Serendipitous re-sighting of a basking shark Cerorhinus maximus reveals inter-annual connectivity between American and European coastal hotspots

Published in:
Journal of Fish Biology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
BRIEF COMMUNICATION

Serendipitous re-sighting of a basking shark *Cetorhinus maximus* reveals inter-annual connectivity between American and European coastal hotspots.

E.M. Johnston\(^1\)\(^{2,3}\) | P. Mayo\(^1\)\(^2\) | P.J. Mensink\(^1\)\(^{4,5}\) | Eric Savetsky\(^6\) | J.D.R. Houghton\(^1\)\(^2\)\(^4\)

1 School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, Co. Antrim, Northern Ireland, UK

2 Irish Basking Shark Study Group, Inch Island, County Donegal, Ireland

3 National Parks and Wildlife Service, Department of Culture, Heritage and Gaeltacht, North King Street, Dublin, Ireland.

4 Queen’s University Marine Laboratory, Portaferry, Co. Down, Northern Ireland, UK

5 Department of Biology, Biological & Geological Sciences Building, Western University, London, Ontario, Canada.

6 P.O. Box 985, Nantucket, Massachusetts, USA

Corresponding author

Emmett Johnston, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, Co. Antrim, Northern Ireland, BT9 7DL

Email: ejohnston34@qub.ac.uk
Funding information

The Inishowen Development Partnership and the Loughs Agency funds the Shark Spotting project from which this finding arose.

Ethical statement

The care and use of experimental animals complied with Department of Agriculture, Food and Marine, Ireland animal welfare laws, guidelines and policies as well as the ethical research requirements approved by The National Parks and Wildlife Service, Department of Arts, Culture and Gaeltacht, Ireland. This study entailed the deployment of a Wildlife Computers SPOT tag using the standard wildlife computers titanium anchor and tether attachment method. No fish were collected as part of faunal surveys; No fish were killed during or at the end of the experiment; no surgical procedures were performed; experimental conditions did not severely distress any fishes involved in the study; No procedure in this study caused lasting harm to sentient fish and no procedure involved sentient, un-anaesthetised animals that were subjected to chemical agents that induce neuromuscular blockade.

Abstract

A female basking shark *Cetorhinus maximus* was tagged with a satellite transmitter at Malin head, Ireland and re-sighted 993 days later at Cape Cod, USA, a distance of 4632km. Transatlantic stock mixing in basking sharks is supported by low genetic diversity in populations throughout the Atlantic Ocean but this is the only record to date of transatlantic
movement by basking shark despite significant focus on the species’ movements; > 1500 individual sharks tagged conventionally and > 150 individuals with remote tracking tags.

KEYWORDS

basking shark, conservation, migration, mark–recapture, genetic diversity, hotspot connectivity

Transatlantic stock mixing in many large marine vertebrates is supported by low genetic diversity in populations throughout the Atlantic Ocean, but direct observations of transatlantic movement are rare (Skomal *et al*., 2009; Lieber *et al*., 2015; Andreotti *et al*., 2016). Information on such broad-scale movements has, on the whole, come from commercial fisheries research (Kenchington, 2003) with studies of more esoteric species emerging over recent decades *via* satellite telemetry and mark–recapture (Sims, 2010; Hays *et al*., 2016; Kohler *et al*., 2002). Notable examples include the pan-Atlantic movements of spurdogfish *Squalus acantbias* L. 1758 (Holden, 1967), white *Carcharodon carcharias* (L. 1758) (Skomal *et al*., 2017) and porbeagle *Lamna nasus* *Lamna nasus* (Bonnaterre 1788) sharks (Cameron *et al*., 2018). Genetic approaches suggest that ocean scale-mixing may also be common for other large shark species, including both blue *Prionace glauca* (L. 1758) (Verissimo *et al*., 2017) and basking sharks *Cetorhinus maximus* (Gunnerus 1765) (Hoelzel *et al*., 2006).
The filter feeding basking shark, order Lamniformes, is the second largest fish in the world (max length > 10m; Klimley, 2013) and is known for its seasonal surface feeding behaviour in temperate coastal waters (Sims, 2008). The mechanism by which North Atlantic Ocean basking shark stock mixing may occur was suggested by Gore et al. (2008) when a large (8 m+) female equipped with a pop-off archival transmitter moved from the Irish Sea to continental shelf waters off Newfoundland, Canada. Given that this was one of the first tracking studies of the species, the authors could only speculate as to how frequently such transatlantic movement might occur. Over recent decades basking shark mark–recapture studies have been conducted widely on both sides of the North Atlantic Ocean (Kohler et al., 1998; Berrow et al., 2011; Lieber et al., 2013; Hoogenboom et al., 2015; Gore et al., 2016). Collectively, these efforts have resulted in >1500 individual sharks being tagged for recapture, but further evidence of transatlantic mixing has remained elusive.

