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Abstract 38 

Cystic fibrosis (CF) is the most common life-limiting hereditary condition of Caucasian 39 

populations and is characterised by chronic airways inflammation driving progressive 40 

structural lung damage. Despite tremendous advances in the treatment of CF and concomitant 41 

increased life expectancy for patients, chronic lung disease remains the main cause of 42 

morbidity and mortality among CF patients. While universal restoration of cystic fibrosis 43 

transmembrane conductance regulator activity remains a future hope, novel therapies aimed at 44 

reducing or preventing chronic airways inflammation and progressive structural lung damage 45 

are required. 46 

It is well-established that proteolytic enzymes are important in the CF lung beyond the basic 47 

turnover of proteins and intracellular degradation of pathogens. When secreted, these enzymes 48 

play key roles in extracellular substrate modification implicated in important biological 49 

processes such as matrix and airway remodelling, goblet cell metaplasia and mucus 50 

hypersecretion, immune cell recruitment and dysregulation of epithelial ion channels. 51 

Importantly, the burden of proteases in the CF lung is significantly elevated, overwhelming the 52 

endogenous antiprotease shield. Indeed, free protease activity has emerged as a major risk 53 

factor of the onset and progression of bronchiectasis and lung function decline in patients with 54 

CF. Recent research has highlighted the importance of new players such as cathepsin S and 55 

matrix metalloprotease-12, as well as the membrane-associated activity of key proteases such 56 

as neutrophil elastase on the surface of neutrophils. 57 

Here, we review the current knowledge and emerging concepts of the role of host proteases in 58 

the pathogenesis of CF lung disease and their potential as therapeutic targets. 59 

 60 

Abstract word count: 250  61 
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Introduction 62 

Cystic fibrosis (CF) is an autosomal recessive genetic condition, predominantly of Caucasian 63 

populations, which impacts multiple organ systems. However, it is the chronic progressive lung 64 

disease of CF that causes the greatest morbidity and mortality. The disease is caused by 65 

mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. 66 

Consequently, the function of epithelial CFTR anion (chloride and bicarbonate) channels is 67 

compromised, leading to impaired anion and fluid secretion and airway surface dehydration, 68 

which in turn results in highly viscous airway mucus and impaired mucociliary clearance, 69 

setting the stage for mucus plugging, chronic inflammation and polymicrobial infection (1). 70 

Such a state causes progressive and irreversible damage of the airways and lung parenchyma, 71 

as recruited immune cells (predominantly neutrophils) release proteases, DNA and reactive 72 

oxygen species, and promote further immune cell recruitment by cytokine signalling.  73 

The introduction of CFTR modulators (potentiators, correctors and amplifiers) in recent years 74 

has transformed the treatment of CF. Phase two trials of triple combination therapy suggest 75 

that a CFTR modulator therapy approach may be effective in up to 90% of CF patients (2, 3). 76 

While the emerging therapies show immense promise, there are still CF patients whose specific 77 

genotypes may not be amenable to these therapies. Furthermore, CFTR modulation alone may 78 

be insufficient to allow complete and lasting clearance of chronic airways infection and 79 

resolution of pulmonary inflammation, especially in the context of chronic CF lung disease 80 

with established structural lung damage (4). Importantly, it is unknown whether, or to what 81 

extent, these CFTR-directed therapies decrease protease activity. Until such a decrease has 82 

been demonstrated, novel antiprotease strategies are still highly relevant to limit tissue damage 83 

in CF lung disease.  84 

The protease-antiprotease hypothesis is a simple paradigm that attempts to explain certain 85 

disease states as a product of an imbalance of proteases and cognate antiproteases, resulting in 86 
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elevated protease activity and damaging consequences for lung homeostasis (5). It is now well 87 

established that proteases play a significant role in the pathobiology of the CF lung (6), whether 88 

they are derived from immune cells or indeed the cells of the lung itself. The perception of 89 

these enzymes’ roles has moved far beyond the terminal degradation of proteins; it is now 90 

recognised that proteases are key signalling molecules and that specific substrate cleavage can 91 

have myriad effects (7), beneficial or detrimental in the CF lung (Figure 1). The use of protease 92 

inhibitor therapy may offer an alternative option in mitigating the disease state to regain 93 

homeostasis, which may go hand-in-hand with pharmacological rescue of mutant CFTR by 94 

emerging modulator therapies.  95 

So far, the serine protease class has drawn the most attention in CF, in particular neutrophil 96 

elastase (NE), with its free extracellular form previously thought to be the major player in CF 97 

lung disease pathogenesis. Indeed, free NE in sputum has long been known to correlate with 98 

