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The impulses in vibration signals are used to identify faults in the bearings of rotating machinery. However, vibration signals are
usually contaminated by noise that makes the process of extracting impulse characteristic of localized defect very challenging.
In order to effectively diagnose bearing with noise masking vibration signal, a new methodology is proposed using integrated
(i) nonlocal means- (NLM-) based denoising and (ii) improved morphological filter operators. NLM based denoising is first
employed to eliminate or reduce the background noise with minimal signal distortion. This denoised signal is then analysed
by a proposed modified morphological analysis (MMA). The MMA analysis introduces a new morphological operator which is
based on Modified-Different (DIF) filter to include only fault relevant impulsive characteristics of the vibration signal. To improve
further performance of themethodology the length of the structure element (SE) used inMMA is optimized using a particle swarm
optimization- (PSO-) based kurtosis criterion.The results of simulated and real vibration signal show that the integrated NLMwith
MMAmethod as well as the MMAmethod alone yields superior performance in extracting impulsive characteristics of vibrations
signals, especially for signal with high level of noise or presence of other sources masking the fault.

1. Introduction

Condition monitoring-diagnostic methods have an impor-
tant role in increasing reliability and safety of mechanical
systems [1–8]. Rolling element bearings are widely used com-
ponents in rotating machines and their faults are one of the
most frequent reasons for machine failures or performance
deterioration (smooth and quiet running). Therefore, it is
crucial to be able to quickly and accurately detect faults
in rolling element bearings. Different measurements are
used for detection and diagnosis of bearings faults such as
acoustics, temperature, wear debris analysis, and vibration;
though, the last one is the most widely used. By analysing the
changes in vibration signals caused by faulty components, the
root of faults can be identified [9–11].

In a mechanical system, when a rolling element strikes a
localized defect, an impulse of short duration is generated.
The impulses are generated periodically and their character-
istics depend on the location of the localized defect in the

bearing, that is, the outer race, the inner race, or the rolling
element. Hence, the types of bearing fault can be effectively
identified by extracting the fault related impulses in vibration
signal. To identify the bearing characteristic frequencies
(BCF) associated with faults in the bearing elements, envelop
analysis has been developed [12]. In this method, first, the
vibration signal is filtered around the mechanical resonance
of the machine. Then, an amplitude demodulation technique
and Fourier transform are applied to extract fault features.
However, the selection of the filtering frequency band is a
challenge in this approach. To effectively select the filtering
frequency band, spectral kurtosis (SK) and its advanced
methods [13, 14] have been developed.

In order to analyse the vibration signal, time-frequency
analysis such as wavelet transform has been introduced as an
efficient method [15–17]. However, using the wavelet trans-
form, the performances are strongly dependent on the choice
of the wavelet basis function. Only signal features that
correlate well with the shape of the wavelet function have the
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potential to lead to high value coefficient. All other features
may be completely ignored. Another time-frequencymethod
widely used in vibration signal analysis is Hilbert-Huang
Transform (HHT) [18–20]. This technique works by per-
forming a timed adaptive decomposition operation, known
as empirical mode decomposition (EMD), to process the
signal. The signal is then decomposed into a set of complete
and almost orthogonal components known as intrinsic mode
functions (IMFs), which are almost a monocomponent.
However, performing the EMD method is computationally
expensive.

In recent years, a new nonlinear signal processing tech-
nique based on mathematical morphology (MM) has been
developed. The MM is employed to decompose a signal into
several physical parts according to the geometric character-
istics of a certain structuring element (SE). The SE is a shape,
used to probe with a given signal to evaluate how this shape
fits or misses the shapes in the signal. The transformations of
MM require only addition and comparison operators. Hence,
they impose low computation burden, which is advanta-
geous for real-time applications. The MM has been success-
fully applied for various aspects of signal processing [21–
23], including extracting impulsive component, for rolling
element bearing fault diagnosis. Nikolaou and Antoniadis
[24] introduced MM into fault diagnosis of rolling element
bearing with a flat structure element (SE). They suggested
that the length of SE should be 0.6 times the pulse repetition
period for efficient extraction of fault frequency. Zhang et al.
[25] proposed a multiscale to extract morphological features
at different scales for bearing fault diagnosis. Wang et al. [26]
adopted an improvedmorphological filter for vibration signal
to extract the impulsive attenuation signals. In this approach,
the SE is constructed in the form of impulsive attention, and
a new criterion is suggested to optimize the SE. Li et al. [27]
suggested aweightedmultiscalemorphological gradient filter
for rolling element bearing fault detection to depress the noise
at large scale and preserve the impulsive shape details at small
scale. Work conducted by Dong et al. [28] indicated that the
length of SE should be chosen based on the signal-to-noise
ratio (SNR) criterion for efficient extraction of impulsive
component. Raj and Murali [29] proposed a new algorithm
for the SE selection based on kurtosis. In summary, several
morphology-based analyses have been developed for roller
bearing fault diagnosis; though most of them were designed
based on Average (AVR) (5) or Different (DIF) (6) filters.

