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Abstract—To support the ever increasing number of devices
in massive multiple-input multiple-output systems, an excessive
amount of overhead is required for conventional orthogonal pilot-
based channel estimation (CE) schemes. To relax this stringent
constraint, we design a machine learning (ML)-based time-
division duplex scheme in which channel state information (CSI)
can be obtained by leveraging the temporal channel correlation.
The proposed ML-based predictors involve a pattern extraction
and CSI predictor, which can be implemented via either a
convolutional neural network (CNN) and autoregressive (AR)
predictor or an autoregressive network with exogenous inputs
recurrent neural network (NARX-RNN), respectively. Numerical
results demonstrate that ML-based predictors can remarkably
improve the prediction quality, and the optimal CE overhead is
provided for practical reference.

I. INTRODUCTION

With the exponential growth of devices, the conventional
channel estimation (CE) using orthogonal pilots is undoubt-
edly incompetent considering the limited overhead resources.
Meantime, in practice, channel state information (CSI) is
correlated over time [1], a phenomenon known as channel
aging. Leveraging this intrinsic phenomenon, CE overhead has
tremendous potential to be reduced by rigorous CSI prediction.

Channel aging is the variation of the channel caused by the
user movement,the impact of which has been characterized in
prior literature [2, 3]. Paper [3] points out that the performance
degradation caused by such phenomenon can be partly compen-
sated by applying channel prediction, which implies that this
practical impairment can be learned and used for estimating
CSI. An effective method to model an aging channel is as
autoregressive (AR) stochastic model whose parameters are
computed based on the channel correlation matching property
among adjacent coherence intervals [4]. However, according
to the Levinson-Durbin recursion which is used for computing
model parameters, the model order is bounded by the data
amount of previous CSI samples.

Recently, machine learning (ML) based non-linear methods
have been successfully applied in wireless communications [5],
which motivates us to adopt relevant techniques to forecast
CSI. Considering that the CSI forecasting is a typical time
series learning problem, which has been fully discussed in the
field of financial analysis, a recurrent neutral network (RNN) is
a perfectly suitable NN for exploring the hidden pattern within
CSI variations. Moreover, in massive multiple-input multiple-
output (mMIMO) scenarios, CSI series from each antenna at

This work was supported by the RAEng/The Leverhulme Trust Senior
Research Fellowship LTSRF1718\14\2.

the base station (BS) has the same autocorrelation pattern for a
particular terminal. Leveraging this property, and by mapping
multiple CSI series into a matrix, we are able to apply a similar
technique from the field of image recognition, i.e, convolutional
NN (CNN) to detect the pattern of CSI variation, and with the
aging pattern as a prior knowledge, the prediction accuracy
can be substantially improved.

In particular, we aim to reduce CE overhead via CSI
prediction by taking advantage of the autocorrelation across
CSI series. We first provide a ML-based time division duplex
(TDD) scheme in which CSI is obtained via a ML-based
predictor instead of conventional pilot-based channel estimator.
Then, two ML-based structures are designed to improve the
CSI prediction, namely, CNN combined with AR predictor
(CNN-AR) and autoregressive network with exogenous inputs
(NARX) RNN (CNN-RNN). The main idea is to use CNN to
identify the channel aging pattern, and adopt AR predictor or
NARX-RNN to forecast CSI. Numerical results demonstrate
that the CNN-AR outperforms other architectures, including
CNN-RNN, in terms of prediction accuracy, and provides the
optimal CE overhead with respect to accuracy requirements.

II. SYSTEM MODEL

A TDD single-cell multi-user mMIMO system is considered,
where a BS having N antennas serves K single-antenna users.
We assume that the channel is static during each coherence
interval, but it does not change independently from one interval
to the next. More precisely, there is a correlation over the
channel coherence intervals. This is reasonable because the
scattering environment shares a high degree of similarity across
several intervals [6].

The N × 1 channel vector between the BS and the kth user
at the lth coherence interval is modeled as

gk [l] = hk [l]
√
βk, (1)

where βk represents large-scale fading, and hk [l] is the small-
scale fading. The overall channel from K users to the BS can
be represented in matrix form as

G [l] = H [l]B
1
2 , (2)

where B is a diagonal matrix whose kth element is βk, and
H [l] = [h1 [l] , . . . ,hK [l]] ∈ CN×K .

