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Bounded Clique Cover of Some Sparse Graphs

Andrea Munaro

Laboratoire G-SCOP, Univ. Grenoble Alpes

Abstract

We show that f(x) = b 32xc is a θ-bounding function for the class of subcubic graphs and that it is best
possible. This generalizes a result by Henning et al. [Independent sets and matchings in subcubic graphs,
Discrete Mathematics 312 (11) (2012) 1900-1910], who showed that θ(G) ≤ 3

2α(G) for any subcubic triangle-
free graph G. Moreover, we provide a θ-bounding function for the class of K4-free graphs with maximum
degree at most 4. Finally, we study the problem Clique Cover for subclasses of planar graphs and graphs
with bounded maximum degree: in particular, answering a question of Cerioli et al. [Partition into cliques
for cubic graphs: Planar case, complexity and approximation, Discrete Applied Mathematics 156 (12) (2008)
2270-2278], we show it admits a PTAS for planar graphs.

Keywords: Clique cover, θ-bounded, Bounded degree graphs, PTAS

1. Introduction

A clique of a graph is a set of pairwise adjacent vertices, a clique cover is a set of cliques such that each
vertex of the graph belongs to at least one of them and an independent set is a set of pairwise non-adjacent
vertices. We denote by θ(G) and α(G) the minimum size of a clique cover and the maximum size of an
independent set of the graph G, respectively. Clearly, for any graph G, we have θ(G) ≥ α(G) and a class
of graphs G is θ-bounded if there exists a function f : N → R such that for all G ∈ G and all induced
subgraphs H of G, we have θ(H) ≤ f(α(H)). Such a function f is a θ-bounding function for G. The notion
of θ-boundedness and its complementary χ-boundedness were introduced by Gyárfás [1] in order to provide
a natural extension of the class of perfect graphs: indeed, this class is exactly the class of graphs θ-bounded
by the identity function. One of the main questions formulated in [1] is the following: given a class G, what
is the smallest θ-bounding function for G, if any? We answer this question for the class of subcubic graphs:

Theorem 1. If G is a subcubic graph, then θ(G) ≤ 3
2α(G). Moreover, f(x) = b 32xc is the smallest θ-

bounding function for the class of subcubic graphs.

Elaborating on a result by Choudum et al. [2], Pedersen conjectured that θ(G) ≤ 3
2α(G), for any subcubic

triangle-free graph G (see [3]). Recall that, if G is a triangle-free graph and α′(G) denotes the maximum
size of a matching in G, then θ(G) = α′(G) + (|V (G)| − 2α′(G)) = |V (G)| − α′(G). Pedersen’s conjecture
was confirmed by Henning et al. [3], who actually proved the following generalization:

Theorem 2 (Henning et al. [3]). If G is a subcubic graph, then

3

2
α(G) + α′(G) +

1

2
t(G) ≥ |V (G)|,

where t(G) denotes the maximum number of vertex-disjoint triangles of G. Moreover, equality holds if and
only if every component of G is in {K3,K4, C5, G11} (see Figure 1).
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Figure 1: The graphs G11 and G13.

Theorem 2 implies that f(x) = b 32xc is the smallest θ-bounding function for the class of subcubic triangle-

free graphs. Consider now the class C containing those graphs G such that α(H) ≥ |V (H)|
3 , for every induced

subgraph H of G. Gyárfás et al. [4] showed that f(x) = b 85xc is the smallest θ-bounding function for the
class C. In particular, they proved the following:

Theorem 3 (Gyárfás et al. [4]). If G ∈ C, then θ(G) ≤ 8
5α(G).

By Brooks’ Theorem [5], every connected subcubic graph different from K4 belongs to C and so f(x) =
b 85xc is a θ-bounding function for the class of subcubic graphs as well. On the other hand, Gyárfás et al. [6]
provided evidence for the following meta-statement: the graphs for which the difference θ − α is large are
triangle-free. It would therefore be natural to expect that the ratio θ

α is maximum for triangle-free graphs
and Theorem 1 partially confirms this intuition.

Our proof of Theorem 1 in Section 2 is inspired by that of Theorem 3. The main idea is rather simple and
it is based on the notion of θ-criticality, a graph G being θ-critical if θ(G− v) < θ(G), for every v ∈ V (G).
First, we show that a minimum counterexample is connected and θ-critical. We then rely on the following
result by Gallai (see [7] for a short proof and an extension):

Theorem 4 (Gallai [8]). If v is any vertex of a connected θ-critical graph G, then G has a minimum-size

clique cover in which v is the only isolated vertex. In particular, θ(G) ≤ |V (G)|+1
2 .

