Fasciola gigantica: ultrastructural cytochemistry of the tegumental surface in newly-excysted metacercariae and in vitro-penetrated juvenile flukes informs a concept of parasite defence at the interface with the host

Published in:
Veterinary Parasitology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2019 Elsevier.
This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Fasciola gigantica: ultrastructural cytochemistry of the tegumental surface in newly-excysted metacercariae and *in vitro*-penetrated juvenile flukes informs a concept of parasite defence at the interface with the host.

R.E.B. Hanna*\(^a\), D. Moffett\(^a\), M. W. Robinson\(^b\), W.G.Z.O. Jura\(^c\), G.P. Brennan\(^b\), I. Fairweather\(^b\), L.T. Threadgold\(^b\)

\(^a\) Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, United Kingdom

\(^b\) School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, United Kingdom

\(^c\) Department of Zoology, Maseno University, Maseno, Kenya

*corresponding author:

e-mail: bob.hanna@afbini.gov.uk

telephone +44(0)2890525615

Abstract

Cytochemical staining techniques were carried out *en bloc* with *in vitro* excysted and gut-penetrated *Fasciola gigantica* larvae in order to visualise the glycocalyx of the tegument, a structure which comprises the parasite component of the host-parasite interface, yet is incompletely preserved by conventional fixation and preparation.
techniques for electron microscopy. Positive reactivity with ruthenium red and periodic acid-thiocarbohydrazine-osmium (PATCO) techniques revealed that the glycocalyx is polyanionic and carbohydrate-rich throughout its depth. It comprises a trilaminate arrangement, with a thin dense zone and fibrillar layer closely apposed to the outer aspect of the apical plasma membrane, invested by an irregular thick mucopolysaccharide capsule. The latter, not recorded in adult flukes, may represent a specific adaptation to facilitate invasion in the face of host immunity, and may also protect the parasite surface from the action of host- and parasite-derived proteases. Early in the invasion of a naïve host, the glycocalyx may be partly responsible for triggering the responses of innate immunity, while later in infection, or when an anamnestic response is initiated in an immunocompetent host, the antibodies and activated lymphocytes of specific acquired immunity are invoked to interact with the parasite surface. The cytochemical properties of the glycocalyx, together with its potential for dynamic turnover due to exocytosis of the T0 tegumental secretory bodies, are likely to aid neutralisation of potentially damaging immune effectors and ensure their removal from the vicinity of the parasite by sloughing in complex with glycocalyx components.

Key words: Fasciola gigantica; in vitro excystment and gut-penetration; tegumental ultrastructure and cytochemistry; glycocalyx; parasite defence; innate and acquired immunity.

1. Introduction
While infection by *Fasciola gigantica* is considered to represent a significant constraint on the productivity of domestic ruminants throughout Asia and Africa, impacting on global food production as the demand for meat production increases in developing countries, relatively few studies have addressed the structural and molecular adaptations that enable this parasite to successfully invade a wide range of host species, including humans (Spithill et al., 1999a; Piedrafita et al., 2010). The topography and ultrastructure of the tegument of bile-duct inhabiting adult *F. gigantica* were examined by Ahmad et al. (1988), Sobhon et al. (1998) and Dangprasert et al. (2001). The carbohydrate-rich negatively charged glycocalyx that coats the outer aspect of the tegument may help the parasite to evade the antibody-dependant cell-mediated cytotoxicity (ADCC) reaction of the host, and surface derived antigens can elicit strong immunological responses from the host (Sobhon et al., 1998). Recently, an examination of the ultrastructure of the surface in the invading larvae of *F. gigantica* verified the cytological origins of the glycocalyx of the tegument, and highlighted its potential for dynamic renewal at the interface with the host (Hanna et al., 2019). In newly-excysted *F. gigantica*, the tegumental perikarya (‘tegumental cells’), which lie beneath the surface syncytium of the tegument, but are connected to it by cytoplasmic tubules passing between the interposing muscle blocks, are packed with T0 secretory bodies. These T0 bodies rapidly migrate into the surface syncytium and discharge their contents at the apical plasma membrane to maintain the surface glycocalyx during penetration of the larvae through the gut wall of the host (Hanna et al., 2019). In *Fasciola* spp., the glycocalyx, which completely envelops the surface of the invading larva and represents the parasite component of the host-parasite interface, is actively sloughed and rapidly replaced to protect the larva from immune-mediated attack by the host (Hanna, 1980a;
Fairweather et al., 1999; Hanna et al., 2019). However, early in the invasion of a naïve host animal, the larval flukes are unlikely to encounter the effectors of acquired immunity (cell-mediated or humoral), since penetration of the intestine wall and migration to the liver capsule is relatively rapid (Andrews, 1999). Instead, recognition of tissue damage and the presence of parasite surface components is likely to initiate acute inflammation, so the surface of the invading fluke larvae will initially come under attack from effectors such as major basic protein (MBP) from eosinophils and natural killer cells, before ultimately encountering the humoral and cell-mediated components of acquired immunity (Dalton et al., 2013). In these interactions, the glycocalyx embodies the first line of parasite defence at the interface with the host, and knowledge of its structure and chemical constitution is fundamental to our understanding of the ability of Fasciola spp. to survive and successfully invade immunologically primed as well as naïve hosts. With conventional fixation for electron microscopy, only a fraction of the thickness of the glycocalyx in adult F. hepatica is preserved, and an array of cytochemical tests is necessary to reveal its fine structure (Threadgold, 1976). The aim of the present study was to visualise the glycocalyx in those stages of F. gigantica that are first exposed to the innate and/or adaptive effectors of immunity in the host, with a view to informing our understanding of the early mechanisms of defence in this highly successful parasite.

2. Methods and materials

2.1 General

The preparative stages of this study, namely collection, excystment, penetration, en bloc cytochemical reactions, fixation and resin embedding of F. gigantica larvae for
electron microscopy were carried out in the (then) East African Veterinary Research Organisation, Muguga, Kenya, in 1975. Resin blocks were stored dry in sealed plastic containers at 20°C. The quality of fixation and resin infiltration of the various batches of larvae was checked by sectioning representative resin blocks 1-2 years after the incubations were carried out. Comprehensive sectioning and examination of the material was carried out at the Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, in 2019. No change or deterioration was detected in the preservation or sectioning quality of the embedded larvae from the time of the initial test sectioning 42 years earlier.