However, the AVR or DIF filters have been shown to be
inadequate for extracting impulsive features in bearing fault
diagnosis. In addition, the presence of high measurement
noise results inmorphology analyses, based on AVR andDIF,
to capture a lot of noise impulses that are unrelated to the
bearing faults. Therefore, the design of morphology analysis
is difficult when it comes to extracting fault related impulses
from such noise signal. In such cases, existing morphology
analyses are inadequate. If the noise impulses are filtered out,
then the morphology analysis becomes much more effective
in extracting the faulty impulses from the denoised signal.

Denoising approach based on nonlocal means (NLM) in-
troduced by Buades et al. in [30] is a data-driven diffusion
mechanism. It has been widely and successfully applied

for image denoising [31, 32]. The basic idea of the NLM
algorithm is to measure the similarity between two pixels by
evaluating the distance between small patches centered on
these two pixels. In this way, the NLM method can provide
denoising while minimizing signal distortion compared to
the discrete wavelet transform [33].The performance of NLM
denoising for vibration signals has been studied and verified
in our previous work [18]. In [18], the vibration signal is first
denoised by using NLM.The denoised signal is then decom-
posed by EMD to extract the impulse characteristics. This
approach, however, requires intensive EMDcomputation and
was shown to be less effective for signals with high level noise.

In this paper, in order to effectively diagnose fault bearing
with noise masking vibration signal, a new methodology
is proposed using integrated (i) nonlocal means- (NLM-)
based denoising of the vibration signal to eliminate or reduce
unnecessary noise and (ii) modified morphological analysis
(MMA) based on a novel filter operator (Modified-DIF filter)
and real-time optimization of SE.

The purpose of the NLM denoising is to reduce or elim-
inate the impulse characteristics due to measurement noise
[18].Thepurified signal obtained through theNLMdenoising
is then analysed by MMA to extract the bearing fault related
impulse characteristics.

As a next step the modified morphological analysis
(MMA) is developed and used in order to effectively extract
the impulse characteristics of the bearing fault in vibration
signal with all other nonrelevant to bearing fault character-
istics being suppressed to zero. This is achieved by defining
a new morphological operator, called Modified-DIF filter,
which has capability to include only impulse characteristics
of the vibration signal with all other signal components being
suppressed to zero.

Simultaneously, the lengths of SEs are automatically ad-
justed using particle swarm optimization (PSO) based kur-
tosis maximization rule. The PSO algorithm [34] is known
as an efficient method in finding an optimal solution for
the real optimization problems, such as optimizing the
selected feature inputs [35] and optimizing the parameters of
support vector machine (SVM) classifier [36]. By optimizing
the length of SE, the proposed morphological operator
(Modified-DIF filter) can maximize the number of extracted
impulses and therefore has a better fault related impulse
extracting capability compared with the existing AVR or DIF
filter approaches.

The proposedmethod is tested through the simulated im-
pulse attenuation signals and real bearing signal with differ-
ent level of noises.

The results of simulated and real rolling element bearing
vibration signal analyses show that the integrated NLM and
MMAmethod as well as theMMAmethod alone yields supe-
rior performance in extracting impulsive characteristics of
vibrations signals, especially for vibration signal with high
level of noise or presence of other sources masking the
vibration signal.

The rest of this paper is organized as follows. Section 2
introduces a new morphological operator and the criterion
for SE selection based on PSO-based kurtosis criteria. The
hybrid NLM denoising and MMA for roller bearing fault
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diagnosis is presented in Section 3. Section 4 shows the
performance of the proposed method compared with the
existing methods in impulse extracting capability for a
simulated experiment signal. Section 5 shows the application
of the proposed method to detect the fault using real bearing
vibration data. Finally, conclusions are given in Section 6.

2. Modified Morphology Analysis

2.1. Theory Fundamental of Mathematical Morphology. The
theory of theMMwas first introduced as an image processing
methodology by Serra [37]. Based on this idea,morphological
filter with functional structure for one-dimensional time
series data is then presented by Maragos and Schafer [38].
In morphological signal processing, the shape of the signal
is modified by transforming it through its intersection with
the structure element (SE).

Let𝑓(𝑛) be the one-dimensional signal which is a discrete
function over a domain 𝐹 = (0, 1, 2, . . . , 𝑁 − 1). And let 𝑔(𝑚)
be the SE, which is the discrete function over a domain 𝐺 =(0, 1, 2, . . . ,𝑀−1). The primary morphological operators are
dilation and erosion.