The final contradiction is then reached by using an appropriate lower bound for the independence number
of a subcubic graph.

Let us now consider the class of graphs with maximum degree at most 4. Joos [9] relaxed the degree
condition in Theorem 2 and showed that θ(G) ≤ 7

4α(G), for any triangle-free graph G with ∆(G) ≤ 4:

Theorem 5 (Joos [9]). If G is a triangle-free graph with ∆(G) ≤ 4, then 7
4α(G) + α′(G) ≥ |V (G)|.

Moreover, equality holds if and only if every component C of G has order 13, α(C) = 4 and α′(C) = 6.

It would be tempting to extend Theorem 5 to the class of graphs with maximum degree 4 in the same
way we extend Theorem 2 to the class of subcubic graphs. Unfortunately, the method adopted in the proof
of Theorem 1 does not seem to be powerful enough for this purpose and the price we have to pay is a bigger
θ-bounding function (see Theorem 18), likely to be far from the optimal.

In Section 3, we consider the problem of finding a clique cover of minimum size. The decision version of
this well-known NP-complete problem is formulated as follows:

Clique Cover

Instance: A graph G and a positive integer k.
Question: Does θ(G) ≤ k hold?

Email address: Andrea.Munaro@grenoble-inp.fr (Andrea Munaro)
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Since any subset of a clique is again a clique, Clique Cover is equivalent to the following problem:

Clique Partition

Instance: A graph G and a positive integer k.
Question: Does there exist a partition of V (G) into k disjoint cliques?

Moreover, Clique Partition is clearly equivalent to the well-known Colouring problem on the com-
plement graph.

Cerioli et al. [10] studied Clique Cover on planar graphs and on subclasses of subcubic graphs. In
particular, they showed that Clique Cover is NP-complete even for planar cubic graphs and that the
optimization version is MAX SNP-hard for cubic graphs. Moreover, they asked whether the problem admits
a PTAS for planar cubic graphs and conjectured that it has a polynomial-time approximation algorithm
with a fixed ratio for graphs with bounded maximum degree. In Section 3, we answer both questions in the
affirmative. We also provide some hardness results for subclasses of planar graphs and subcubic graphs.

1.1. Notation and definitions

We assume the reader is familiar with notions of graph theory; for those not defined here, we refer to [5].
Note that we consider only finite undirected simple graphs. Given a graph G, we denote its order |V (G)| by
n(G) and its size |E(G)| by m(G). A k-vertex is a vertex of degree k; in particular, we refer to a 3-vertex
as a cubic vertex. The number of k-vertices of G is denoted by nk(G). The maximum degree of a vertex
of G is denoted by ∆(G) and G is subcubic if ∆(G) ≤ 3, and cubic if each vertex is a cubic vertex. The
complete graph on n vertices is denoted by Kn. A triangle is (a graph isomorphic to) K3 and a diamond is
the graph obtained from K4 by removing an edge. For a vertex v ∈ V (G), the neighbourhood N(v) is the
set of vertices adjacent to v in G and the closed neighbourhood N [v] is the set N(v) ∪ {v}. The distance
d(u, v) from a vertex u to a vertex v is the minimum length of a path between u and v in G. A block of G
is a maximal connected subgraph with no cut-vertex.

A vertex cover of G is a set of vertices of G containing at least one endpoint for every edge of G and
the minimum size of a vertex cover of G is denoted by β(G). A k-subdivision of G is the graph obtained
from G by adding k new vertices for each edge of G, i.e. each edge is replaced by a path of length k + 1.
The line graph L(G) of G is the graph whose vertices are the edges of G, two vertices being adjacent if the
corresponding edges share an endpoint. A graph is planar if it can be drawn in the plane without crossings.
Given such a drawing Γ, the faces are the arcwise-connected open sets of R2 \ Γ. The outer face is the
unbounded face. Given a planar graph G and a fixed planar drawing Γ of G, we define L1 to be the set of
vertices incident to the outer face and, for i > 1, Li is defined recursively as the set of vertices on the outer
face of the planar drawing obtained by deleting the vertices in

⋃i−1
j=1 Lj . We call Li the i-th layer of the

drawing Γ. A graph is k-outerplanar if it has a planar drawing with at most k layers.

2. θ-bounding functions

We begin this section with a proof of Theorem 1. As mentioned in Section 1, our proof makes use of an
appropriate lower bound for the independence number given by Harant et al. [11]. In order to state their
result, we need the following definitions. A block of a graph is difficult if it is isomorphic to one of the four
graphs depicted in Figure 2. Moreover, a connected graph is bad if its blocks are either difficult or are edges
between difficult blocks. For a graph G, the number of bad components of G is denoted by λ(G) and the
maximum number of vertex-disjoint triangles of G is denoted by t(G).