Full details of the source of material, techniques used for in vitro excystment and gut-penetration of F.gigantica larvae, and basic preparative methods for electron microscopy were reported recently (Hanna et al., 2019). Briefly, metacercarial cysts from laboratory-maintained Lymnaea natalensis that had been infected with miracidia of F. gigantica, were hatched using an excystment protocol (based on the method of Dixon, 1964, for F. hepatica) that provided CO₂ and bile components, under reducing conditions, at 37°C. Newly-excysted larvae, suspended in Eagle’s MEM medium with antibiotics, were pipetted into a bag of mouse jejunum which was tied off at each end with cotton thread. The larvae were allowed to penetrate through the gut wall into fresh Eagle’s medium, over a period of 5 h.

2.2 Conventional fixation

Some newly-excysted and some penetrated larvae were fixed for 5h at 4°C with 4% (w/v) Millonig phosphate-buffered glutaraldehyde (pH 7.3) containing 3% (w/v) sucrose, buffer-washed, osmicated, dehydrated through alcohol and propylene oxide, infiltrated and embedded in Araldite resin (then supplied by Ciba-Geigy; currently supplied by Agar Scientific Ltd., Essex, UK). Further batches of larvae were
fixed with 3% (w/v) glutaraldehyde in 0.2 M cacodylate buffer (pH 7.2) for 5h at 4°C and rinsed in 0.2 M cacodylate buffer prior to osmication, dehydration and embedding in Araldite resin. The buffers used in the preparation of these batches of larvae were the same as those used in the respective cytochemical reactions detailed below. Batches of newly-excysted and of penetrated larvae were treated en bloc for cytochemical investigations, as follows.

2.3 Ruthenium red technique

Newly-excysted and penetrated larvae were separately fixed with 3% (w/v) glutaraldehyde in 0.2 M cacodylate buffer, pH 7.2, containing 8.0 mM ruthenium red (then supplied by Sigma Chemicals Co., St. Louis, MO, USA) for 5h at 4°C. The larvae were then rinsed in 0.2 M cacodylate buffer, pH 7.2, containing 8.0 mM ruthenium red for 10 min, and post-fixed with 1% (w/v) osmic acid in cacodylate buffer for 1h prior to dehydration and embedding in Araldite embedding resin. Neuraminidase control material was fixed with 3% (w/v) glutaraldehyde in 0.2 M cacodylate buffer for 3h, rinsed in 0.2 M cacodylate buffer, and then incubated in neuraminidase (30 units in 0.1 M acetate buffer, pH 5.5; then supplied by Sigma Chemicals Co., St. Louis, MO, USA) for 1 h at 37°C. These larvae were then fixed for a further period of 5h with 3% (w/v) glutaraldehyde in 0.2 M cacodylate buffer containing 8.0 mM ruthenium red, and rinsed with 0.2 M cacodylate buffer containing 8.0 mM ruthenium red, prior to osmication, dehydration and embedding (Rambourg, 1971; Threadgold, 1976; Pearse, 1985).

2.4 Periodic acid-thiocarbohydrazine-osmium (PATCO) technique

Newly-excysted and penetrated larvae were fixed overnight at room temperature in 4% (w/v) paraformaldehyde in Millonig buffer (pH 7.3) containing 1% (w/v) NaCl and 0.5 mM CaCl₂. They were then treated for a further 2h in 4% Millonig-buffered
parafomaldehyde with NaCl and CaCl$_2$ containing 1% (w/v) periodic acid, and
subsequently washed for 4h with Millonig buffer alone. The larvae were then
immersed in a solution of 1% (w/v) thiocarbohydrazine (TCH) in 25% (w/v) acetic
acid for 48h at room temperature. Following a 30 min rinse in water, the larvae were
exposed to osmic acid vapour in a sealed wet chamber for 3h at 40°C, washed again
with distilled water for 1h, and finally dehydrated and embedded in Araldite. Control
batches of larvae were prepared by (a) omitting the periodic acid treatment; (b)
treating fixed larvae, before or after periodate exposure, with 0.3% (w/v) aniline in
0.5% (w/v) acetic acid for 2h or with 1% (w/v) aqueous dimedone for 24h to block
pre-existing or generated aldehyde groups; (c) treating fixed larvae with
neuraminidase (30 units in 0.1 M acetate buffer, pH 5.5) for 1 h at 37°C, before
exposure to periodic acid. All control larvae were then treated with TCH and osmic
acid vapour, washed, dehydrated and embedded as described above (Rambourg,
1971; Threadgold, 1976; Pearse, 1985)
2.5 Electron microscopy
Ultrathin sections (100-120 nm thick) were cut from the Araldite resin blocks using a
Leica EM UC7 ultramicrotome, mounted on uncoated nickel grids, double stained
with uranyl acetate and lead citrate or left unstained, and viewed in a JEOL JEM-
1400 transmission electron microscope with an AMT Activue XR16 digital camera
system, operating at an accelerating voltage of 80 kV. Generally, images were saved
at an instrument magnification of X25,000, and measurements of selected
ultrastructural features were carried out using at least 100 replicates of each feature,
accumulated from multiple images.
The cytochemical staining techniques employed, their respective controls and the
purposes for which they were used are listed in Table 1.
3. Results