A. ML-Based TDD
The frame structure in conventional TDD mainly consists

of CE, uplink (UL) and downlink (DL) phases, in which the
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Fig. 1. Conventional TDD versus ML-based TDD. In learning-based block
(LB), CE overhead is removed from frame structure for P intervals due to
the adoption of ML-based CSI prediction.

channels estimated during the CE phase are further used for
UL and DL transmission. Different from conventional TDD,
the proposed ML-based TDD scheme increases the resources
for data transmission by reducing the CE overhead from the
frame structure, and CSI is obtained using a ML technique
via exploring the correlation among adjacent intervals. The
ML-based TDD scheme contains two types of blocks, namely,
head block (HB) and learning-based block (LB), shown in Fig.
1. The following assumptions are made in the ML-based TDD
scheme:
• A HB consists of V conventional TDD coherence intervals;

A LB consists of P ML-based coherence intervals (without
CE) and J (J < V ) conventional TDD coherence
intervals.

• In a HB, channels of V intervals are estimated using
the minimum mean square error (MMSE) estimator.
After a HB, CSI is predicted via ML-based predictors
for P intervals, and is then updated for the following
J intervals via the MMSE estimator to improve the
prediction accuracy for the subsequent LB.

B. Channel Aging Model

In general, aging property is mainly caused by the move-
ment of the users, and such feature can be approximately
characterized via the second order statistics of the channel, i.e.,
autocorrelation function (ACF) [4].

We assume that the propagation path experiences a two-
dimensional isotropic scattering, whose corresponding normal-
ized continuous-time ACF at the BS is

R (t) = J0 (2πfdt) , (3)

where J0 (·) is the zeroth-order Bessel function of the first kind,
fd is the maximum Doppler frequency given by fd = vfc/c
with v is the velocity of user, c is the speed of light, and fc
is the carrier frequency. Although the formula indicates that
the channel impulse response varies continuously, we notice
that the variation is nearly imperceptible over period of dozens
of channel samples. Therefore, we consider the discrete-time
ACF of fading channel coefficients as

R [l] = J0 (2πfn |l|) , (4)

where |l| is the delay in terms of the number of coherence
intervals, and fn = νTsfd represents the normalized Doppler

shifts with sampling duration Ts and the number of samples
in a coherence interval ν.

In this paper, we assume the same autocorrelation among
all channels from a particular user to the BS antennas. Hence,
given the desired ACF as (4) for l > 0, we model the small-
scale fading series as [4]

hk [l] = −
∑Q

q=1
aqhk [l − q] + ω [l] , (5)

where ω [l] is the uncorrelated complex white Gaussian noise
vector with zero mean and variance

σ2
ω = R [0] +

∑Q

q=1
aqR [−q], (6)

and {aq}Qq=1 are the AR coefficients which are evaluated via the
Levinson-Durbin recursion [4]. As Levinson-Durbin recursion
is a well known algorithm, we skip the details for saving space.

Remark 1: Given a desired ACF, the fitting accuracy of AR
model improves with higher order Q. However, according to
the Levinson-Durbin recursion, Q is upper bounded by the
amount of date of previous CSI samples, which implies that
the performance of channel prediction via the AR estimator is
limited by the number of coherence intervals V in a HB for
the proposed ML-based TDD scheme.

Intuitively, the small-scale fading vector in (5) for a particular
user follows the Gaussian distribution with zero mean and same
variance. Denote by ḣk the small-scale fading in a typical
interval from the kth user to a typical antenna at the BS; its
variance can be calculated via the Green’s function [7]

σ2
ḣk

=
∑∞

j=1
G2
jσ

2
ω, (7)

where

Gj ,


1, j = 0,∑j
q=1 aqGj−q, j ≤ Q,∑Q
q=1 aqGj−q, j > Q,

i.e., hk[l] ∼ CN (0, σ2
ḣk

IN ),∀l.