Theorem 6 (Harant et al. [11]). Every subcubic K4-free graph G has an independent set of size at least
1
7 (4n(G)−m(G)− λ(G)− t(G)).

We also require the notion of distance between sets of vertices of a graph. Given two subsets X and Y
of V (G), the distance from X to Y is the quantity d(X,Y ) = minx∈X,y∈Y d(x, y), i.e. it is the minimum
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Figure 2: The difficult blocks.

length of a path between a vertex in X and a vertex in Y . With a slight abuse of notation, if T is a triangle,
we write d(T, Y ) instead of d(V (T ), Y ).

We can finally proceed to the proof of Theorem 1:

Proof of Theorem 1. Let us begin by showing that θ(G) ≤ 3
2α(G), for any subcubic graph G. Suppose, by

contradiction, that G is a counterexample with the minimum number of vertices. In the following, we deduce
some structural properties of G and we show how they lead to a contradiction. Each claim is followed by a
short proof.

Claim 7. G is connected.

Otherwise, G is the disjoint union of two non-empty graphs G1 and G2. By minimality, we have

θ(G) = θ(G1) + θ(G2) ≤ 3

2
(α(G1) + α(G2)) =

3

2
α(G),

a contradiction. ♦

Claim 8. G is θ-critical.

Indeed, suppose there exists a vertex v ∈ V (G) such that θ(G) = θ(G− v). By minimality, we have

θ(G) = θ(G− v) ≤ 3

2
α(G− v) ≤ 3

2
α(G),

a contradiction. ♦

Claim 9. G has minimum degree at least 2.

Suppose there exists a 1-vertex u of G. By minimality, we have

θ(G) ≤ θ(G−N [u]) + 1 ≤ 3

2
α(G−N [u]) + 1 ≤ 3

2
(α(G)− 1) + 1 <

3

2
α(G),

a contradiction. ♦

Claim 10. G is 2-connected.

Since every connected subcubic bridgeless graph is 2-connected, it is enough to show that G has no
cut-edges. Therefore, suppose e = u1u2 is a cut-edge and let G1 be the component of G − e containing u1
and G2 = G−V (G1) (therefore, u2 ∈ V (G2)). Clearly, θ(G) ≤ θ(G1) + θ(G2). If there exists i ∈ {1, 2} such
that a maximum independent set of Gi avoids ui, then α(G) ≥ α(G1) + α(G2) and so, by minimality,

θ(G) ≤ θ(G1) + θ(G2) ≤ 3

2
α(G1) +

3

2
α(G2) ≤ 3

2
α(G),

a contradiction. Therefore, for each i ∈ {1, 2}, every maximum independent set of Gi contains ui. This
means that α(Gi − ui) = α(Gi)− 1, for each i ∈ {1, 2}. Moreover, denoting by Ii a maximum independent
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set of Gi, we have that I1 ∪ (I2 \ {u2}) is an independent set of G and so α(G) ≥ α(G1) + α(G2)− 1. But
then, by minimality,

θ(G) ≤ θ(G1 − u1) + θ(G2 − u2) + 1

≤ 3

2
α(G1 − u1) +

3

2
α(G2 − u2) + 1

=
3

2
(α(G1)− 1) +

3

2
(α(G2)− 1) + 1

=
3

2
(α(G1) + α(G2))− 2

<
3

2
α(G),

a contradiction. ♦

Claim 11. G does not contain a diamond.

Suppose G contains a diamond and let u and v be its 2-vertices. Since G is connected and θ(K4) = α(K4),
we have uv /∈ E(G). Therefore, by minimality,

θ(G) ≤ θ(G−N [u]−N [v]) + 3 ≤ 3

2
α(G−N [u]−N [v]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. ♦

Claim 12. d(u, T ) ≥ 4, for any 2-vertex u ∈ V (G) and any triangle T ⊆ G.