3.1 Ruthenium red technique

Ten *in vitro* gut-penetrated larvae of *F. gigantica* and ten newly-excysted larvae that had been treated *en bloc* with ruthenium red were examined and the sections were compared with equivalent sections of conventionally-fixed larvae, and with sections of larvae that had been treated with neuraminidase before ruthenium red treatment. The appearance of all ten larvae within each of the two groups (penetrated and newly-excysted respectively) corresponded closely, as did the larvae within each of the control groups. The penetrated larvae treated with ruthenium red all show a continuous line of dense staining 14.6 ± 4.3 nm thick, on the outer aspect of the apical plasma membrane of the tegumental syncytium, following it closely along all the invaginations and prominences of the surface (Fig. 1a and b). Immediately beneath the dense line, the pale-staining central core of the trilaminar apical membrane can usually be resolved, and the inner dense zone of the membrane is also usually apparent (Fig. 1a and b). In most regions, the superficial aspect of this surface zone features a rather sparse fibrillar layer (32.2 ± 8.1 nm thick, including the underlying dense line, Fig. 1a), or is covered with lightly-stained, relatively featureless ‘hyaline’ material (so-called because of its relatively low electron density, generally homogenous appearance and lack of cellular or fibrous structure, in comparison to the dense line and fibrillar layers). The latter forms a discontinuous outer layer, missing in some areas and, where present, very variable in thickness (98.7 ± 67.2nm, Fig. 1b). It sometimes appears as globules on the surface (Fig. 1c), and may sometimes incorporate electron-dense patches or fibrous material, resembling components of the fibrillar layer (Fig. 1c). The dense line, intimately
associated with the outer aspect of the surface membrane, is stained most prominently in those areas where the hyaline layer is lacking. In regions where it is covered by the hyaline layer, staining is less pronounced, although usually the course of the dense line can be traced beneath the hyaline layer (Fig. 1b and c). In some areas the hyaline material seems to envelop the underlying dense line and fibrillar layer (Fig. 1c), whereas in other areas it is seen partially elevating the dense line and fibrillar layer (Fig. 1d). Occasionally the entire ruthenium-stained complex, including dense line, fibrillar material and/or hyaline material is seen sloughing from the surface in the form of membranous strips, whorls or vesicles (Fig. 1e). In the newly-excysted larvae that had not been allowed to penetrate through mouse gut tissue, the dense line and fibrillar layer on the superficial aspect of the apical plasma membrane, stained by ruthenium red, are also apparent. In these larvae the area occupied by the hyaline material appears rather less than in the penetrated larvae, and its distribution is more irregular (Fig. 2a). In neither the newly-excysted larvae nor the penetrated larvae does the ruthenium red-stained zone extend into the superficial cytoplasm of the tegumental syncytium, although the lining of small invaginations and valleys that have open contact with the surface exhibit staining (Fig. 1b and 2a). Beneath the surface of the syncytium, the cytoplasm and structures such as T0 secretory bodies, mitochondria, invaginations of the basal plasma membrane and spines are not stained by ruthenium red. The T0 bodies, which are membrane-bound, often ellipsoidal in shape (143.1 ± 23.2 nm X 80.8 ± 13.9 nm) and of moderate electron density, are often seen close beneath the apical plasma membrane, apparently discharging their content into the hyaline layer or immediately below the dense layer (Fig. 2b and c). In so-doing they assume a flattened or rod-like
shape (146.5 ± 27.7 nm), remaining within the apical cytoplasm of the syncytium (Fig. 2 c).

3.2 Controls for ruthenium red technique

In conventionally-fixed larvae (where ruthenium red treatment was omitted and fixation was carried out using either cacodylate-buffered or Millonig phosphate-buffered glutaraldehyde), the apical plasma membrane of the tegumental syncytium is less well-defined and features an apparently discontinuous and ‘fuzzy’ outer zone, that is less dense and thinner (7.1 ± 2.1 nm) than the outer zone in the ruthenium red-treated larvae. Superficial filaments and hyaline patches are lacking from this control material (Fig. 2d). In neuraminidase-treated control larvae fixed with ruthenium red present, the dense line of staining that characterises the larvae in the test groups is present but thinner (9.9 ± 3.0 nm) and less well-defined than in the test material, with only occasional patches of fibrillar or hyaline material on the surface (Fig. 2e).

3.3 PATCO technique

The batches of penetrated and newly-excysted larvae that were treated en bloc using the PATCO reaction, together with the relevant control batches, were fixed with buffered paraformaldehyde rather than glutaraldehyde and as a result the ultrastructural preservation is poor. In addition, the prolonged exposure to osmic acid vapour, necessary to achieve satisfactory visualisation of the glycocalyx, tended to result in cracking and breaking of the surface (Fig. 3a and b). Sections were examined in the electron microscope, usually without the use of conventional double staining (uranyl acetate followed by lead citrate). While the latter would have improved resolution, it might have interfered with the interpretation of the en bloc
staining. The results for all ten larvae within each of the two experimental groups (penetrated and newly-excysted respectively) corresponded, as did those for the larvae within the control groups. The surface of the apical tegumental membrane in each of the PATCO-treated penetrated larvae features a superficial zone of dense staining that varies considerably in thickness in different regions of the body (96.4 ± 47.1 nm; range approximately 40 – 180 nm), but without a recognisable anatomical distribution (Fig. 3a and b). The attachment of this zone, while following closely the contours of the surface (Fig. 3a) appears tenuous in places, with a narrow clear space sometimes evident between the dense material and the underlying apical surface (Fig. 3b). In some areas the dense zone appears fragmented, detaching and apparently sloughing from the surface (Fig. 3c). In the apical cytoplasm of the syncytium the T0 bodies show positive staining, which is often more dense in those T0 bodies close to the surface (Fig. 3a). Occasionally T0 bodies are seen to be in contact with the surface, apparently discharging their content into the dense zone (Fig. 3d). Elsewhere, there is scattered dense staining over the cytoplasm (Fig. 3a), but it is not clearly associated with T0 bodies, although spine protein, mitochondria and the dense bodies previously described as tertiary lysosomes or heterophagosomes (Hanna et al., 2019) are generally unstained or only lightly stained (Fig. 3c and d). Newly-excysted larvae that had not penetrated through mouse gut displayed a similar staining pattern to the penetrated larvae, in that a thick zone of dense staining (105.7 ± 40.6 nm; range approximately 50 – 200 nm) is present over a large proportion of the apical plasma membrane (Fig. 3e), although in many places this zone appears to be fragmented and detaching. T0 bodies, close to the surface, are positively stained, and there is scattered positive staining over the cytoplasm.
3.4 Controls for PATCO technique