FEV1 in children with CF (8) and elevated NE activity in bronchoalveolar lavage fluid at 3 99 

months of age was found to be associated with persistent bronchiectasis by the Australian 100 

Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) (9). However, several 101 

novel concepts are unfolding in pulmonary protease biology, which have led investigators to 102 

broaden their view beyond NE. These concepts include the redundancy of function between 103 

proteases (Table 1), the trans-class activation of proteases, the discovery of highly active 104 

membrane-bound proteases and the emergence of new key players from the cysteine and matrix 105 

metalloprotease (MMP) classes. This review will summarise the current knowledge of host 106 

protease function in CF lung disease and how this may inform therapeutic intervention. The 107 

role of bacterial proteases in CF lies beyond the scope of this review but we direct readers to 108 

the following recent references (10, 11). 109 

 110 

 111 
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The actions of serine proteases in CF 112 

The neutrophilic nature of CF airways inflammation gives intuitive significance to the group 113 

of proteases known collectively as the neutrophil serine proteases (NSPs). Its members are NE, 114 

proteinase-3 (PR-3), cathepsin G (CTSG) and the more recently discovered, lesser studied, 115 

NSP-4. The NSPs may be activated by the cysteine protease cathepsin C (CTSC) (12) and are 116 

involved in the intracellular degradation of neutrophil-phagocytosed microbes, a particularly 117 

important process in the chronically infected CF lung. The NSPs are harboured in primary 118 

neutrophil granules and their exocytosis is increased in CF, even during early CF disease prior 119 

to the onset of bronchiectasis (13). Extracellular NSPs have been shown to actively mediate 120 

the recruitment of immune cells to the site of inflammation by processing an array of cytokines 121 

including members of the IL-1 family (14), upregulating neutrophil chemoattractants such as 122 

IL-8 (15) and triggering the release of damage associated molecular patterns (DAMPs) such as 123 

High Mobility Group Box 1 (HMGB1), which can act as a biomarker for CF lung disease 124 

severity (16, 17). This modulation of neutrophil chemotaxis leads to enhanced inflammatory 125 

cell infiltration, continuing the vicious cycle of CF inflammation. Furthermore, highly 126 

chemotactic, truncated forms of various chemokines including IL-8 can be produced by NSP-127 

mediated cleavage (18). 128 

Neutrophil extracellular traps (NETs), the complex matrix of secreted DNA, proteases and 129 

other cellular contents released by neutrophils in CF airways (19) are important reservoirs of 130 

NSPs in CF. It has been demonstrated that this DNA-based matrix effectively maintains 131 

protease activity by preventing interactions with cognate endogenous or administered 132 

antiproteases (20). While intended as a protective mechanism, NSP activity can adversely 133 

affect the body’s innate response mechanisms to infection including antimicrobial peptides 134 

(AMPs) and surfactant proteins. A number of proteases including NE can cleave AMPs such 135 

as lactoferrin and midkine (21, 22) and degrade surfactant proteins (23) thereby compromising 136 
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the host response and/or susceptibility to infection. NE also cleaves extracellular haem-137 

containing proteins such as ferritin, liberating sequestered iron into the airway. Not only does 138 

this increase oxidative stress in the airway epithelium but it also promotes bacterial 139 

proliferation and biofilm formation as iron is made accessible for microbial nutrition (24, 25). 140 

NSPs may also play an important role as regulators of other proteases, particularly the MMPs. 141 

This role is especially relevant when considering the tissue-destructive nature of the proteases; 142 

NSP-activated MMP-9 and MMP-12, as well as the NSPs themselves, contribute directly to 143 

extracellular matrix (ECM) remodelling and bronchiectasis that is characteristic in CF (9, 26, 144 