Dilation is the operator that combines two sets using
vector addition of set element and is defined as

(𝑓 ⊕ 𝑔) (𝑛) = min [𝑓 (𝑛 − 𝑚) − 𝑔 (𝑚)] ,
𝑚 ∈ 0, 1, 2, . . . ,𝑀 − 1, (1)

where ⊕ denotes the operator of dilation.
Erosion is themorphological dual to dilation. It combines

two sets using the vector subtraction of set elements and is
defined as

(𝑓Θ𝑔) (𝑛) = min [𝑓 (𝑛 + 𝑚) − 𝑔 (𝑚)] ,
𝑚 ∈ 0, 1, 2, . . . ,𝑀 − 1, (2)

where Θ denotes the operator of erosion.
Based on the erosion and dilation operators, two other

basic morphological operators, the opening and closing, can
be further defined as

(𝑓 ∘ 𝑔) (𝑛) = (𝑓Θ𝑔 ⊕ 𝑔) (𝑛) (3)

(𝑓 ∙ 𝑔) (𝑛) = (𝑓 ⊕ 𝑔Θ𝑔) (𝑛) , (4)

where ∘ stands for the opening operator and ∙ for the closing
operator.The effects of the four operators in processing for an
example time series by the flat structure element are shown in
Figure 1.

According to the results of the examples, we can see
that the erosion operator can smooth negative impulses
and inhibit positive impulses, while the dilation operator
can smooth positive impulses and inhibit negative impulses.
The opening preserves negative impulses but levels posi-
tive impulses, while the closing operator preserves positive
impulses but fills up the valleys. Thus, closing and opening
can be applied to detect positive and negative impulses,
respectively.

2.2. Morphological Operators. Based on the theory of MM,
there are two factors that need to be defined for morpho-
logical analysis: the morphological operator and the SE [28].
In practice, morphological operators are chosen based on
the prior knowledge of positive or negative peaks of the
signal. However, it is difficult to obtain the prior knowledge
of the positive or negative peaks of the signal. In this case,
opening or closing operators cannot be used for extracting
the impulsive component. If this is the case, two kinds of
morphological operators that combine the operation of four
basic operators have been proposed and widely used for
impulsive extraction [21–26]:

(1) Average (AVR) filter

AVR (𝑓) = (𝑓 ∙ 𝑔 + 𝑓 ∘ 𝑔)
2 (5)

(2) Different (DIF) filter

DIF (𝑓) = 𝑓 ∙ 𝑔 − 𝑓 ∘ 𝑔 (6)

TheAVR filter can be used to flatten the positive and negative
impulsive features, corresponding to the smoothing filter.The
DIF filter can be used to extract the positive and negative
impulsive features simultaneously [21].

Although the AVR or DIF filter can effectively extract the
impulsive component, its performance is decreased due to the
existence of other components (not impulsive component).
In this paper, a modification of the DIF filter is proposed,
namely, Modified-DIF filter, for better extracting impulsive
characteristics. It is designed as follows:

(3) Modified-DIF filter

Modified-DIF (𝑓) = (𝑓 ∙ 𝑔1 − 𝑓 ∘ 𝑔1)
− ((𝑓 ∙ 𝑔1) ∘ 𝑔2 − (𝑓 ∘ 𝑔1) ∙ 𝑔2) , (7)

where 𝑔1 and 𝑔2 are different structure elements. The mor-
phological operator in (7) includes two parts: (1) DIF filter
(𝑓 ∙ 𝑔−𝑓 ∘ 𝑔) that is used to extract the positive and negative
impulse characteristics simultaneously and (2)NOTDIF filter
((𝑓∙𝑔1)∘𝑔2−(𝑓∘𝑔1)∙𝑔2) that is used to level the positive and
negative impulse characteristics simultaneously. Hence, by
subtracting from theDIF filter to theNOTDIFfilter, the result
contains only the impulse component; all other components
are suppressed to zero. By this way, the impulse components
can be clearly identified.

2.3. Particle Swarm Optimization-Based Kurtosis Criteria
for SE Selection

2.3.1. Kurtosis Criteria for SE Selection. In addition to the
morphological operators, the selection of SE also affects the
processing results [25]. Generally, only when the shape and
scale of the signal are matched to those of SE, the signal can
be reserved.The basic shapes of SEs include flat, line, triangle,
semicircle, polynomials, and cosine curves. According to
Zhang et al. [23], the shapes of the SE have less effect on
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Figure 1: Signals produced from the applications of various morphological operators: (a) original signal; (b) signal after erosion; (c) signal
after dilation; (d) signal after closing; and (e) signal after opening.
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Figure 2: The results of using improper SEs lengths: (a) the filtered signal after using too short a length of SE for opening; (b) the filtered
signal after using too short a length of SE for closing; (c) the filtered signal after using too long a length of SE for opening; (d) the filtered
signal after using too long a length of SE for closing.

the analysis, so in order to simplify the computation, the flat
SE is chosen in this study. And, in order to retain the shape
characters of the signal entirely, all the height of the flat SE is
defined as zero. The length of the SE is a crucial parameter
for MM analysis. Considering much shorter length, much
more impulsive features will be extracted from the signal
while much noise will be retained, thereby making the
demodulation of the signal difficult. On the other hand, with
large length, few impulsive features will be extracted, and
some useful information will be leveled. An illustration of
effect of the improper SEs selection forMM analysis is shown
in Figure 2.