In control larvae (both penetrated and newly-excysted specimens), where periodic acid treatment was omitted, there is no dense zone of PATCO staining on the surface, although in some areas the apical plasma membrane appears to be delineated (Fig. 4a), and there is light speckled dense staining (corresponding to non-specific deposition of osmium dioxide) over the cytoplasm of the tegument. The T0 bodies are unstained. In those control larvae where a blocking step (using aniline or dimedone) was included before the periodic acid treatment, the surface of the tegument bears a dense but irregular zone of staining similar to that described above for the test larvae. However, in the larvae treated with aniline or dimedone after periodic acid treatment, but before the TCH step prior to osmication, the surface of the tegument is generally unstained, or bears irregular stained particles and fragments, corresponding to the trilaminar apical membrane (Fig. 4b and c). In these larvae the T0 bodies in the cytoplasm react positively. In the neuraminidase-treated control larvae, surface staining after the PATCO reaction is reduced, in comparison to the test larvae. The thick superficial zone of dense staining is generally lacking, represented only by dense fragments on the apical plasma membrane (Fig. 4d). As with the blocking controls and the test sections, there is scattered dense staining over the cytoplasm which is not associated with T0 bodies.

4. Discussion

4.1 General

In a study by Threadgold (1976) on the ultrastructure and histochemistry of the tegumental glycocalyx of adult *F. hepatica*, staining techniques, including ruthenium
red and PATCO, were carried out on ultrathin sections of conventionally-fixed, resin-embedded flukes and also on freshly fixed ‘en bloc’ preparations of fluke material. It was found that conventional preparative techniques, followed by staining of ultrathin sections, enabled visualisation of only about half the total thickness of the glycocalyx, while the histochemical tests applied en bloc gave a more accurate morphological and histochemical picture. For this reason, en bloc histochemical staining was adopted for the present study on penetrated and newly-excysted F. gigantica larvae, where the available experimental material was limited and the specimens for processing were relatively small. However, a disadvantage of en bloc histochemical staining is that reagents with a large molecular size such as ruthenium red, aniline, dimedone and neuraminidase may be unable to penetrate into the depth of the specimens, especially considering that the larvae under examination are enveloped and sequestered by the intact apical plasma membrane of the tegument (Hanna et al., 2019). Therefore the findings from the histochemical tests, with their appropriate controls, are valid for the surface features only, in particular the glycocalyx, and can provide only limited and qualified information on subsurface structures.

4.2 Glycocalyx structure

Considering the likely significance of the glycocalyx in the establishment of fluke infection in the host, its molecular constitution has been the subject of a number of investigations since its existence was confirmed by Threadgold (1976). It is envisaged that the superficial aspect of the tegument is covered by layer of glycoprotein, closely applied to the outer layer of the trilaminate apical plasma membrane and, from this ‘backbone’, oligosaccharide side chains containing terminal sialic acid residues project outwards into the host-parasite interface. In
addition, the oligosaccharide side chains of gangliosides project outwards between
the structural proteins of the glycoprotein backbone, with their sphingosine bases
anchored beneath, in the electron-lucid lipid component of the plasma membrane
(Fig. 5). Due partly to the terminal sialic acid residues in these oligosaccharide side
chains, the glycocalyx is polyanionic throughout its thickness, and has a net negative
charge, enabling it to be stained by cationic dyes such as ruthenium red, and, in
addition, the carbohydrate-rich nature of the glycoproteins and gangliosides imparts
reactivity with periodic acid-Schiff-type techniques such as PATCO (Threadgold,
1976). The essential features of this model of the glycocalyx in *F. hepatica* have
been supported by subsequent studies that have utilised lectins to characterise the
carbohydrate moieties of the glycocalyx, revealing the predominance of mannose,
glucosamine or glucose moieties and *N*-glycosylated proteins (Rogan and
Threadgold, 1984; Ravidà et al., 2016; de la Torre-Escudero et al., 2019). The
significance of these surface glycoconjugates of *F. hepatica* in relation to the uptake
of parasite-derived material by host cells, immune modulation and vaccine
development were discussed by de la Torre-Escudero et al. (2011), Dalton et al.
(2013) and Ravidà et al. (2016). Recently, it was observed that oligosaccharides
present on the surface of extracellular vesicles (EVs) secreted by adult *F. hepatica*
were resistant to exo- and endo-glycosidases that commonly modify mammalian
structures (de la Torre-Escudero et al., 2019). Whilst having *N*-linked
oligosaccharides that are resistant to degradation in the host microenvironment
would be advantageous to the parasite, it remains to be determined whether the
glycans displayed on the tegumental surface (which are distinct from those of EVs)
show the same level of resistance.

4.3. *Ruthenium red technique*
4.3.1 Ruthenium red test larvae

The cationic dye, ruthenium red, acting in combination with osmium tetroxide (Pearse, 1985), deposited a dense line of staining along the glycocalyx of the apical trilaminate membrane of the tegument in both the penetrated and the newly-excysted *F. gigantica* larvae, and a closely attached fibrillar layer of variable thickness extended beyond the surface. This finding is consistent with that of Threadgold (1976), who described a similar arrangement in adult *F. hepatica* stained with ruthenium red. It also concurs with the observations of Sobhon et al. (1998) on adult *F. gigantica*, that the surface of the tegument is coated with a negatively-charged carbohydrate-rich glycocalyx layer and is the source of antigens that have potential significance as candidate vaccines. In the larvae described here, the dense line of the glycocalyx was of similar thickness to that recorded by Threadgold (1976) (respectively 14.6 ± 4.3 nm for *F. gigantica* and 18.5 ± 6.5 nm for *F. hepatica*), but the fibrillar layer was narrower, the total complex measuring 32.2 ± 8.1 nm thick compared to 40.3 ± 15.6 nm for adult *F. hepatica*. Unlike the latter, the penetrated larvae described here featured a hyaline layer of very variable thickness (98.7 ± 67.2 nm) over expanses of the apical tegumental surface, this layer being distributed rather less consistently in the newly-excysted larvae than in the penetrated larvae.