Suppose first a triangle T contains a 2-vertex. By minimality, we have

θ(G) ≤ θ(G− V (T )) + 1 ≤ 3

2
α(G− V (T )) + 1 ≤ 3

2
(α(G)− 1) + 1 <

3

2
α(G),

a contradiction. Therefore, we have d(u, T ) ≥ 1, for any 2-vertex u ∈ V (G) and any triangle T ⊆ G.
Suppose d(u, T ) = 1, for a triangle T ⊆ G and a 2-vertex u ∈ V (G) \ V (T ). This means T contains

a vertex v such that uv ∈ E(G) and let v′ ∈ V (T ) \ {v}. By Claim 11, we have uv′ /∈ E(G) and so, by
minimality,

θ(G) ≤ θ(G−N [u]−N [v′]) + 3 ≤ 3

2
α(G−N [u]−N [v′]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction.
Suppose now d(u, T ) = 2, for a triangle T ⊆ G and a 2-vertex u ∈ V (G) \ V (T ). This means T contains

a vertex v such that u and v are linked by an induced path of length 2 with inner vertex not in V (T ). By
minimality,

θ(G) ≤ θ(G−N [u]−N [v]) + 3 ≤ 3

2
α(G−N [u]−N [v]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction.
Finally, suppose d(u, T ) = 3, for a triangle T ⊆ G and a 2-vertex u ∈ V (G) \ V (T ). This means T

contains a vertex v such that u and v are linked by an induced path of length 3 with no inner vertex in
V (T ). By minimality,

θ(G) ≤ θ(G−N [u]−N [v]) + 3 ≤ 3

2
α(G−N [u]−N [v]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. ♦
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Claim 13. d(u, v) ≥ 3, for any two distinct 2-vertices u and v of G.

Suppose first there exist two adjacent 2-vertices u and v and let u′ ∈ N(u) \ {v} and v′ ∈ N(v) \ {v}. By
Claim 12, we have u′ 6= v′. If there exists a vertex w ∈ V (G) adjacent to both u′ and v′ then, by minimality,

θ(G) ≤ θ(G−N [u]−N [w]) + 3 ≤ 3

2
α(G−N [u]−N [w]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. Therefore, no vertex of G is adjacent to both u′ and v′.
Consider now the graph G′ obtained from G by deleting {u, v} and by adding, if necessary, the edge u′v′.

The graphG′ is clearly simple and subcubic. Since a maximum independent set I ′ ofG′ is also an independent
set of G−{u, v} and I ′ contains at most one of the vertices u′ and v′, we have α(G) ≥ α(G′) + 1. Moreover,
we claim that θ(G) ≤ θ(G′)+1. Indeed, consider a minimum clique cover C ′ of G′. If no clique in C ′ contains
{u′, v′}, then C ′∪{u, v} is a clique cover of G of size θ(G′) + 1. On the other hand, by the paragraph above,
if a clique in C ′ contains {u′, v′}, then it must be of size 2. Therefore, (C ′ \ {u′, v′}) ∪ {u′, u} ∪ {v′, v} is a
clique cover of G of size θ(G′) + 1 and we have established our claim. But then, again by minimality, we
have

θ(G) ≤ θ(G′) + 1 ≤ 3

2
α(G′) + 1 ≤ 3

2
(α(G)− 1) + 1 <

3

2
α(G),

a contradiction.
Suppose now there exist two 2-vertices u and v such that d(u, v) = 2. Since uv /∈ E(G) then, by

minimality, we have

θ(G) ≤ θ(G−N [u]−N [v]) + 3 ≤ 3

2
α(G−N [u]−N [v]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. ♦

Claim 14. d(T1, T2) ≥ 3, for any two distinct triangles T1 and T2 of G.

By Claim 11 and since G is subcubic, we have d(T1, T2) ≥ 1. Suppose first there exist two triangles T1
and T2 at distance 1 and let u1 ∈ V (T1) and u2 ∈ V (T2) be such that d(u1, u2) = 1. Moreover, consider a
vertex u′2 ∈ V (T2) \ {u2}. By minimality,

θ(G) ≤ θ(G−N [u1]−N [u′2]) + 3 ≤ 3

2
α(G−N [u1]−N [u′2]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction.
Finally, suppose there exist two triangles T1 and T2 at distance 2 and let u1 ∈ V (T1) and u2 ∈ V (T2) be

such that d(u1, u2) = 2. In particular, u1u2 /∈ E(G) and so, by minimality,

θ(G) ≤ θ(G−N [u1]−N [u2]) + 3 ≤ 3

2
α(G−N [u1]−N [u2]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. ♦

Claim 15. Each cycle of G on four vertices contains only cubic vertices.