Within this context, the serendipitous re-sighting of a female shark 4632km (straight line displacement) from its original tagging site is noteworthy. This individual was fitted with a satellite transmitter (SPOT, Wildlife Computers; www.wildlifecomputer.com) housed in a unique custom-made body (Customized Animal Tracking Solutions; www.cats.is) on 24 August 2014 at Malin Head, Donegal, Ireland (55.262° N 7.56° W; Figure 1a). The shark was subsequently tracked north to the Hebridean islands, Scotland where 33 days later the final ARGOS position (www.argos-system.org) was determined 5 km west of Barra, Scotland (Figure 1c,d). The re-sighting occurred after 993 days at Nauset Beach, Massachusetts, USA (41.789° N, 69.925° W) by a sub-aqua videographer on 15 June 2017 (Figure 1b). This opportunistic record links three known seasonal hotspots for the species (Witt et al., 2012;
ICES, 2018; Braun et al., 2018) on an inter-annual scale and constitutes the first evidence of movement between European and US waters, expanding on the pioneering study of Gore et al. (2008).

The drivers for such long-distance movements in basking shark are likely to be diverse (Sims, 2003; Skomal et al., 2009; Doherty et al., 2017a). From previous research, a broader picture of basking shark’s short to medium-term movements in response to the dynamic distribution of prey across the ocean landscape has emerged, including residence in seasonal hotspots and latitudinal migration on both sides of the North Atlantic Ocean (Southall et al., 2005; Stephan et al., 2011; Doherty et al., 2017b, Braun et al., 2018). As large-bodied planktivores, basking shark are typically associated with hydrodynamic features that contain or aggregate high densities of crustacean zooplankton (Sims, 2008). This foraging pattern often manifests itself as latitudinal movements between heterogeneous aggregations of prey over seasonal scales (Roshier et al., 2008); compounded in turn by reproductive and physiological needs; e.g., social behaviour (Sims et al., 2000; Gore et al., 2018) or thermal ecology (Carrier et al., 2010; Priede & Miller, 2009; Braun et al., 2018).

However, the timing of the tag deployment in Ireland (August 2014) and re-sighting in the US (June 2017) illustrates that association with summer (April–September) hotspots in the North Atlantic Ocean might be more nuanced than previously thought. Certainly, individual sharks do return on an inter-annual basis to the same coastal hotspot (Gore et al., 2018; Doherty et al., 2017b) but this re-sighting event shows that inter-annual fidelity to a single summer hotspot is not obligate or necessarily exhibited in all individuals.
At present, transatlantic mixing in the species appears far from common but is obviously sufficient to ensure genetic population diversity remains low (Hoelzel et al., 2006; Noble et al., 2006). Given the tractable nature of basking shark for tracking studies, our understanding of their seasonal movements has gone hand in hand with advances in biotelemetry (Priede, 1984; Sims et al., 2003; Gore et al., 2008; Skomal et al., 2009; Curtis et al., 2014; Miller et al., 2015; Doherty et al., 2017a, Braun et al., 2018). However, the recording of patterns in individual sharks’ movements on an inter-annual scale is restricted to some extent by current technology; i.e., battery life and biofouling of transmitters (Hays et al., 2007; Doherty et al., 2017a). Looking forward, as the longevity of satellite transmitter deployments continue to increase, we may begin to record ocean-scale movements more frequently (Costa et al., 2012).

When we consider that the IUCN classifies the basking shark as Endangered in the north-east Atlantic Ocean but Vulnerable in the north-western Atlantic Ocean (Fowler, 2009), the recording of this trans-Atlantic movement advances our understanding of the extent of the species multi-annual range within the North Atlantic Ocean. Furthermore, the confirmation of inter-annual trans-Atlantic connectivity between three hotspots (Ireland, UK, USA) lends support to Southall et al. (2006) in their call for deeper international collaboration. Specifically, the OSPAR (2015) and ICES (2018) working groups have a duty to be cognisant of the extensive range at which individual sharks operate within the Atlantic basin.

It follows that there exists a pressing requirement for multi annual individual level movement data in order to observe these rarer movements that can provide great insight into population level dynamics. Moreover, consideration should be given to measures that promote the
collective responsibility for the species held by all states that manage territorial waters and exclusive economic zones through which the sharks pass and or inhabit on a regular basis (Dulvy et al., 2008). In conclusion, an Atlantic Ocean-wide collaborative approach is required to ensure the conservation of the Atlantic oceans second largest fish species, a creature that carries no passport and recognises no national boundaries.

ACKNOWLEDGEMENTS
The authors would like to thank basking shark research teams who assisted in tracking the source of the tag. We also thank the members of the Inishowen and Irish basking shark study group for assisting with field work. Customised Animal Tracking Solutions for their dedicated service and attention to detail. The authors wish to acknowledge use of the Maptool program for analysis and graphics in this paper. Maptool is a product of SEATURTLE.ORG (www.seaturtle.org).

Author contributions
E.J. and J.H. conceived and designed the Shark Spotting study from which this record arose, E.J. and P.M. undertook the fieldwork and Eric Savetsky videoed the re-sighting; all authors contributed to the writing of the manuscript.

REFERENCES

Figure 1: a: Post deployment GoPro Hero video snapshot of the Wildlife Computers SPOT tag with CATS body (circled) attached to a 5-6m female basking shark Cetorhinus maximus off Malin head Donegal, Ireland. b: A snapshot from Eric Savetsky’s video of the damaged tag body (circled) on the shark 993 days later at Nauset Beach, Massachusetts, USA. C: A map illustrating the straight line displacement of 4632km (dotted green line) from the sharks last transmitted position off Barra, Scotland to the resight location at Nauset Beach, Massachusetts, USA (Red star) and inset d; The sharks track north from its initial deployment location at Malin head, Ireland (Red circle) to Barra, Scotland and the location of the last transmission (Red triangle).