The length around 0.6 times the pulse repetition period
which proposed by Nikolaou and Antoniadis [24] is used in
many studies. However, it does not suit all situations [28].

In this paper, kurtosis for SE’s length selection is proposed.
Kurtosis is used because of its sense to the number of impulses
[25]. The larger value of the kurtosis indicates more number
of peaks, which is an indication of the presence of the bearing
fault. Hence the kurtosis criterion can be used to select the
optimal length of SE. The definition of kurtosis is

kurt (𝑦) = 𝐸 (𝑦4) − 3 [𝐸 (𝑦2)]2 , (8)

where 𝑦 is the sampled time series and 𝐸 represents the
mathematical expectation of the series.

2.3.2. Selecting the Lengths of SE Using PSO. Particle swarm
optimization (PSO) is a well-known optimization method
based on population-based computation technique [34].
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Compared to other heuristic optimization techniques such as
genetic algorithm (GA), PSO possess several advantages such
as simple concept, easy implementation, robustness to control
parameters, and computational efficiency.

In PSO, population is called swarm and individuals are
called particles.The 𝑖th particle is characterized by its current
position vector 𝑥𝑖(𝑡) = (𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), . . . , 𝑥𝑖𝐷(𝑡)) in the search
space, where 𝐷 is the dimensionality of the search space,
and velocity vector V𝑖(𝑡) = (V𝑖1(𝑡), V𝑖2(𝑡), . . . , V𝑖𝐷(𝑡)). Each
particle maintains a record of its personal best position𝑥best,𝑖(𝑡) = (𝑥best,𝑖1(𝑡), 𝑥best,𝑖2(𝑡), . . . , 𝑥best,𝑖𝐷(𝑡)), and the whole
swarm of particles maintains a record of global best posi-
tion 𝐺best,𝑖(𝑡) = (𝑔best,𝑖1(𝑡), 𝑔best,𝑖2(𝑡), . . . , 𝑔best,𝑖𝐷(𝑡)). Particles
move in the search space to search for the optimal solution.
During the movement, each particle updates its position and
velocity according to the distance to its personal best position
and the distance to the global best position by the following
equations:

V𝑡+1𝑖𝑑 = 𝜔 ∗ V𝑡𝑖𝑑 + 𝑐1𝑟1 ∗ (𝑝𝑡best,𝑖𝑑 − 𝑥𝑡𝑖𝑑) + 𝑐2 ∗ 𝑟2
∗ (𝑔𝑡best,𝑖𝑑 − 𝑥𝑡𝑖𝑑)

(9)

𝑥𝑡+1𝑖𝑑 = 𝑥𝑡𝑖𝑑 + V𝑡+1𝑖𝑑 , (10)

where 𝑡 represents the tth iteration in the evolutionary
process. 𝑑 ∈ 𝐷 represents the dth dimension in the search
space. 𝜔 is the inertia weight. 𝑐1 and 𝑐2 are the acceleration
constants. 𝑟1 and 𝑟2 are random values uniformly distributed
in [0, 1].

In this paper, the optimal length of SE 𝑔1 and 𝑔2 are
selected based on PSO. Four-real-code PSO is employed
here to encode the length for each SE. For example, for
one individual SE(𝑔1) = 0.4356𝑇 and SE(𝑔2) = 0.7801𝑇
(SE(𝑔𝑖) 𝑖 = 1, 2 is the length of SE 𝑔𝑖 and 𝑇 is the pulse
repetition period), the length of SEs is encoded according to
a position of PSO, as follows:

𝑥𝑡
𝑖1⏞⏞⏞⏞⏞⏞⏞4 𝑥
𝑟

𝑖2⏞⏞⏞⏞⏞⏞⏞3 𝑥
𝑡

𝑖3⏞⏞⏞⏞⏞⏞⏞5 𝑥
𝑡

𝑖4⏞⏞⏞⏞⏞⏞⏞6⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
SE(𝑔1)

𝑥𝑡
𝑖5⏞⏞⏞⏞⏞⏞⏞7 𝑥
𝑡

𝑖6⏞⏞⏞⏞⏞⏞⏞8 𝑥
𝑡

𝑖7⏞⏞⏞⏞⏞⏞⏞0 𝑥
𝑡

𝑖8⏞⏞⏞⏞⏞⏞⏞1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
SE(𝑔2)

, (11)

where 𝑥𝑡𝑖𝑑 ∈ [0, 9], 𝑑 = 1, . . . , 8 is the position of particle 𝑖 at
iteration 𝑡 in the 𝑑th dimension.

The procedure that describes the proposed SE’s length
selection is as follows.

Step 1. Initialize the parameters for PSO including swarm
size, maximum iteration number, inertia weight, and velocity
range.

Step 2. Initialize the positions 𝑥𝑖 and velocities V𝑖 of each
particle.

Step 3. For each position 𝑥𝑖 of the particle from swarm, filter
the signal by MMA associated with the lengths of SEs. Then,
compute the corresponding fitness function. In this paper,
fitness function is the kurtosis value of the filtered signal.