C. MMSE Estimation

We assume that in a conventional coherence interval, the
orthogonal pilots are used, and the channel is estimated using
the MMSE estimator. For ease of analysis, we suppose that
the length of pilot signal is equal to number of users, i.e.,

Ψ =
[
ψT1 , . . . ,ψ

T
K

]T
∈ CK×K , where ψk for k = 1, . . . ,K

with ΨΨH = IK . The operation (·)T and (·)H denote the
matrix transpose and conjugate transpose, respectively. The
users use the same power pp to transmit pilots, and the received
training signal at the BS is

Yp [l] =
√
KppG [l]Ψ + N [l] , (8)

where N [l] is white additive Gaussian noise matrix whose
elements have variance σ2

n. Correlating Yp [l] with the pilot
matrix Ψ, the BS obtains

Rp [l] =
1√
Kpp

Yp [l]Ψ
H , (9)



and the received noisy channel vector from the kth user at the
lth interval is

rp,k [l] = gk [l] +
1√
Kpp

N [l]ψHk . (10)

Recalling the channel model in (1), the channel vectors from
the kth user to the BS is distributed as gk [l] ∼ CN

(
0, β̇kIN

)
according to (7) with β̇k = βkσ

2
ḣk

. Thus, the MMSE estimate
of gk [l] follows

ĝmmse
k [l] ∼ CN (0, β̇kγ

mmse
k IN ), (11)

where γmmse
k = β̇k

β̇k+µ
with µ =

σ2
n

ppK
, and the variance of the

estimator error emmse
k follows CN (0, (1− γmmse

k )β̇kIN ).

III. ML-BASED CHANNEL FORECASTING APPROACHES

We aim to implement multi-step prediction for CSI to
minimize the CE overhead. In this section, two types of NN
architectures, i.e., CNN-AR and CNN-RNN, are discussed for
CSI forecasting. The idea behind two ML-based architectures
is identical; that is the time-series predictor collaborates with
the CNN which is used to extract the ACF pattern.

A. CNN-AR Approach

CNNs have been proved to have satisfactory performance
in image classification problems [8]. Their key feature is
that they conduct different function units alternatively, e.g.,
convolution layers, pooling layers, full connection layers.
More importantly, CNNs treat the feature extraction and
the classification identically; in particular, feature extraction
is implemented by convolution layers and classification is
approached by full-connection layers. As the shared weights in
convolution layers and the weights in full-connection layers are
trained together, the total classification error of a well designed
CNN can be significantly minimized.

The mechanism of CNNs inspires us to adopt such archi-
tecture to extract the ACF pattern. As N CSI series for a
particular user vary according to the same ACF, by mapping
multiple CSI series into a matrix, the input of CNN is

op

(
G̈k

)
= [op (ĝ

mmse
k [1]) , . . . , op (ĝ

mmse
k [V ])] . (12)

This can be thought as a 2D image data, and the corre-
sponding ACF is thought as label λ. The operator op(·)
is an designed manipulation to map the complex-valued
CSI vector into a 2N -dimensional real-valued vector, i.e.,
op (gk [l]) = [Re{gk [l]}T , Im{gk [l]}T ]T . By classifying the
pattern of ACF from op(G̈k), we are able to regenerate the
channel series using pre-trained CSI predictor without real time
calculation.

We choose the adaptive moment estimation (ADAM) as the
optimizer, and use the minimum square error (MSE) as the
loss function, which is defined as

Ccnn =
1

2

∑M

m=1

∑LP

lP=1

(
λmlP − λ̂

m
lP

)2
, (13)

where M represents the training data amount, LP represents
the total number of ACF patterns, λmlP represents the lPth
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Fig. 2. (a). CNN-AR architecture in which CNN comprises an operator with
two convolution layers and two max pooling layers and a full-connect layer
for extraction, and an AR predictor whose coefficients are pre-computed. (b).
CNN-RNN architecture in which CNN has same structure as CNN-AR, and
NARX-RNN comprises an operator with D delays and a refine unit for CSI
recovery.

dimension of pattern label for the mth input data, and the
estimates of which are denoted by λ̃mlP .

The procedure for CNN-AR scheme is described in Fig.
2(a). Given G̈k as inputs, CNN transforms the complex
matrix into a real-valued matrix and identifies the CSI ACF
pattern. Then, system loads the pre-computed AR coefficients
of the corresponding aging pattern, and predicts CSI for the
subsequent interval as

ĝcnn
k [l] = −

∑Q

q=1
aqĝ

mmse
k [l − q]. (14)

According to the proposed ML-based TDD scheme, for the first
P intervals in LB, the NN output of the current interval is used
as the input to forecast CSI for the next interval. Mathematically
speaking,

ĝcnn
k [l + l′] = −

∑Q

q=l′+1
aqĝ

mmse
k [l + l′ − q]

−
∑l′

q′=1
aq′ ĝ

cnn
k [l + l′ − q′], l′ ∈ P, (15)

until the next conventional coherence interval.
Note that the given CNN structure is a simple NN which

can only distinguish dozens of ACF patterns with acceptable
accuracy. As ACF is dominated by the Doppler shift, which
has hundreds of patterns, the engineering implementation of
such architecture should be much deeper. In this paper, we
aim to emphasize the feasibility of our scheme, and simplify
the system structure for ease of training.