This study on *F. gigantica* highlights, for the first time, the ultrastructural cytochemistry of the tegumental glycocalyx in host-invading *Fasciola* larvae, revealing it to be trilaminate, with both membrane-attached and labile components. No comparable findings have been reported for *F. hepatica* larvae. The T0 bodies in the tegumental syncytium were occasionally visualised in the process of discharging their content into the surface layers, as was also noted by Hanna et al. (2019). It is possible that the bounding membrane of the T0 bodies is lined internally by fixed
precursor components of the dense line and fibrillar layer, while the core contains
labile mucopolysaccharides that contribute the unattached hyaline portion of the
glycocalyx. On exocrine secretion of a T0 body, the membrane may sometimes be
incorporated into the apical surface membrane, complete with attached glycocalyx,
while it is proposed that the mucin-type T0 contents may flow over the surface to
augment the labile chemico-physical protective barrier. On the other hand, after
discharge of the labile component, the collapsed membrane of the T0 granule is
often retained in the surface syncytium as a flattened sac, rather than contributing to
the apical membrane (possibly reflecting molecular incompatibility between the
apical membrane and the bounding membrane of T0 bodies). This may be a
mechanism to prevent over-extension of the surface, and is possibly linked to active
membrane recycling in the tegument (Hanna et al., 2019). As a labile component of
the glycocalyx, the hyaline layer is likely to be readily removed during fixation,
washing, staining, dehydration and embedding for electron microscopy, so its
inconsistent appearance on the surface of larvae is not unexpected. In adult F.
hepatica, studied by Threadgold (1976), there may be less need for a labile mucin-
type protective layer because the bile duct environment is physico-chemically stable
and relatively ‘safe’ from the effectors of innate and acquired immunity, compared to
the gut wall and peritoneal environment experienced by the invading larvae (Hanna,
1980a). The T0 tegumental secretory bodies, characteristic of newly-excysted and
invading F. hepatica and F. gigantica, are replaced by smaller dense T1 bodies in
the liver-migrating juvenile flukes and adults (Bennett and Threadgold, 1975; Hanna
et al., 2019) and, while these contain antigens in common with the T0 bodies
(Hanna, 1980a, b), they may not contain precursors for an unattached mucin-type
component of the glycocalyx. It was noted that ruthenium red staining does not
extend inward from the apical surface to the cytoplasm and organelles of the
tegumental syncytium. This is because the large molecular size of the dye does not
allow it to cross the undamaged plasma membrane of the en bloc preparations
(Hayat, 1989).

4.3.2 Ruthenium red control larvae
Comparison of sections of conventionally-fixed larvae with sections of en bloc
ruthenium red-treated larvae revealed that the glycocalyx is very much thinner in
conventionally-treated material, lacking the fibrillar and hyaline layers which are fixed
and visualised by the combination of ruthenium red and osmium tetroxide
(Pearse, 1985). The superficial aspect of the apical plasma membrane in the
conventionally-fixed material exhibited only a ‘fuzzy’ layer, 7.1 ± 2.1 nm thick.
Clearly, conventional fixation fails to preserve the glycocalyx of the larvae in its
entirety, as was also noted by Threadgold (1976) for adult F. hepatica.
Neuraminidase digestion of the en bloc preparations before fixation with ruthenium
red present resulted in substantial reduction in staining of the fibrillar and hyaline
layers of the glycocalyx, and partial loss of the dense layer. This is consistent with
the presence of a significant sialic acid component in the glycocalyx, and is in
accordance with the findings of Threadgold (1976) and Rogan and Threadgold
(1984). On the other hand, the preliminary fixation and incubation steps carried out
before ruthenium red treatment of these control larvae may, in themselves, have
resulted in partial loss, particularly of the labile component of the glycocalyx, and
resulted in enhanced exposure of the sialylated components to enzyme action. It is
known that helminths, along with all invertebrates of the protostome lineage, lack the
necessary enzymatic functionality to carry out sialylation of carbohydrate molecules
(Varki and Schauer, 2009), so it is possible that sialic acid-bearing sugars in the
glycocalyx of *Fasciola* spp. could be host-derived, representing a mechanism of defence against the host’s immune responses (Ravidà et al., 2016; McVeigh et al., 2018).

4.4 PATCO technique

4.4.1 PATCO test larvae

Fixation of larvae for *en bloc* PATCO staining was carried out with 4% (w/v) paraformaldehyde, rather than glutaraldehyde. Fixatives containing glutaraldehyde are avoided if tissues are to be stained by periodic acid Schiff (PAS)-related techniques because glutaraldehyde has two aldehyde groups per molecule, and tissues fixed in it will contain free aldehyde groups capable of undergoing Schiff-type reactions, resulting in non-specific background staining (Suvarna et al., 2018). Ultrastructural preservation is inferior, however, to that achievable with glutaraldehyde fixation. Thiocarbohydrazide, used here in the PATCO modification of the PAS technique to visualise the presence of carbohydrate in the oligosaccharide side chains of the glycocalyx, is a bidentate ligand which attaches to aldehyde groups released by periodic acid treatment and, at the other binding site, reacts with osmium tetroxide to deposit osmium dioxide at the site of staining (Hayat, 1989). Thus, the carbohydrate-rich surface components are fixed and rendered electron-dense by the PATCO reaction. With both the penetrated and the newly-excysted *F. gigantica* larvae, *en bloc* PATCO staining resulted in a thick zone of dense staining that was closely applied to the outer aspect of the apical plasma membrane of the tegument. While this zone is very variable in thickness, and frequently seen partially detached from the apical plasma membrane, at approximately 100 nm, it is significantly thicker than the equivalent zone described by Threadgold (1976) for PATCO-stained adult *F. hepatica* (26.0 ± 5.3 nm). However, like the surface zone in
adult *F. hepatica*, that in *F. gigantica* larvae was uniform in density throughout its thickness, without differentiation into dense line, fibrillar layer or hyaline layer, suggesting that all zones of the glycocalyx are carbohydrate-rich. This is consistent with the concept of a glycoprotein layer with oligosaccharide side chains and gangliosides, integral with the outer aspect of the surface membrane, but with an overlying labile or dynamic zone of mucopolysaccharide (also positive-staining by the PATCO technique), which is present in invading *F. gigantica* larvae, but lacking, or only weakly represented, in the adult worms. In the cytoplasm of the tegumental syncytium, the T0 bodies were stained by the PATCO reaction, consistent with glycoprotein and/or mucopolysaccharide content. Whilst other organelles in the syncytium, such as heterophagosomes, spines and mitochondria, were not stained by the PATCO technique, there was patchy dense staining over the cytoplasm itself. This may represent non-membrane-bound polymorphic masses of mucopolysaccharide that are associated with the basal infolds of the syncytium, and contribute to the osmoregulatory function of the tegument in *Fasciola* spp. (Threadgold and Brennan, 1978; Fairweather et al., 1999).