Step 4. Evaluate the fitness value of each initialized particle.
Set the current position of each particle as its individual best

position 𝑝best,𝑖. Set the particle position with the best fitness
value in the swarm as the global best position 𝐺best.

Step 5. Update the velocity and position of each particle with
(9) and (10) to generate a new swarm.

Step 6. For each candidate particle 𝑝𝑖 of new swarm, filter
the signal with MMA and compute the corresponding fitness
function.

Step 7. Evaluate the fitness value of the newly updated
particles, and then update 𝑝best,𝑖 and 𝐺best of the swarm.
For an individual particle, if the newly updated fitness value
is smaller than the history local best value, the local best
position 𝑝best,𝑖 would be replaced by its current position. For
the swarm of particles, if the current fitness value is smaller
than the global best one, the global best position 𝐺best would
be replaced by the current position.

Step 8. If the maximum number of iterations is not yet
reached, return to Step 5.

Step 9. Select the best global position 𝐺best in the swarm and
filter signal with corresponding MMA. For example, if the
best global position 𝐺best = [0, 1, 3, 4, 9, 2, 7, 8], the optimal
length of SE 𝑔1 is 0.0134𝑇 and 𝑔2 is 0.9278𝑇.
3. Integrated Nonlocal Means Denoising and

Modified Morphology Analysis

3.1. Nonlocal Means (NLM) Algorithm. The NLM filter is
based on the assumption that signal content is likely to repeat
itself within some neighborhood and in neighboring frame
[30]. Starting from a true signal, 𝑢, a noise observation of
signal 𝑦 is defined as 𝑦 = 𝑢 + 𝑛, where 𝑛 is an additive noise.
The NLM denoised values, 𝑢̂(𝑖), at the sample, 𝑖, are obtained
by a weighted average of all samples in their neighborhoodΩ𝑖:

𝑢̂ (𝑖) = 1𝑀 (𝑖) ∑
𝑗∈Ω𝑖

𝜔 (𝑖, 𝑗) 𝑦 (𝑖) , (12)

where 𝑀(𝑖) = ∑𝑗∈Ω𝑖 𝜔(𝑖, 𝑗) is a normalization constant.
The weights, 𝜔(𝑖, 𝑗), meet the conditions 0 < 𝜔(𝑖, 𝑗) < 1
and ∑𝑗 𝜔(𝑖, 𝑗) = 1, which compare the neighborhood of
samples 𝑖 and 𝑗. The weight, 𝜔(𝑖, 𝑗), takes a large value if the
neighborhood of sample 𝑖 is similar to the neighborhood of
sample 𝑗; otherwise it takes a small value. It is computed as
[18, 36]

𝜔 (𝑖, 𝑗) = exp(−∑𝜆∈Δ (𝑦 (𝑖 + 𝜆) − 𝑦 (𝑗 + 𝜆))2
𝐵Δ2𝛿2 ) . (13)

Here, 𝛿 is a bandwidth parameter, Δ represents a local patch
of samples surrounding 𝑖, and 𝐵Δ is its total sample. 𝑑2 =∑𝜆∈Δ(𝑦(𝑖+𝜆)−𝑦(𝑗+𝜆))2 denotes the sumof the squared point-
to-point dissimilarity between the sample in the patches
centered on 𝑖 and 𝑗.
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Modified morphology analysis 

Fast Fourier transform Defect diagnosis

Figure 3: Flowchart of the integrated defect feature extraction technique.

3.2. NLMParameters Selection. Theperformance of theNLM
denoising is required to the selection of the NLMparameters.
There are three NLM parameters: the patch size 𝐵Δ (specified
as a half-width𝐾, 𝐵Δ = 2𝐾 + 1), the size of neighborhoodΩ𝑖
(specified as a half-width 𝑃,Ω𝑖 = 2𝑃+ 1), and the bandwidth𝛿. These parameters can be effectively selected based on the
analysis in our previous work [18].

3.3. Hybrid NLM Denoising and MMA for Bearing Fault
Diagnosis. When a fault in one surface of a bearing strikes
another surface, an impulsive of short duration is created.
The characteristics of the impulses depended on the location
of the localized defect, that is, the outer race, the inner
race, or the rolling element. By correctly extracting such
impulsive characteristics, the types of roller bearing fault
can be effectively identified. Morphology analysis is an
efficient tool for impulsive extraction. It has been widely
applied to roller bearing fault diagnosis [23–29]. However,
in the presence of noise impulses, the morphology anal-
ysis will extract both the fault related impulses and noise
impulses. Consequently, the fault detection results based on
the extracted impulses are sometime failing because the peaks
corresponding to the noise impulses are sometime bigger
than the peaks corresponding to the bearing characteristic
impulses.

In order to enhance the performance of roller bearing
fault diagnosis, a hybrid NLM denoising and MMA is
proposed in this paper. The purpose of the NLM denoising
is to eliminate or at least reduce the noise impulses due to the
measuring device. The purified signal obtained through the
NLMdenoising is then analysed byMMA to correctly extract
the fault related impulses. By this way, the fault diagnosis
result for roller bearing fault diagnosis is more credible.
The flowchart of the proposed fault diagnosis is shown
in Figure 3.