27). The protease-mediated loss of elastin limits elastic recoil, while the loss of collagen creates 145 

a structural deficit, leading to the emphysematous phenotype that can occur in adolescent and 146 

adult CF patients (28). The body’s endogenous protection against aberrant NSP activity is also 147 

compromised, as NE inactivates tissue-protective antiproteases (some of which also possess 148 

antimicrobial properties) such as secretory leukocyte protease inhibitor (SLPI) (29).  149 

The inability of such endogenous antiproteases, even when intact, to perform their inhibitory 150 

function has also been highlighted in recent years. This may be due, in part, to membrane-151 

association of NSPs such as NE and CTSG (30). More recently, novel Förster resonance energy 152 

transfer (FRET)-based probes were used to analyse membrane-bound activity of proteases such 153 

as NE on the surface of neutrophils (31). In this surface-bound form, proteases are less 154 

accessible for their prospective inhibitors, which are unable to access the enzyme’s active site. 155 

Indeed, surface-bound NE has been found to correlate with severity of lung disease and various 156 

inflammatory markers in CF (32).  157 

As well as influencing both inflammatory cell recruitment and tissue destruction, NE 158 

contributes to increased mucus production in the CF lung by upregulating mucin expression 159 

and inducing goblet cell metaplasia, a process thought to be mediated through tumour necrosis 160 

factor-α converting enzyme (33, 34). In addition, NE induces secretion of mucins from airway 161 
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epithelial cells, augmenting mucus plugging in the CF lung (35). NE has also been shown to 162 

decrease the frequency of ciliary beat and damage the airway epithelium (36) which may 163 

contribute to impaired mucociliary clearance and hence mucus plugging. Further, NE may 164 

directly impact on airway ion transport by degrading CFTR (37) and activating epithelial 165 

sodium channel (ENaC) (38), thereby aggravating the basic ion transport defect and airway 166 

surface dehydration in CF airways. While CF is caused by mutations in CFTR, CF airways are 167 

characterized by increased ENaC-mediated sodium absorption in addition to deficient CFTR-168 

mediated chloride secretion. Mimicking the hyperactivity of ENaC by airway-specific 169 

overexpression in mice can produce a phenotype that is strikingly similar to that found in CF 170 

patients, demonstrating that airway surface dehydration is a key disease mechanism in CF lung 171 

disease (1, 39) and that increased ENaC activity contributes critically to this abnormality. In 172 

this context, proteolytic activation of ENaC by NE and other proteases may be a key 173 

mechanism leading to increased ENaC activity that aggravates airway surface dehydration in 174 

CF airways.  175 

Collectively, these studies show that NE is a key mediator in each of the major pathologies 176 

contributing to CF lung disease. However, the roles of the other NSPs have been less well 177 

studied and more research into these and their relative importance in CF is warranted. 178 

 179 

 180 

The actions of cysteine proteases in CF 181 

The predominant group of cysteine proteases in CF is the cysteine cathepsins. These papain-182 

like proteases are lysosomally derived and hence display optimal activity in a reducing and 183 

acidic environment; only cathepsin S (CTSS) is thought to maintain its activity in the neutral-184 

alkaline pH range (40). In the intracellular context, cathepsins are involved in the degradation 185 

of host and pathogen proteins as well as the processing and presentation of antigens. These 186 
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functions are crucial in homeostatic protein turnover, fighting infection and in the development 187 

of adaptive immune responses to infections. However, like the NSPs, certain members can be 188 

found in the extracellular milieu of the CF lung. Cathepsins are secreted by macrophages but 189 

may also be sourced from neutrophils, other antigen-presenting cells, lung epithelial and 190 

endothelial cells; this secretion may be associated with acidification of the pericellular space 191 

(41). 192 

While only more recently recognised as major players in CF, the cysteine proteases mirror 193 

many the actions of the NSPs. Like all classes of proteases, the cysteine cathepsins are capable 194 

of degrading various ECM components, contributing to the tissue-destructive web of proteases 195 

involved in CF. A series of studies demonstrated the potential of cathepsins B (CTSB), L and 196 

S to compromise mucosal immunity in the CF lung via mechanisms similar to those mentioned 197 

already for the NSPs. They were shown to cleave AMPs including lactoferrin, LL-37, 198 

surfactant protein A and the human β-defensins (42–45). Thus, by the loss of active airway 199 