Indeed, suppose there exists a cycle C ⊆ G on four vertices containing a 2-vertex u of G. Let v ∈ V (C)
be such that d(u, v) = 2. By minimality and since uv /∈ E(G) (Claim 11),

θ(G) ≤ θ(G−N [u]−N [v]) + 3 ≤ 3

2
α(G−N [u]−N [v]) + 3 ≤ 3

2
(α(G)− 2) + 3 ≤ 3

2
α(G),

a contradiction. ♦

Claim 16. n2(G) > 0.
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Suppose this is not the case. By Claim 9 and Claim 10, G is a cubic bridgeless graph and the well-known
Petersen’s Theorem implies it has a perfect matching. Moreover, since G is connected and different from K4

(Claim 11), Brooks’ Theorem implies it is 3-colourable. But then θ(G) ≤ n(G)
2 ≤ 3

2α(G), a contradiction. ♦

Claim 17. 6t(G) ≤ n3(G)− 6.

Let u be a 2-vertex of G. We first show that the set S = {v ∈ V (G) : d(v, u) = 2} of vertices at distance
2 from u has size 4. Indeed, by Claim 13, the neighbours u′ and u′′ of u are cubic vertices and, by Claim 12,
u′u′′ /∈ E(G). Moreover, by Claim 15, no neighbour of u′ different from u is also a neighbour of u′′ and so
|S| = 4. Note that, by Claim 13, each v ∈ S is a cubic vertex.

Consider now the triangles of G. By Claim 12 and Claim 11, each vertex belonging to a triangle has a
neighbour not in the triangle and any two such neighbours are distinct. Moreover, by Claim 14, the set of
neighbours of T1 does not intersect the set of neighbours of T2, for any two (vertex-disjoint) triangles T1 and
T2 of G. Finally, by Claim 12, no vertex in S ∪ {u′, u′′} belongs to a triangle or is a neighbour of a triangle
and each neighbour of a triangle is a cubic vertex. Therefore, we have 6t(G) ≤ n3(G)− 6. ♦

We are finally in a position to conclude our proof. By Claim 10, G is 2-connected and since no graph
in Figure 2 is a counterexample, we have λ(G) = 0. Therefore, by Theorem 6 and recalling that n(G) =
n3(G) + n2(G) and 6t(G) ≤ n3(G)− 6, we get

α(G) ≥
°

1

7

Å
4n(G)−m(G)− t(G)

ã§
=

°
1

7

Å
4n3(G) + 4n2(G)

ã
− 1

7

Å
3

2
n3(G) + n2(G)

ã
− 1

7
t(G)

§
≥
°

1

7

Å
4n3(G) + 4n2(G)

ã
− 1

7

Å
3

2
n3(G) + n2(G)

ã
− 1

42
(n3(G)− 6)

§
=

°
1

3
n3(G) +

3

7
n2(G) +

1

7

§
. (1)

We now claim that °
1

3
n3(G) +

3

7
n2(G) +

1

7

§
≥ 1

3
(n3(G) + n2(G) + 1). (2)

This can be easily seen if n2(G) ≥ 2. Therefore, suppose n2(G) = 1 and let n3(G) = 3k+a, for some integer
0 ≤ a ≤ 2. Inequality (2) is then equivalent to°

7a+ 12

21

§
≥ a+ 2

3
,

which clearly holds for 0 ≤ a ≤ 2.
On the other hand, by Claim 7 and Claim 8, G is a connected θ-critical graph and so, by Theorem 4, we

have θ(G) ≤ n(G)+1
2 . Therefore, combining this with (1) and (2), we have

3

2
α(G) ≥ 3

2

°
1

3
n3(G) +

3

7
n2(G) +

1

7

§
≥ 1

2
(n3(G) + n2(G) + 1) =

1

2
(n(G) + 1) ≥ θ(G),

a contradiction. This concludes the proof of the first statement in Theorem 1.
As for the second statement, we need to show that, for each integer x ≥ 0, there exists a subcubic graph

G such that α(G) = x and θ(G) = b 32α(G)c. If x is even, we construct G as the disjoint union of x
2 copies

of C5. On the other hand, if x is odd, it is enough to construct G as the disjoint union of bx2 c copies of C5

together with an isolated vertex.

Let us now consider the class of graphs with maximum degree at most 4. Joos [9] relaxed the degree
condition in Theorem 2 and showed that θ(G) ≤ 7

4α(G), for any triangle-free graph G with ∆(G) ≤ 4.
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Following the intuition expressed in Section 1, it would be natural to expect that the previous inequality
holds for any graph with maximum degree at most 4. Unfortunately, the method adopted in the proof of

Theorem 1 gives an upper bound for the ratio θ(G)
α(G) which gets larger as the size of a maximum clique of G

increases. Since we believe the maximum is attained by triangle-free graphs, we present only the bound for
K4-free graphs, which is already substantially larger than the expected 7

4 .