4. Simulated Experiments

4.1. Simulated Signal Analysis. In order to illustrate the
superior performance of the MMA as well as hybrid NLM
denoising and MMA analysis, a simulated vibration signal is
derived to analyse and compare with the existing methods

such as morphological operators based on AVR or DIF. The
simulated signal consists of three components [18]:

𝑥 (𝑡) = 𝑥1 (𝑡) + 𝑥2 (𝑡) + 𝑥3 (𝑡) , (14)

where 𝑥1(𝑡) denotes a series of exponential decaying pulses
(the periodic frequency is 11 Hz and the impulsive function
in one period is 5𝑒−10𝑡 sin(10𝜋𝑡)). Figure 4(a) shows the
waveform of the 𝑥1(𝑡). 𝑥2(𝑡) = cos(2𝜋15𝑡) + 1.2 cos(2𝜋115𝑡)
denotes the harmonic signal and is shown in Figure 4(b).
Figure 4(c) shows themixed signal of the impulsive signal and
harmonic signal (𝑥1(𝑡)+𝑥2(𝑡)). 𝑥3(𝑡) represents the generated
Gaussian white noise. Considering the general situation, the
low level (the standard deviation is 0.5) and the high level
(the standard deviation is 3) Gaussian white noise signal are
used here. The sampling frequency is 1024Hz, and the length
is 1024. In comparison with the real bearing vibration signal,𝑥1(𝑡) represents the impulsive signal which is generated by
either the inner race or outer race or rolling elements; 𝑥2(𝑡)
and 𝑥3(𝑡) represent the noise effects due to other machine
elements and the measuring device, respectively.

Figure 5 shows the FFT spectrum of the composite signal
in low level and high level Gaussian white noise. From
this figure, the impulsive frequency 11Hz and its harmonic
frequencies, such as 22, 33, and 44Hz, are obtained. However,
the harmonic frequencies 15 and 115Hz are high at the same
time.

In bearing fault diagnosis, the target is to extract the
impulsive frequencies (i.e., 11 Hz and 22Hz), while reduc-
ing the harmonic frequencies (i.e., 15Hz and 115Hz) and
eliminating the white noise due to the measuring devices.
In the following subsection we analyse the performance of
the morphological operators based on AVR filter, DIF filter,
proposed Modified-DIF filter, and proposed Modified-DIF-
based NLM denoising filter in extracting impulsive features.

The morphology methods based on AVR filter, DIF
filter, Modified-DIF filter, and Modified-DIF-based NLM
denoising are used to analyse the simulated signals. Flat SEs
are selected for the analysis, and the optimal length of the
SEs is automatically determined by the maximum kurtosis
criterion using PSO.The parameters of the NLM are selected
as 𝐾 = 20 and 𝑃 = 1000. According to bandwidth selection
procedure, the bandwidth value is selected as 𝛿 = 0.6𝜎̂,
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Figure 4: Waveform of simulated signal: (a) impulsive signal; (b) harmonic signal; (c) sum of impulsive signal and harmonic signal (𝑥1(𝑡) +𝑥2(𝑡)); (d) composite signal with low level white noise; (e) composite signal with high level white noise.
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Figure 5: FFT spectrum of the simulated signal: (a) composite signal with low level Gaussian white noise and (b) composite signal with high
level Gaussian white noise.

where 𝜎̂ is an estimated noise standard deviation [18]. The
comparison results among morphology analyses in the case
of low level Gaussian white noise are shown in Figure 6, and
in the case of high level Gaussian white noise, they are shown
in Figure 7.

From Figure 6, the extracted impulsive component by
Modified-DIF filter, shown in Figure 6(e), is better than
that of DIF and AVR filters shown in Figures 6(a) and
6(c). As a result, the impulsive frequencies corresponding
to the peaks are 11Hz and its harmonics are 22, 33Hz, and
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Figure 6: Simulated signal with low level Gaussian white noise: (a) waveform and (b) FFT spectrum of the simulated signal after DIF
morphology analysis; (c) waveform and (d) FFT spectrum of the simulated signal after AVR morphology analysis; (e) waveform and (f)
FFT spectrum of the simulated signal after Modified-DIF morphology analysis; (g) simulated signal after NLM denoising; (h) waveform; and
(i) FFT spectrum of the simulated signal after Modified-DIF morphology-based NLM denoising analysis.
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Figure 7: Simulated signal with high level Gaussian white noise: (a) waveform and (b) FFT spectrum of the simulated signal after DIF
morphology analysis; (c) waveform and (d) FFT spectrum of the simulated signal after AVR morphology analysis; (e) waveform and (f) FFT
spectrum of the simulated signal after Modified-DIF morphology analysis; (g) simulated signal after NLM denoising; (h) waveform; and (i)
FFT spectrum of the simulated signal after Modified-DIF morphology-based NLM denoising analysis.
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Figure 8: Simulated signal: (a) FFT spectrum of the simulated signal after NLM-EMD for low level Gaussian white noise and (b) FFT
spectrum of the simulated signal after NLM-EMD for high level Gaussian white noise.