AMPs, the ability to maintain a pathogen-free airway may be undermined in CF. Several 200 

cathepsins have also demonstrated the ability to process CXCL chemokines in vitro, though it 201 

has yet to be determined whether these modifications occur or are highly relevant in vivo (46). 202 

The role of CTSC in the activation of NSPs makes it an interesting candidate for therapeutic 203 

intervention in the context of neutrophilic CF lung disease and although inhibitors are in early 204 

phase clinical trials, their efficacy and potential for CF remains to be determined (12). 205 

CTSS is emerging as an important player in early CF lung disease with extracellular CTSS 206 

levels correlating significantly with lung function decline and neutrophil recruitment into the 207 

airways (47). A recent study, using the βENaC-overexpressing mouse with CF-like lung 208 

disease, elucidated roles for CTSS in the in vivo pathogenesis of several key CF pathologies 209 

(48). In this study, genetic and pharmacological knockdown of CTSS was associated with a 210 

reduction in neutrophil recruitment and amelioration of airway mucus obstruction and lung 211 
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tissue destruction. It also highlighted that CTSS may mediate inflammatory cell recruitment 212 

and mucin expression via protease-activated receptor 2. In relation to airway ion transport, both 213 

CTSS and CTSB have been reported to activate ENaC (49, 50). As such, in concert with NE-214 

mediated CFTR degradation, the cysteine cathepsins may accentuate the mucus dehydration 215 

intrinsic to CF airways pathology. 216 

 217 

 218 

The actions of matrix metalloproteases in CF 219 

The members of the MMP class are not abundant in the healthy lung; however, they are 220 

produced by lung and inflammatory cells in response to inflammatory chemokines, noxious 221 

stimuli and free oxygen radicals (51). These zinc and calcium-dependent endopeptidases are 222 

loosely numbered in order of discovery up to MMP-28 and, as their name suggests, are potent 223 

ECM-degrading enzymes (52). While some MMPs are mainly tissue-derived, MMP-8 and 224 

MMP-9 are predominantly derived from neutrophils, making them proteases of particular 225 

interest in CF (53). The degradation of interstitial collagen is key to the development of 226 

bronchiectasis and other aberrant structural formations of the CF lung. In addition, this 227 

cleavage process generates matrix fragments, which can produce secondary downstream 228 

effects. During airway inflammation the proline-glycine-proline (PGP, a potent neutrophil 229 

chemoattractant) fragments produced by collagenase activity are not matched by a concomitant 230 

rise in PGP-degradation by leukotriene A4 hydrolase, causing PGP accumulation which 231 

contributes to CF neutrophilia (54, 55). In addition, MMP-9 is capable of truncating IL-8 into 232 

a highly chemoattractive form (56).  233 

While it is clear that the dominant immune cell population in the CF lung is the neutrophil, 234 

macrophage-derived proteases are gaining reputation in CF, particularly as regards their 235 

membrane-associated activity. A noteworthy example of this is macrophage elastase (also 236 
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known as MMP-12). Recent studies in βENaC-overexpressing mice with CF-like lung disease 237 

and paediatric CF patients suggest that mucostatic conditions in the CF airways may trigger 238 

elevated membrane-associated MMP-12 activity via macrophage activation (57). Interestingly, 239 

a functional polymorphism in the MMP12 promoter (rs2276109) that decreases MMP12 240 

expression was positively associated with FEV1 % predicted in patients with CF (57). This 241 

work opens interesting lines of inquiry: what are the specific signals which precipitate protease 242 

release from specific cell types? Are they to be found in CF mucus? Can they be targeted 243 

therapeutically? Can protease gene expression be targeted?  244 

It is worth noting that there is evidence of positive roles for macrophage MMPs in the inflamed 245 

lung. MMP-10, for example, is highly expressed in CF patient macrophages and appears to 246 

have a protective role in acute bacterial infection by moderating macrophage inflammatory 247 

responses (58). MMPs continue to draw most attention for their contribution to lung tissue 248 

damage, though there is an emerging sense that this may not be the limit of their influence in 249 