B. CNN-RNN Approach

As CNN in the CNN-RNN structure is identical to that in
CNN-AR, we only introduce the CSI predictor, i.e., NARX-
RNN in this part.

The general form of NARX-RNN is commonly described as

f [l] = f (x [l] , f [l − 1] , f [l − 2] , . . . ,θ) , (16)

where a one-step prediction of f [l] depends on the previous
several outputs, input x [l], and some parameters θ. Such
architecture is implemented by introducing delays in the
mechanism where the output has direct connections to the



past. In this paper, we adopt a widely used NARX RNN form,
specifically given in [9]

f [l] = tanh

(
W [0]x [l]+

∑D

d=1
W [d] f [l−d]+b

)
, (17)

where D is the maximum number of delays, the weight matrix
W[d] ∈ R2N×2N , W[0] ∈ R2N×2N , and bias vector b ∈
R2N×1 are the parameters trained in the NN.

As there is no input from the MMSE estimator at the first P
intervals in LB, to fit our problem, we make a minor revision
in (17). Taking the channel of kth user as example, the NARX
RNN is described as

op (ĝ
rnn
k [l]) = tanh (W [0] op (ĝ

mmse
k [l − 1])

+
∑D

d=1
W [d] op (ĝ

mmse
k [l−d]) + b

)
, (18)

where ĝrnn
k [l] is the NARX-RNN prediction. Therefore, the

corresponding refine-unit for transforming the output from a
real value into a complex value is given by

ru (op (gk [l]))n = (op (gk [l]))n + i(op (gk [l]))n+N ,

where (op (gk [l]))n is the nth element of op (gk [l]), and i =√
−1.
Consistent with typical RNNs, the training of this network

is based on minimizing the sum-of-squared error cost function

Crnn =
1

2
op (ĝ

rnn
k [l]− gk [l])

H
op (ĝ

rnn
k [l]− gk [l]) . (19)

The weight matrix W[0] is updated via its gradient

4W [0] = η∇W[0]Crnn, (20)

where η is a learning rate and ∇W[0] is the Jacobian in the
derivative whose (i, j)th element is ∂

∂w[0]i,j
with w [0]i,j being

the (i, j)-th element of matrix W [0]. By assuming that the
weights at different time instances are independent, the gradient
can be expanded over l − d time steps via the chain rule

∇W[0]C =
∑N

n=1
(ĝrnn
k [l]− gk [l])

H∇ĝmmse
k [l]ĝ

rnn
k,n [l]

·
(∑D

d=1
∇W[d]ĝ

mmse
k [l]

)
, (21)

where ĝrnnk,n represents the estimated CSI from kth user to
nth antenna at BS. The methodology of training is called
backpropagation through time (BPTT) algorithm, ans is detailed
in [10].

The procedure for CNN-RNN is described in Fig. 2(b). At
the beginning, NARX-RNN loads the pre-trained parameters
according to the received ACF pattern from CNN, and use
g̃mmse
k as input to predict the CSI for the next interval. In

TABLE I
SYSTEM PARAMETERS.

Number of ACF patterns LP 10
Number of intervals in HB V 8
Transmit power pp 0 dBm
Background noise power σ2

n −174 dBm/Hz
Carrier frequency 2GHz

Fig. 3. Comparison of prediction NMSE among AR predictors, CNN-AR and
CNN-RNN with respect to normalized Doppler shift fn. Results are shown
for J = 4 and U = 10.

the subsequent interval, same as CNN-AR, the NN output of
current interval is used as input to predict the CSI, and we
repeat this procedure for P intervals.

Note that NARX-RNN also suffers from the vanishing
gradient and long-term dependencies problem [10]. However,
such drawback will not cause a major issue to our problem
since channel series only have strong relation within adjacent
intervals.