4.4.2 PATCO control larvae

As expected, control batches of larvae that were not exposed to periodic acid treatment gave negative results following TCH-osmium staining, confirming that the tissues did not contain indigenous or fixative-derived aldehyde groups, and that the reaction depended on periodate oxidation of 1-2 diol or α-hydroxyamino linkages in the oligosaccharide side chains (Pearse, 1985). Aniline and dimedone treatment after periodic acid oxidation prevented staining, since these agents bind with the periodate-generated aldehyde groups, blocking subsequent reactivity with TCH-osmium. The results of the blocking tests are consistent with the carbohydrate-rich
nature of the glycoprotein and ganglioside side chains as well as that of the labile
mucopolysaccharide envelope. Neuraminidase digestion substantially reduced
staining of the glycocalyx on the surface of en bloc preparations but, like aniline and
dimedone blockage, the effect did not penetrate below the apical plasma membrane,
so reactivity in the cytoplasm of the surface syncytium, including that due to T0
bodies, was unaffected. Neuraminidase acts by cleaving sialic acid moieties,
believed to terminate the oligosaccharide side chains of glycoproteins and
glycosides in the dense line and fibrillar layer (Threadgold, 1976). While
mucopolysaccharides of the hyaline layer have not been shown to contain sialic acid,
it is possible that loss of this layer in the neuraminidase control material was
facilitated by destabilisation of the underlying dense line and fibrillar layer, but the
additional enzyme-incubation stage prior to periodic acid treatment may, in itself,
have contributed to non-specific removal of the labile component of the glycocalyx.

4.5 Role of the glycocalyx in innate and acquired immunity

It is probable that the structural and histochemical features of the tegumental
glycocalyx in *F. gigantica* larvae have evolved to confront and abrogate the effectors
of innate and acquired immunity in the naïve and immunocompetent host. The
complex polysaccharides comprising the side chains of glycoprotein and ganglioside
molecules, together with epithelial cell damage mediated by gut wall penetration, will
likely trigger receptors on tissue macrophages and dendritic cells (eg. toll-like
receptors and damage-associated molecular pattern [DAMP] receptors) and activate
the inflammasome and complement system. The resultant expression, by the host,
of inflammatory mediators including chemokines will attract eosinophils to the area,
with release of major basic protein (Jackson et al., 2009; Allen and Maizels, 2011;
Dalton et al., 2013; Kumar et al., 2018). This highly cationic molecule, cytotoxic to
many parasites, is likely to bind with, and perhaps be inactivated by, the polyanionic
glycocalyx components. Furthermore, the thick, labile and replaceable glycocalyx
may help protect the parasite surface from host-gut-derived proteases and the
secreted proteases (typically cathepsins B and L) originating from the developing
gastrodermal epithelium of the parasite itself, and used to achieve penetration of the
host tissues (Bennett, 1975; Cwiklinski et al., 2019). Later in the invasion process, or
as a result of anamnestic response in an immunocompetent host, the parasite
surface will become the target for the effectors of acquired immunity. Components of
the tegumental glycocalyx in *F. hepatica* engender the earliest and most intense
humoral immune response by the host during the early stages of invasion and
migration by the parasite (Hanna, 1980a, b; Fairweather et al., 1999), and this also
seems to be the case with *F. gigantica* infections in cattle (Hanna and Jura, 1977).
While this response has not been shown to engender effective immunoprotection in
rats against *F. hepatica* infection (Hanna et al., 1988), the existence of partially
protective antigens has been demonstrated by the occurrence of significant
resistance to secondary infection with *F. hepatica* in cattle (Doyle, 1971). The
evidence for acquisition of acquired immunity to *F. hepatica* infection in experimental
hosts and in ruminants has been reviewed by Mulcahy et al. (1999) and Spithill et al.
(1999b). Furthermore, Indonesian Thin Tail (ITT) sheep show high resistance
against *F. gigantica* infection, which appears to have both innate and acquired
features (Roberts et al., 1977a). This may represent an exceptional immunological
capacity of ITT sheep to respond to an antigen peculiar to *F. gigantica*, since
resistance is not demonstrated against *F. hepatica* (Roberts et al., 1977b; Pleasance
et al., 2011a,b). The ability of the invading fluke to continually replace the tegumental
glycocalyx apparently enables it to evade the host’s innate and acquired immune
responses, by replacing the damaged surface and sloughing off attached host
antibody and immune effector cells (Hanna, 1980a; Mulcahy et al., 1999). Insofar as
the glycocalyx of larval F. gigantica studied here, and that of F. hepatica adults
examined by Threadgold (1976) may be compared, an important difference is the
occurrence of a labile or unattached component (the hyaline layer) in the former.
This, although variable in thickness and irregularly preserved, appears to contribute
significantly to the overall thickness of the glycocalyx, and may indeed represent the
main component of the material sloughed from the surface and replaced by T0
exocytosis, as the larva progresses through the invasion process. The contribution of
this mucopolysaccharide (glycosaminoglycan) component of the glycocalyx to the
immunological stimulus, as compared to that of the attached
glycoprotein/ganglioside layer, is uncertain, but the visualisation of large amounts of
flocculent immune complex sloughing from the surface of F. hepatica larvae
incubated in vitro in 10% (v/v) immune sheep serum (Hanna, 1980a) suggests it may
be considerable. A comparable ‘immunosloughate’ prepared by incubating live adult
F. hepatica in a medium containing purified IgG from the sera of F. gigantica-infected
Indonesian ThinTail sheep was analysed by Cameron et al. (2017), and amongst 38
proteins identified were eight predicted membrane proteins, shared between F.
gigantica and F. hepatica, with potential significance for vaccine development.