so on, reflected in the FFT spectrum of simulated signal.
Using Modified-DIF morphology analysis (Figure 6(f)) is
more obvious than the FFT spectrum of simulated signal
using DIF or AVR morphology analysis (Figures 6(b) and
6(d)). By usingNLMdenoising to denoise theGaussian white
noise signal before applying the Modified-DIF morphology
analysis (the denoised signal shown in Figure 6(g) is very
close to the original signal shown in Figure 4(c)), the FFT
spectrum shown in Figure 6(i) is more obvious than the
morphology analysis without denoising.

In the case of high level Gaussian white noise, the
difference among morphology analyses is more obvious. In
this case, the impulse component, which is extracted by using
morphology analysis based on the AVR filter and DIF filter,
is very weak, as shown in Figures 7(a) and 7(c). Conse-
quently, the impulses reflected in their FFT spectrum are not
identifiable, as shown in Figures 7(b) and 7(d). Using the
morphology analysis based on the Modified-DIF operator,
the impulse component is better extracted, as shown in
Figure 7(e). However, due to the effect of the noise impulses,
the peak 11Hz and its harmonic are hidden by the peaks of
noise frequencies, as shown in Figure 7(f). In this case, the
application of the NLM denoising method is very necessary.
The denoised signal after using NLM denoising is shown in
Figure 7(g) and the Gaussian white noise is much decreased.
Usingmorphology analysis for this denoised signal, the faulty
impulses are much better extracted, as shown in Figure 7(h).
Therefore, the peak 11Hz and its harmonics 22, 33Hz, and
so on can be found clearly in the FFT spectrum of the signal
after hybrid NLM denoising analysis and MMA, as shown in
Figure 7(i).

To further show the effectiveness of the hybrid NLM
denoising analysis and MMA, we compare its performance
with the approach NLM-EMD [18]. The FFT spectrums of
the signal after the NLM-EMD for the low and high level
noise signals are shown in Figures 8(a) and 8(b), respectively.
From Figure 8 we can see that the NLM-EMD can extract the
faulty impulses effectively for low level noise signal but fail
for high level noise signal. In contrast, the proposed hybrid
NLM denoising analysis and MMA is effective for both low
and high level noise signal, as shown in Figures 6(i) and 7(i).

The results verify that the proposed hybridNLMandMMA
method is more effective in impulse extraction for localized
fault bearing, especially in scenarios with high noise signals.

Figure 9: Experiment setup for vibration monitoring.

Table 1: Specification of bearing 6205-2RS-JEM SKF.

Parameters Values (in.)
Inside diameter 0.9843
Outside diameter 2.0472
Thickness 0.5906
Ball diameter 0.3126
Pitch diameter 1.537
Number of ball (𝑁) 9
Contact angle (𝛼) 0

5. Application on Defective Rolling
Element Bearing

In this section, the performance of the proposed methods
based on MMA and hyrbrid NLM denoising and MMA is
verified through the real roller bearing vibration signal. The
bearing vibration data used in this experiment are taken
from the benchmark data, Case Western Reserve University
Bearing Data Center (2013) [39]. Figure 9 shows the setup
of the experiment to collect the vibration signal. The system
includes a 2 hp motor (left), a torque transducer/encoder
(center), a dynamometer (right), and control electronics (not
shown). The test bearings are put in the output of the motor
shaft, as shown in the figure. Table 1 displays the specification
of the testing bearings in the experiment setup. The bearing
faults are generated by using electrodischargemachining.The
accelerometers, which are placed at the 3 o’clock position
on the drive end of the motor housing, are used to collect
the vibration signal. The data are collected at the frequency
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Figure 10: Waveform in the time domain of the vibration signal from inner race defect.

of 12,000Hz. The rotation frequency of the motor is 𝐹𝑟 =29.95Hz.
Based on the principle operation of the bearing, when

the motor shaft is rotating, the friction will be generated
between inner race, ball, and outer race. Depending on the
geometry of the bearing, the friction will create the impulse
vibration signal at specific frequency.Hence, different specific
frequencies will be generated according to the source of
the fault, that is, inner race, outer race, or ball fault. The
characteristic frequencies for IR fault 𝑓𝑖 and OR fault 𝑓𝑜 are
formulated as

𝑓𝑖 = 𝑁2 𝐹𝑟 (1 + 𝑑𝐷 cos𝛼) (15)

𝑓𝑜 = 𝑁2 𝐹𝑟 (1 − 𝑑𝐷 cos𝛼) , (16)

where 𝑁 denotes the number of ball, 𝐹𝑟 denotes the rotation
frequency, 𝑑 denotes the diameter of the ball, 𝐷 is the pitch
diameter, and 𝛼 is the contact angle.