IV. NUMERICAL RESULTS

In our simulations, the BS deploys 128 antennas, and K
users are randomly distributed in a 1 km2 area. We also set
a guard zone of 100meters for each user, i.e., the distance
between any user and BS is no less than 100m. The large-scale
fading βk is modeled as a function of user at distance dk, and
is given as

βk (dk) = 30.2 + 23.5 log10 (dk) . (22)

Regarding the CE overhead, we consider the ratio of pilot
length to the number of samples in a coherence interval ν as
our metric, which is defined by

Ocon = K/ν (23)

for a conventional TDD system, and

OML = Kφ/ν (24)

for ML-based TDD system, where

φ ,
JU + V

PU + JU + V
, (25)

where U is the number of LBs.
The NMSE is chosen to evaluate the prediction performance,

which is defined as

NMSE [l]=E

{
1

K

K∑
k=1

‖ĝk [l]− gk [l]‖22

/
‖gk [l]‖22

}
(26)

for the lth step prediction. Some of the important parameters
related to the simulation are shown in Table I.

We first verify the accuracy of the CSI prediction for the
proposed ML-based architecture, and choose the AR estimator



Fig. 4. Convergence of the prediction NMSE among AR predictors, CNN-AR
and CNN-RNN with respect to P . Results are shown for J = 4, U = 10,
and fn = 0.1.

as the benchmark to illustrate the performance improvement.
Fig. 3 compares the NMSE of estimation for different predictors
in terms of the normalized Doppler shift fn. It is intuitive
that the CNN-AR structure outperforms other predictors in all
situations. Compared with simple AR predictors, significant
gains can be observed due to the fact that pre-computed AR
coefficients are much more precise than real-time computation.
Moreover, the performance of CNN-RNN is slightly superior to
that of AR predictor which indicates that RNNs indeed support
functionalities similar to those provided by AR predictors.
Compared with the performance of CNN-RNN in one-step
prediction, the accuracy improvement in the second step
prediction improves remarkably for small fn. More importantly,
for large fn, all structures performs poorly. The reason is that
the independency of CSI over intervals increases with larger
Doppler shifts, which implies that the proposed ML-based
TDD scheme is not suitable for super high mobility scenarios.

Fig. 4 shows the average NMSE over 10 LBs against the
number of intervals in LB P . Obviously, both ML-based
structures outperform the AR predictors, while CNN-AR can
further yield at least 1.5 dB gain on every step prediction. The
reason is two-fold: One is that the channel series is modelled
strictly according to its ACF, and with CNN extracting the
aging pattern correctly, the coefficients loaded for AR predictor
are precisely accurate. Another one is that the designed NARX-
RNN may be not powerful enough to explore the hidden
feature within the CSI series; in this case, other time-series
architectures, such as long short-term memory RNN, should
be considered. It is worth noting that Lp used in simulations is
small. In practice, the number of ACF pattern can be hundreds
which requires to extend ML-based architecture to a much
deeper and larger structure for recognizing. To best of our
knowledge, there is no general criterion to design the NN size,
and the choose of parameters that depend on Lp remains an
implementation-level.

Finally, Fig. 5 illustrates the tradeoff between the CE
overhead and prediction accuracy with CNN-AR predictor
for ML-based TDD. First, the CE overhead can be sharply
reduced by adopting the ML-based TDD scheme. For example,

Fig. 5. Optimal φ with respect to P under different NMSE requirements.
Results are shown as (P,NMSE, φ) with fn = 0.1 and Ocon = 0.3.

to achieve -18.5 dB of NMSE for P = 1 case, the ML-based
TDD scheme can save 77% amount of overhead; and given
P = 5, the ML-based TDD scheme can save more than a
half amount of overhead while achieving an NMSE less than
-10 dB. Also, the figure illustrates the limits of the proposed
ML-based TDD scheme, where a strict prediction requirement
is not achievable for multi-step prediction.

V. CONCLUSION

In this paper, we designed a ML-based TDD scheme as
well as the corresponding ML-based architecture to estimate
the channels in massive MIMO systems under channel aging
effects. Combining the CNN with AR predictor or NARX-
RNN, the proposed architecture achieves significant gains in
prediction quality, and remarkable tradeoff between prediction
quality and CE overhead by leveraging the ACF pattern.
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