algorithm. Given the
matching result, each CH will pre-cache a subset of all
files based on the optimal cache placement scheme.

3: Step 2: Distributed Content Delivery:
4: CHs exchanges context information with CRs, and then

the CRs send their request based on the preference profile.
Each CH determines whether accepting the request based
on the potential reward increment and cost.

5: The selected CH will first perform manipulation based
on Lemma 2 and then inconspicuous manipulate the true
preference list based on the optimal manipulation.

6: Repeat manipulation until there exists no Domino effect
in current matching state Λ.

method, where d represents the number of precision bits
desired. In sum, the total complexity of the optimal cache
placement scheme is O(log(d)

∑
hi∈CH(Fi1 − Fi2)). Based

on [6], the computational complexity of GS algorithm and
MSU algorithm can be denoted as O(MN) and O(NK),
respectively. By parallel processing, the computational
complexity of DTSM is O(max{MN,KN}). The
computational complexity of optimal manipulation is
O(TMN), where T is the iteration number of obtaining the
optimal manipulation.

We can also observe that the iteration number is upper
bounded by N(M − 1)/2. Considering the worst case that
the original partner is in the end position and can only
move one position with respect to the true preference list,
the manipulator can move at most M-1 position. One manip-
ulation can benefit at least two users per time. Hence, the
computational complexity is O(N2M2) in the worst case.
Actually, due to the lattice of preference profile, the worst
case will never happen, and the iteration number is smaller
than M in practice. Compared to the centralized expanded KM
(EHM) algorithm in [14] with the computational complexity
O(max{N,M,K}3(1 + min{Amin{N,M}

max{N,M}, A
min{N,K}
max{N,K}})) in

the worst case, which can obtain a maximal-weight unsta-
ble three dimensional matching, our distributed scheme can
achieve the near-optimal performance with lower computa-
tional complexity and stability guarantee.

V. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

In this section, we conduct numerical simulations generated
on realistic social dataset to demonstrate the validity of the
theoretical analysis and the effectiveness of our proposed
algorithm. Based on the realistic CRAWDAD dataset [27],
we can extract social attributes for 72 participants based on
the method in [6]. We comprehensively evaluate our proposed
algorithm, abbreviated as JCPD in terms of reward, conver-
gence, average cost, and user satisfaction performance. The
main simulation parameters are listed in Table II. We set
the parameter according to [11], [22], which is applicable
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for wireless communication of most heterogeneous cellular
network. Furthermore, we use four benchmark algorithms to
evaluate our proposed algorithm. The first benchmark algo-
rithm is EKM in [14], which can achieve the maximal weight
in content delivery process. The second benchmark is ”DTSM”
algorithm in Algorithm 1. In the third benchmark, we adopt the
cache placement algorithm with fixed buffer capacity (CPFBC)
in [28], in which the cache capacity is set equal to the buffer
capacity. For the final benchmark, we adopt uniform caching
with fixed buffer capacity, abbreviated as UCFBC. In this
paper, we only investigate the cache placement scheme for
MUs, and the buffer of SBSs is not considered for simplicity.
Each SBS will cache part of the complete contents based on
the Theorem 1 without considering the buffer capacity.

TABLE II: Simulation Parameters
Parameters Value

Macro cell radius and Small Cell radius 1000m,300m
Number of SBSs 5

Number of CHs and CRs 72 [27]
The available storage space of of CHs and SBSs 100-500Mbits, 1000-2000Mbits

Buffer delay and power dissipation 6s, 125mW [11]
price coefficient ε, ζ 20, 0.1

Adjustment coefficient α and β 1, 1
Mitigation factor ε 60dB [22]

Zipf parameter γ, Number of files F 0.9, 30
Size of each file L 10-100Mbits

Transmission power of SBS and CH 500mW, 125mW
Bitrate θ1 and θ4 for HD video stream 1.5Mbps, 4Mbps

Noise power spectral density σ2 -144dbm/Hz
Bandwidth W and quota Q 10MHz, 12

Multi-path fading δ, Shadowing ξ 1, 8db
Pass-loss exponent, Pass-loss constant K 4, 10−2

Firstly, in order to demonstrate the convergence behavior
of our proposed algorithm, we investigate the cumulative
distribution function (CDF) versus the number of manipula-
tion required. In Fig. 3, we plot the CDF of manipulation
number when reaching to the stable matching state, thereby
demonstrating the validity of the complexity analysis. From
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this figure, it can be observed that our proposed algorithm
converges faster with the increasing number of CHs, due to
the fact that finding the domino effect is easier. In addition,
Fig. 3 further reveals that the needed convergence number is
relatively small with respect to the user number. Fig. 4 shows
the reward increment with the increasing number of content
delivery. We assume that half of the MUs request contents
in each content delivery process, and the request probability
follows the Zipf distribution. At the very beginning, due to the
relatively low initial reputation level, the reward gap between
any two schemes is not so much. The reason for the growing
gap is that the schemes which can provide better QoS level
and reduce the cost, will get more rewards. This simulation
results show that both our proposed content delivery and
cache placement schemes can always reach the near-optimal
solution. More specially, we further analyse both the QoE level
and energy consumption performance, respectively.