5.1. Application on Inner Race Fault Detection. In this section,
the performance of the proposed methods for detecting the
inner race fault is shown. From (15), when the shaft rotational
speed is 1797 rpm, the characteristic frequency for the inner
race fault is obtained as 162.19Hz. The time domain of the
recorded vibration signal is shown in Figure 10.

Figure 11 shows the performance of the MMA and hybrid
NLM denoising and MMA. From Figure 11(a) which shows
the waveform of the inner race vibration signal after MMA,
the impulses generated by the inner race fault are easy to
identify in the filtered signal compared to the original one
shown in Figure 10. Figure 11(b) shows the FFT spectrum
of the MMA filtered signal. It is obvious to see that the
peaks are obtained at frequency 𝑓𝑖 = 161.1Hz. The obtained
peak value is very close to the calculated characteristic
frequency, 162.19Hz. In addition, the harmonic frequency2𝑓𝑖 = 323.7Hz is visible clearly. Other peaks are identified
to 2𝐹𝑟 ≈ 60.06Hz, 𝑓𝑖 − 2𝐹𝑟 ≈ 102.5Hz, 𝑓𝑖 + 2𝐹𝑟 ≈221.2Hz, and 2𝑓𝑖 − 2𝐹𝑟 ≈ 263.7Hz. However, due to the
effects of noise, many noise impulses and the small peaks
corresponding to noise impulses existed in the MMA filtered
signal and FFT spectrum, respectively. To suppress these
noise impulses, NLM denoising is applied. The denoised
signal obtained by NLM denoising is shown in Figure 11(c).

Compared to the original signal shown in Figure 10, the
noise component has been diminished. As a result, the FFT
spectrum (shown in Figure 11(e)) of the signal after hybrid
NLM denoising and MMA (shown in Figure 11(d)) contains
few peaks corresponding to noise impulses than that without
NLM denoising shown in Figure 11(b).

5.2. Application on Outer Race Fault Detection. The recorded
vibration signal from a bearing with an outer race defect is
shown in Figure 12. From (16), when the motor rotates at
the speed of 1797 rpm, the calculated bearing characteristic
frequency for an OR fault is 107.36Hz. Figure 12 shows the
time domain of the vibration signal. Figure 13 demonstrates
the processing results by the MMA and the hybrid NLM
denoising andMMA analyses. As shown in Figures 13(a) and
13(d), bothMMAand hybridNLMdenoising andMMAhave
good capability in impulsive extraction. The corresponding
frequency spectrum is also given in Figures 13(b) and 13(e)
and the characteristic frequency of the outer race fault (𝑓𝑜 =106.9Hz) and its harmonics (2 × 𝑓𝑜 and 3 × 𝑓𝑜) are very
obvious. The results insist that the outer race fault is present.
However, comparison of Figure 13(d) with Figure 13(a) and
Figure 13(e) with Figure 13(b) shows that the hybrid NLM
denoising and MMA analysis generates less noise impulses
than that with only MMA analysis.

6. Conclusion

In this paper, a MMA and a hybrid NLM and MMA are sug-
gested to effectively extract the impulse fault characteristics
of vibration signals of roller bearings. First, the MMA, which
is designed based on DIF and NOTDIF filters, is introduced
as an efficient method to extract the impulses. The lengths
of SEs are automatically adapted based on the kurtosis to
maximize the number of extracted impulse characteristics.
However, in the presence of heavy measuring device noise,
using only morphology analysis is difficult to extract the fault
impulse characteristics which are laid in the noise impulses.
To tackle this problem, a hybrid NLM denoising and MMA
is then proposed. The effectiveness of the proposed method
is verified through the simulated vibration signal and real
rolling bearing fault data. The results verified that, compared
to the existing morphological operators such as AVR filter or
DIF filter, the proposed MMA has a better performance in
extracting fault bearing impulses.
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Figure 11: Impulsive extracting results of inner race defect signal in Figure 9: (a) waveform and (b) FFT spectrum of the IR fault signal after
Modified-DIF morphology analysis; (c) IR fault signal after NLM denoising; (d) waveform; and (e) FFT spectrum of the IR fault signal after
Modified-DIF morphology-based NLM denoising analysis.
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Figure 12: Waveform in the time domain of the vibration signal from outer race defect.

The impulses in vibration signal allow diagnosing local-
ized faults effectively; however, they cannot diagnose dis-
tributed categories of defects.The vibration signal processing
based on pattern recognition has been proved to be effective
to diagnose the distributed categories of defects [10, 11].
Hence, the combining of impulse extraction and patter
recognition approaches would be an effective way to enhance

the detectability of the system, and this will be a focus of our
future work.
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Figure 13: Impulsive extracting results of outer race defect signal in Figure 11: (a) waveform; (b) FFT spectrum of the OR fault signal after
Modified-DIFmorphology analysis; (c) OR fault signal after NLM denoising; (d) waveform; and (e) FFT spectrum of the OR fault signal after
Modified-DIF morphology-based NLM denoising analysis.
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