Theorem 18. If G is a K4-free graph with maximum degree at most 4, then θ(G) ≤ 193
98 α(G).

As mentioned above, our proof of Theorem 18 resembles that of Theorem 1: a counterexample G with
minimum order must be connected and θ-critical; Theorem 4 then guarantees the existence of a clique cover

of size at most n(G)+1
2 and by using an appropriate lower bound on the independence number, we derive a

contradiction, assuming the value of α(G) is large enough. On the other hand, if the value of α(G) is small,
then n(G) is small and it is useful to consider several results on the covering gap (the difference between
the minimum size of a clique cover and the maximum size of an independent set) of small graphs, as stated
in the following theorem.

Theorem 19 (Gyárfás et al. [6]). The following hold, for any graph G:

• If n(G) ≤ 22, then θ(G)− α(G) ≤ 5;

• If n(G) ≤ 19, then θ(G)− α(G) ≤ 4;

• If n(G) ≤ 16, then θ(G)− α(G) ≤ 3;

• If n(G) ≤ 12, then θ(G)− α(G) ≤ 2;

• If n(G) ≤ 9, then θ(G)− α(G) ≤ 1.

We can finally proceed to the proof of Theorem 18:

Proof of Theorem 18. Suppose, by contradiction, that G is a counterexample with the minimum number
of vertices. As in the proof of Theorem 1, it is easy to see that G is connected and θ-critical. On the
other hand, Locke and Lou [12] showed that, for any connected K4-free graph G with ∆(G) ≤ 4, we have

α(G) ≥ 7n(G)−4
26 . Combining this with Theorem 4, and if α(G) ≥ 7, we get

θ(G) ≤ n(G) + 1

2
≤ 26α(G) + 11

14
≤ 193

98
α(G).

For the small values of α(G), we rely on Theorem 19. If α(G) = 6, then n(G) ≤ 22 and so θ(G) ≤ 11.
If α(G) = 5, then n(G) ≤ 19 and so θ(G) ≤ 9. If α(G) = 4, then n(G) ≤ 15 and so θ(G) ≤ 7. If α(G) = 3,
then n(G) ≤ 11 and so θ(G) ≤ 5. If α(G) = 2, then n(G) ≤ 8 and so θ(G) ≤ 3. Finally, if α(G) ≤ 1,
then G is complete and θ(G) = α(G). It immediately follows that, for all the values of α(G), we have
θ(G) ≤ 193

98 α(G), a contradiction.

It is worth noticing that slightly modifying the proof of Theorem 18, we can obtain a short proof of
Theorem 5:

Proof of Theorem 5. Suppose, by contradiction, that G is a counterexample with the minimum number
of vertices. As we have seen above, G is a connected θ-critical graph. On the other hand, Fraughnaugh
Jones [13] showed that α(G) ≥ 4

13n(G), for any triangle-free graph G with ∆(G) ≤ 4. Combining this with
Theorem 4, and if α(G) > 4, we get

θ(G) ≤ n(G) + 1

2
≤ 13α(G) + 4

8
<

7

4
α(G).

For the remaining values of α(G), we use again Theorem 19. If α(G) = 4, then n(G) ≤ 13 and so
θ(G) ≤ 7. If α(G) = 3, then n(G) ≤ 9 and so θ(G) ≤ 4. If α(G) = 2, then n(G) ≤ 6 and so θ(G) ≤ 3.
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Finally, if α(G) ≤ 1, then G is complete and θ(G) = α(G). It immediately follows that θ(G) ≤ 7
4α(G), a

contradiction.
Note that, if G is connected and θ-critical, then equality holds only if α(G) = 4 and n(G) = 13. But the

graph G13 in Figure 1 (also known as the (3, 5)-Ramsey graph) is the only graph G such that ω(G) = 2,
ω(G) = α(G) = 4 and n(G) = 13 (see [14]). On the other hand, it is easy to see that equality cannot hold
if G is not θ-critical.

We conclude this section with two conjectures on the extremal role of triangle-free graphs.

Conjecture 20. If G is a subcubic graph, then θ(G) = 3
2α(G) if and only if every component of G is either

C5 or G11.

Conjecture 21. If G is a graph with maximum degree at most 4, then θ(G) ≤ 7
4α(G), with equality if

and only if every component of G is G13.

3. The Clique Cover problem

Clique Cover is a well-known NP-complete problem polynomially equivalent to Colouring. Cerioli
et al. [10] showed that the optimization version of Clique Cover is MAX SNP-hard for cubic graphs.
We begin this section with an inapproximability gap result for Clique Cover restricted to subcubic line
graphs. We first need the following auxiliary lemma, which implies that the well-known Vertex Cover
problem restricted to triangle-free graphs polynomially reduces to Clique Cover for line graphs.