In Fig. 5, we adopt user satisfaction as a crucial metric,
which is defined as the average number of CRs in different
MOS. In this simulation, other cache placement schemes can
achieve similar QoE level, because both the CPFBC and
uniform cache scheme can provide satisfactory QoE when
CRs request popular contents. In this regard, our proposed
content delivery scheme can further improve the QoE level,
and can always approximate the optimal performance of
EKM with less complexity consumption. In order to evaluate
the impact of popularity distribution on the average energy
consumption, we plot the average cost varying Zipf parameter
γ from 0.1 to 2.5 in Fig. 6. With the increase of γ, the
popularity of top ranked contents tend to increase, and thus
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pre-caching more popular contents can decrease the average
energy consumption. It is worth mentioning that when γ
is small, i.e., γ ∈ [0, 0.4], the difference of the popularity
among various contents are not obvious. In this case, both the
CPFBC and uniform cache scheme can make better use of
the buffer capacity, which guarantees the lower buffer cost.
But our optimal cache placement scheme shows a rapidly
decreasing trend with the growth of γ, because more CRs
will request contents with higher popularity, which reduces
the buffer cost. When the γ is very large, i.e., γ ∈ [2, 2.5],
the energy consumption has slowly paced down, since almost
all CHs can deliver complete contents so the main cost comes
from the directly transmission instead of buffering. Note that
the popularity distribution has no impact on the average cost
performance of uniform caching scheme, since each file is
cached with same fraction.

VI. CONCLUSION

In this paper, the scheme of joint cache placement and de-
livery in Social IIoT has been proposed to investigate the issue
of optimizing the reward of CHs while guaranteeing the QoE
of CRs. Specifically, we designed a proactive cache placement
scheme for the purpose of minimizing the energy consumption.
In this setting, the optimization problem is to balance the QoE
level and energy consumption by maximizing the reward of
CHs. We conceived this scenario with framework of tripartite
graph. According to this graph, we proposed a distributed
algorithm to find a ternary stable matching. Last but not the
least, we inconspicuously manipulated the matching with the
existence of domino effect to further benefit more CHs. The
simulation results generated on realistic social dataset showed
that our proposed algorithms could achieve a better trade-
off among energy consumption and QoE performance with
relatively less complexity consumption.

APPENDIX A
PROOF OF THEOREM 2

According to Theorem 1, the optimal solution of problem
(4) has the structure (1f−1, x

∗
if , 0F−f ). As a consequence,

the optimal solution has F possibly solutions, (x∗if , 0F−1),...,
(1F−1, x

∗
if ). For the f -th solution (1f−1, x

∗
if , 0F−f ), con-

straint
∑f−1
l=1 Ll ≤ Ci should be satisfied and then the

optimal solution x∗if can be obtained by substituting the
optimal values of other F − 1 variables into problem
(4) as minxif

(αPki

Rki
+ βPbD

Ci−
∑f−1

l=1 Ll−xifLf
)(qf (1 − xif )Lf +∑F

l=f+1 Llql)
4
= g(xif ) with the constraint 0 ≤ xif ≤

xmaxif , where xmaxif = min{1, Ci−
∑f−1

l=1 Ll

Lf
}. Letting the first-

order derivative of the objective function g′(xif ) = 0, we
have the following two cases: 1) If qfCi +

∑F
l=f+1 qlLl +∑f

l=1 qfLl ≤ 0, the right term of this equation is always
non-positive and thus g′(xif ) ≤ 0. The objective function
g(xif ) monotonically decreases with xif , and the optimal
x∗if = xmaxif . 2) If qfCi +

∑F
l=f+1 qlLl +

∑f
l=1 qfLl >

0, two different roots can be represented as xif (1) =
(Ci−

∑f−1
l=1 Ll)

√
qf−
√
ρ

Lf
√
qf

and xif (2) =
(Ci+

∑f−1
l=1 Ll)

√
qf+
√
ρ

Lf
√
qf

,

where ρ = RkiβPbD(−qfCi +
∑F
l=f+1 qlLl +

∑f
l=1 qfLl)/

αPki. Since the objective function g(xif ) decreases with xif
when xif < xif (1) and xif > xif (2) while increasing with
xifwhen xif (1) ≤ xif ≤ xif (2). If 0 ≤ xif ≤ xmaxif , we
have the optimal x∗if =arg min xif∈{xif (1),xmax

if }g(xif ). If
xif (1) ≤ 0, x∗if = arg minxif∈{0,xmax

if }g(xif ). If xif (1) ≥
xmaxif , x∗if = xmaxif .
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