4.6 Evolutionary correlates

The unattached, surface-associated mucopolysaccharide layer in invading F.
gigantica larvae may be analogous to the rhabdite-associated sulphated
glycosaminoglycan slime layer in free-living planarians, which has important roles in
physical protection, entrapment of extraneous particulate material, and locomotion
(McGee et al., 1996; Hayes, 2017).
5. Conclusion

The glycocalyx of the tegumental syncytium in liver flukes is not preserved in its entirety by conventional fixation and preparation techniques for electron microscopy, and requires specific cytochemical methods to enable visualisation. The results of ruthenium red and PATCO staining on *in vitro* penetrated and newly-excysted larvae of *F. gigantica* are consistent with those reported by Threadgold (1976) for adult *F. hepatica*, in that the tegumental glycocalyx shows cytochemical characteristics of a glycoprotein and gangliosidic layer which is carbohydrate–rich and polyanionic throughout its depth, and intimately associated with the outer aspect of the apical plasma membrane. However, in the larvae, an additional thick but irregularly distributed hyaline layer, likely comprising mucopolysaccharide, forms an outermost labile component of the glycocalyx, which usually envelops the underlying dense line and fibrillar layer (Fig. 5). The complex polysaccharides of the parasite surface, together with epithelial cell damage, are likely to evoke the effectors of innate immunity in the naïve host, whilst later in the invasion process, and in immunologically primed hosts, type 1 and type 2 responses of acquired immunity are initiated (Mulcahy et al., 1999). The polyanionic glycocalyx may have a role in absorption and inactivation of cationic effectors such as major basic protein, and may also protect the parasite surface from the action of host- and parasite-derived proteases. The dynamic replacement of damaged tegumental glycocalyx, with attached effectors of host immunity, by exocytosis of T0 secretory bodies at the apical membrane of the syncytium, likely represents the main defence mechanism of early invading *F. gigantica* larvae at the interface with the host.
Conflict of interest

No actual or potential conflict of interest was identified that could inappropriately influence or be perceived to influence, the outcome of this work.

Acknowledgements

Our thanks are due to Mr R. Ogola and Ms E. Wairimu of the Department of Parasitology, East African Veterinary Research Organisation, Muguga, Kenya, for expert technical assistance. Thanks are also due to Ms N. Dobson (Librarian, QUB / AFBI) and Mr C. Mason (Photographer, AFBI) for assistance and advice. No external funding was obtained for this work. M.W.R. was supported by grants (BB/L019612/1 and BB/N017757/1) from the Biotechnology and Biological Sciences Research Council (BBSRC).

References

intracellular sources of molecules with vaccinal and immunomodulatory potential.

Table 1
Summary of staining methods and controls.

<table>
<thead>
<tr>
<th>Staining method</th>
<th>Control</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruthenium red-glutaraldehyde-cacodylate buffer</td>
<td></td>
<td>Fix and stain anion-rich macromolecules, viz. glycoproteins, glycolipids, mucopolysaccharides</td>
</tr>
<tr>
<td>(1) Omit ruthenium red: glutaraldehyde-cacodylate fixation only</td>
<td></td>
<td>No selective fixation or staining of anion-rich macromolecules: conventional fixation and staining</td>
</tr>
<tr>
<td>(2) Neuraminidase</td>
<td></td>
<td>Cleaves sialic acid: partial breakdown of glycoproteins, glycolipids, (mucopolysaccharides?)</td>
</tr>
<tr>
<td>PATCO(^1)-paraformaldehyde-Millonig buffer</td>
<td></td>
<td>Fix and stain aldehydes generated by PA(^2) in glycoproteins, glycolipids, mucopolysaccharides</td>
</tr>
<tr>
<td>(1) Omit PA(^2) treatment</td>
<td></td>
<td>Only pre-existing or fixative-introduced aldehydes fixed and stained</td>
</tr>
<tr>
<td>(2) Aniline or dimedone before PA(^2) treatment</td>
<td></td>
<td>Blocks pre-existing or fixative-introduced aldehydes</td>
</tr>
<tr>
<td>(3) Aniline or dimedone after PA(^2) treatment</td>
<td></td>
<td>Blocks aldehydes generated by PA(^2)</td>
</tr>
<tr>
<td>(4) Neuraminidase</td>
<td></td>
<td>Cleaves sialic acid: partial breakdown of glycoproteins, glycolipids, (mucopolysaccharides?)</td>
</tr>
</tbody>
</table>

\(^1\) PATCO = Periodic acid-thiocarbohydrazine-osmium
\(^2\) PA = Periodic acid
\(^3\) (mucopolysaccharides?) = Mucopolysaccharides in Fasciola have not been shown to contain sialic acid but are lost with neuraminidase treatment, possibly due to destabilisation of the underlying glycoproteins and glycolipids, or non-specific removal by the additional procedural steps.
Figure Captions

Fig. 1. (a–e) Electron micrographs of *Fasciola gigantica*, penetrated larvae, treated *en bloc* with ruthenium red, but sections left without further staining. (a) A continuous line of dense staining (dl) is present on the outer aspect of the apical membrane, immediately beneath which the electron-lucid core and dense inner lamina of the membrane are visible (black arrows). Superficially, there is a sparse dense fibrillar layer (fl). In the cytoplasm of the tegumental syncytium, secretory bodies (T0) are evident, many having a flattened or rod-like profile, and large tertiary lysosomes (so-called ‘dense bodies’, db) are present. **Inset** shows the surface between X and Y enlarged to emphasise the electron-lucid core (arrowed) and the continuous dense line (dl) apposed to the intermittent strands of the fibrillar layer (fl). (b) In many areas, the dense line (dl) and fibrillar layer (fl), which closely follow the invaginations of the surface, are covered with moderately-stained, relatively featureless hyaline material (hm), beneath which the staining of the former features is less pronounced (white arrow). Secretory bodies (T0) with elliptical or flattened profiles are evident in the syncytial cytoplasm and, in places, the electron-lucid core and dense inner lamina of the apical membrane are visible (black arrow). (c) The hyaline material (hm) forms an irregular and discontinuous, sometimes globular layer, enveloping the dense line (dl) and fibrillar layer (fl), which are often less densely stained beneath it (white arrows). The hyaline material sometimes incorporates electron-dense patches and filaments resembling components of the fibrillar layer (black arrows). T0 = tegumental secretory body. (d) The hyaline material (hm) is seen apparently elevating the dense line (dl) and fibrillar layer (fl). T0 = tegumental secretory body. (e) In some areas the ruthenium red-stained complex, including hyaline material (hm) and dense line (dl) with fibrillar layer, sloughs from
the surface as membranous strips, whorls and vesicles (arrows). T0 = flattened profile of tegumental secretory body.