Lemma 22 (Folklore). For any graph G, we have θ(L(G)) ≤ β(G). Moreover, if G is triangle-free, then
equality holds.

Proof. Let Q be a minimum-size vertex cover of G. With each v ∈ Q, we can associate the clique Cv ⊆
V (L(G)) corresponding to the edges incident to v. But then

⋃
v∈Q Cv is a clique cover of L(G) and so

θ(L(G)) ≤ β(G).
Suppose now G is triangle-free and let Q be a minimum-size clique cover of L(G). Each clique C ∈ Q

corresponds to the edges incident to a vertex vC ∈ V (G) and
⋃
C∈Q vC is a vertex cover of G. Therefore,

we have θ(L(G)) = β(G).

The following theorem implies that it is NP-hard to approximate Clique Cover for subcubic line graphs
within 391

390 .

Theorem 23. Clique Cover is not approximable within 391
390 , unless P = NP, even when restricted to

line graphs of 2-subdivisions of cubic triangle-free graphs.

Proof. Chleb́ık and Chleb́ıková [15] showed that it is NP-hard to approximate Vertex Cover within 391
390 ,

even for 2-subdivisions of cubic graphs: they construct a gap-preserving reduction from Vertex Cover
restricted to cubic graphs, for which they provided an NP-hard gap in [16], just by a 2-subdivision of the
input graph. Since their NP-hard gap result for Vertex Cover in [16] holds for cubic triangle-free graphs
as well, it follows that it is NP-hard to approximate Vertex Cover within 391

390 , even for 2-subdivisions
of cubic triangle-free graphs. Therefore, given a 2-subdivision of a cubic triangle-free graph G, we simply
construct its line graph L(G). Since θ(L(G)) = β(G), the conclusion immediately follows.

We now turn to the decision version of Clique Cover when restricted to planar line graphs with
maximum degree at most 4:

Theorem 24. Clique Cover is NP-complete even for line graphs of 2-subdivisions of planar cubic triangle-
free graphs.
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Proof. Note that, given a graph G and a 2-subdivision G′ of G, we have β(G′) = β(G) + |E(G)| (see [15]
for a proof). Since Vertex Cover is NP-hard for planar cubic triangle-free graphs [17], then it is NP-hard
for 2-subdivisions of planar cubic triangle-free graphs and, by Lemma 22, we can easily obtain the claimed
NP-hardness of Clique Cover.

Cerioli et al. [10] showed that Clique Cover is NP-hard for planar cubic graphs. Not surprisingly,
it remains NP-hard even for planar 4-regular graphs, as implied by the following theorem. The proof
immediately follows by the result in [17] mentioned above.

Theorem 25. Clique Cover remains NP-complete even when restricted to line graphs of planar cubic
triangle-free graphs.

It is therefore natural to look for approximation algorithms for Clique Cover when restricted to graphs
having bounded maximum degree or to planar graphs. Cerioli et al. [10] showed that Clique Cover admits
a polynomial-time 5

4 -approximation algorithm for subcubic graphs and they conjectured it has a polynomial-
time approximation algorithm with a fixed ratio for graphs with bounded maximum degree. This can be
easily verified once we notice the close relation between θ-boundedness of a certain class of graphs and
approximation algorithms for Clique Cover for that class. Indeed, since α(G) ≤ θ(G), if we could show
“algorithmically” that a class of graphs is θ-bounded by a linear function, we would obtain a constant-factor
approximation algorithm for Clique Cover. Note that it is not clear whether the proofs of Theorem 1
and Theorem 18 can be turned into “algorithmic” ones. Nevertheless, the following holds:

Theorem 26. Clique Cover admits a linear-time k-approximation algorithm for graphs with maximum
degree at most k.

Proof. Consider the following greedy algorithm: first, find a maximal independent set I of the input graph
G and set C = ∅; then, for each v ∈ I, add the edges incident to v to the set C and return C. Clearly, the
algorithm runs in linear time and it returns a clique cover of G. Moreover, we have

|C| ≤ k · |I| ≤ k · α(G) ≤ k · θ(G),

and so the greedy algorithm is indeed a k-approximation algorithm for graphs with maximum degree at
most k.

Theorem 23 shows that Clique Cover admits no PTAS, even for subcubic graphs. Cerioli et al. [10]
asked whether this could be possible in the special case of planar cubic graphs. In the rest of this section,
using Baker’s well-known technique [18], we show that Clique Cover indeed admits a PTAS even for
planar graphs. The idea of Baker’s technique is the following: partition the planar graph into k-outerplanar
graphs, solve the problem optimally for each k-outerplanar graph and finally show that the union of these
solutions is in fact a “near-optimal solution” for the original graph.

Bodlaender [19, 20] showed that k-outerplanar graphs have tree-width at most 3k − 1. Moreover, using
dynamic programming, it is possible to determine θ(G) in polynomial time for any graph G of bounded
tree-width (see, e.g., [21]). In fact, many other problems are solvable in polynomial time for graphs of
bounded tree-width (see [21]) and this led Baker [18] to design the mentioned technique, which allows a
PTAS for some of them (for example, Independent Set and Vertex Cover) when restricted to planar
graphs. From the sketch of the technique we gave above, it should be clear that the problems which can be
treated are those for which the local solutions can be combined into a global solution. We now show that
Clique Cover is indeed one of them:

Theorem 27. Clique Cover admits a PTAS for planar graphs.

Proof. Given a planar drawing Γ of the input graph G, we construct the layers Li as defined in Section 1.1.
Note that the neighbours of a vertex vi ∈ Li must be in Li−1 ∪ Li ∪ Li+1. Finally, given ε > 0, we set
k = d 2εe.
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A slice Gij is an induced subgraph defined as follows. For 1 ≤ i ≤ k, we denote by Gi0 the subgraph of
G induced by the vertices which belong to the consecutive layers between the first and the i-th. Moreover,
for a fixed 1 ≤ i ≤ k and a j ≥ 1, we denote by Gij the subgraph of G induced by the vertices which belong
to the k consecutive layers whose indices range between (j − 1)(k− 1) + i and j(k− 1) + i (note that j runs
until each vertex of G belongs to at least one Gij). By definition, each slice is k-outerplanar and so we can
determine in polynomial time a minimum-size clique cover Cij of Gij , for each 1 ≤ i ≤ k and j ≥ 0. Finally,
for each i, we set Ci =

⋃
j≥0 Cij . By construction,

⋃
j≥0 V (Gij) = V (G) and so each Ci is a clique cover of

G. We return the one with minimum size.
Let now Q denote a minimum-size clique cover of G and, for 0 ≤ i ≤ k − 1, denote by Qi the set of

cliques in Q which contain at least one vertex in
⋃
j≡i (mod k) Lj . Clearly,

⋃
Qi = Q and each clique in Q

belongs to at most two distinct Qi’s. But then there exists an index ` such that

|Q`| ≤
2

k
|Q| ≤ ε|Q|.

Let Q`j denotes the set of cliques in Q containing at least one vertex in V (G`j) (if ` = 0, we set G`j = Gkj).
Since C`j is a minimum-size clique cover of G`j , then |C`j | ≤ |Q`j |, for each j ≥ 0. Consider now the sum∑
j |Q`j |. Each clique is counted exactly once, except those which contain vertices from layers Lj with j ≡ `

(mod k) (i.e. those in Q`), which are counted exactly twice. But then
∑
j |Q`j | = |Q|+ |Q`|. Summarizing,

we have
|C`| ≤

∑
j

|C`j | ≤
∑
j

|Q`j | = |Q|+ |Q`| ≤ |Q|+ ε|Q| = (1 + ε)|Q|.

Therefore, the algorithm above is a polynomial-time approximation scheme.
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373–395.
[9] F. Joos, Independence and matching number in graphs with maximum degree 4, Discrete Mathematics 323 (2014) 1–6.

[10] M. R. Cerioli, L. Faria, T. O. Ferreira, C. A. J. Martinhon, F. Protti, B. Reed, Partition into cliques for cubic graphs:
Planar case, complexity and approximation, Discrete Applied Mathematics 156 (12) (2008) 2270–2278.

[11] J. Harant, M. A. Henning, D. Rautenbach, I. Schiermeyer, The independence number in graphs of maximum degree three,
Discrete Mathematics 308 (23) (2008) 5829–5833.

[12] S. C. Locke, F. Lou, Finding independent sets in K4-free 4-regular connected graphs, Journal of Combinatorial Theory,
Series B 71 (1) (1997) 85–110.

[13] K. Fraughnaugh Jones, Independence in graphs with maximum degree four, Journal of Combinatorial Theory, Series B
37 (3) (1984) 254–269.

[14] S. P. Radziszowski, Small Ramsey Numbers, Electronic Journal of Combinatorics DS1.
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