Fig. 2. Electron micrographs of *Fasciola gigantica*, newly-excysted larvae (a, d) and penetrated larvae (b, c, e); treated *en bloc* with ruthenium red, but sections left without further staining (a-c, e) or untreated with ruthenium red but sections stained with uranyl acetate and lead citrate (d). (a) A dense line (dl) and fibrillar layer (fl) are closely applied to the outer aspect of the apical plasma membrane of the tegumental syncytium, following its invaginations and valleys that have open contact with the surface (arrows). In some areas, an irregular outermost layer of hyaline material (hm) envelops the surface. TS = cytoplasm of the tegumental syncytium, unstained by ruthenium red. (b) The tegumental secretory bodies (T0) in the surface syncytium are not stained by ruthenium red, but are sometimes seen discharging their content at the surface (black arrow) apparently contributing to the hyaline material (hm), and becoming flattened in the process. dl = dense line; fl = fibrillar layer. (c) Tegumental secretory bodies (T0) approach the apical plasma membrane to contribute their content (black arrow) to the hyaline material (hm), becoming flattened in the process. Elsewhere on the surface, the dense line (dl) and fibrillar layer (fl) of the glycocalyx are clearly evident. (d) The tegumental surface of a conventionally-fixed larva, stained with uranyl acetate and lead citrate, shows a thin, poorly-defined ‘fuzzy’ glycocalyx on the outer aspect of the apical membrane (black arrows). The full thickness of the glycocalyx has not been preserved. The electron-lucid core of the apical membrane (white arrow) is visible beneath. A flattened tegumental secretory body (T0) is present in the cytoplasm. (e) Treatment with neuraminidase before ruthenium red *en bloc* staining. On the apical plasma membrane, the dense line and fibrillar layer of the glycocalyx (arrowed) are less well-defined than in the test
sections. Hyaline material is missing in this section. T0 = flattened tegumental secretory body.

Fig. 3. Electron micrographs of *Fasciola gigantica* larvae, penetrated (a-d) and newly-excysted (e), stained *en bloc* using the periodic acid-thiocarbohydrazine-osmium (PATCO) technique. (a) The surface of the apical plasma membrane of the tegumental syncytium bears a zone of dense staining (dz), approximately 100nm thick, but varying considerably throughout the body. This follows closely the contours of the surface (arrow), albeit appearing cracked. Tegumental secretory bodies (T0) in the syncytial cytoplasm are stained, especially those closer to the surface, and there is some patchy staining over the cytoplasm itself (TS). (b) The dense zone (dz) tends to crack and break, often cleaving from the surface at the level of the apical plasma membrane (arrows). T0 = tegumental secretory bodies in the syncytial cytoplasm. (c) The dense zone (dz), representing the full depth of the glycocalyx, is fragmented and partially detached from the underlying tegumental syncytium (TS). The latter contains secretory bodies (T0) which are moderately stained by the PATCO technique, and ‘dense bodies’ (db), representing heterophagosomes, which are unstained. (d) A moderately stained secretory body (T0) in the tegumental syncytium lies immediately beneath the apical surface, apparently contributing its contents (arrow) to the dense zone (dz), which represents the glycocalyx. Heterophagosomes (db) in the syncytium, are unstained. (e) A thick but irregular densely-stained zone (dz), representing the glycocalyx, is present over the apical surface of the tegument. In the underlying syncytium (TS), moderately-stained secretory bodies (T0) are present.

Fig. 4. Electron micrographs of *Fasciola gigantica* larvae, penetrated (a, b, d) and newly-excysted (c), *en bloc* controls for the PATCO technique. (a) Periodic acid
treatment omitted. The apical plasma membrane of the tegumental syncytium is lightly delineated (arrow), and there is a fine speckling of non-specific osmium dioxide deposition over the syncytial cytoplasm (TS), but there is no positive PATCO staining. (b) Treated with dimedone after periodic acid treatment but before thiocarbohydrazine-osmium (TCH) treatment. Staining of the glycocalyx is reduced to irreguarly distributed dense particles on the apical plasma membrane (arrow), and there is patchy staining over the syncytial cytoplasm (TS). (c) Treated with aniline after periodic acid treatment but before TCH treatment. The apical plasma membrane is delineated by light irregular dense particulate staining (arrow). Secretory bodies (T0) in the syncytium are moderately stained. (d) Neuraminidase treatment before PATCO staining. Glycocalyx staining is reduced to irregularly-distributed dense patches on the apical membrane (black arrows). There is patchy non-specific staining over the syncytial cytoplasm (TS) that corresponds to non-membrane-bound polymorphic masses of mucopolysaccharide (white arrows).

Fig. 5.

Diagram of the apical plasma membrane of the tegumental syncytium of *Fasciola gigantica* (based on that for *Fasciola hepatica* shown by Threadgold, 1976). This illustrates the relationship between the proposed molecular structure of the glycocalyx and the respective layers of the fixed and labile components as demonstrated by ruthenium red and PATCO staining (viz. dense line, fibrillar layer and hyaline layer). The labile mucopolysaccharide hyaline layer is envisaged as incomplete and irregular, prone to partial removal during preparative procedures.
Figure 1
Figure 2
Figure 5

Key:
- Red = monosaccharide
- Orange = mucopolysaccharide
- Green = acid sulfate monoester
- Blue = acid sulfate monoester

- Hyaline layer (mucopolysaccharide)
- Fibrillar layer (oligosaccharide & glycoside side chains)
- Dense line (glycoprotein backbone & membrane outer leaflet protein)
- Membrane core (lipid)
- Membrane inner leaflet (protein)

Syncytial cytoplasm