CF. 250 

 251 

 252 

Therapeutic strategies targeting the protease-antiprotease imbalance 253 

The combined contribution of proteases to the pathology of CF makes them promising targets 254 

for novel therapeutics. Endogenous protease inhibitors are overpowered as a consequence of 255 

quantitatively elevated levels of secreted ‘free’ protease and have limited efficacy in the 256 

inhibition of surface-bound activity in CF lung disease. Importantly, current CF therapy relies 257 

heavily on mucolytic agents like dornase alfa, which are known to markedly increase NE 258 

activity in CF sputum (59). Therefore, antiproteases may constitute an important adjunct 259 

therapy to help limit further lung injury. Indeed, it has been shown that certain antiproteases 260 

are most effective when used along with mucolytics (59). Increased protease secretion and 261 
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membrane-associated activity are likely already initiated during infancy and early childhood, 262 

even in the absence of detectable bacterial infection (5, 9), strengthening the case for early 263 

antiprotease treatment.  264 

To directly redress the protease-antiprotease imbalance, two principal strategies may be 265 

employed: antiprotease replacement/augmentation and pharmacological protease inhibition.  266 

There is an attraction to using antiprotease-based therapies such as α1-antitrypsin augmentation, 267 

especially considering the success of this strategy in α1-antitrypsin deficiency. In 2015, a long-268 

term, randomised control trial was reported with weekly α1-antitrypsin administration for up to 269 

48 months (60). RAPID (Randomized, Placebo-controlled Trial of Augmentation Therapy in 270 

Alpha-1 Proteinase Inhibitor Deficiency) demonstrated the slowing of lung parenchymal 271 

damage after redressing the protease-antiprotease imbalance and significantly, that this effect 272 

was most evident over the course of months and years, rather than short-term improvements 273 

over weeks (60). This was not a surprising finding, considering that antiprotease therapy is 274 

predicted to slow the progression of irreversible lung damage and bronchiectasis rather than 275 

producing short-term improvements in lung function; short trials are therefore unlikely to 276 

capture these therapeutic benefits. α1-antitrypsin augmentation has also been tested in CF, 277 

though this has been limited to short trials, predominantly powered to establish safety (61). 278 

Endogenous antiprotease augmentation is not without its pitfalls given their propensity to be 279 

degraded by proteases (host or pathogen). Recombinant variants of the endogenous 280 

antiproteases such as SLPI with reduced susceptibility to protease cleavage have shown 281 

efficacy in reducing inflammation (62). However, the size and complexity of these proteins, 282 

their generally broad antiprotease activity and the quantities required to address the substantial 283 

protease burden in CF are all factors to be overcome. These molecules have also yet to 284 

demonstrate efficacy against surface-bound proteases. 285 
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With these considerations in mind, perhaps it is the synthetic, low molecular weight, specific 286 

chemical inhibitors that hold the answer? As with all drugs, walking the tightrope between 287 

specificity and bio-reactivity has proven a challenge. For various reasons (including safety, a 288 

propensity for hapten formation and the struggle for target selectivity) it is no longer the 289 

consensus that rapid irreversible inhibition is necessarily the gold standard for these 290 

compounds (63). A new generation of highly specific, reversible inhibitors of NE or the 291 

emerging proteases (CTSC, CTSS and MMP-12) might help to shape the future of antiprotease 292 

therapy in CF. Many synthetic inhibitors have demonstrated potency in vitro and in the 293 

preclinical in vivo settings. However, NE inhibition, which has been the focus of clinical 294 

antiprotease work, has so far not proved overly effective in reducing key measures of disease 295 

in CF or other inflammatory lung diseases (64). Therefore, it may be that the inhibition of other 296 

proteases or a spectrum of proteases in combination with conventional therapies produces more 297 

promising results. Comprehensive studies will be required to ensure that patient susceptibility 298 

to infection is not increased by protease inhibition, though there is little preclinical evidence 299 

that this will be the case. Interestingly, the genetic ablation of NE in βENaC-overexpressing 300 

mice did not increase susceptibility to spontaneous airways infection in this model with CF-301 

like lung disease (33). NSP-deficient mice have exhibited weakened host defence against 302 

certain respiratory pathogens (65, 66), though it should be noted that inhibitor-treated and full 303 

knockout mice are not direct corollaries and as such, further research is required to assess the 304 

effects of therapeutically relevant protease knockdown on host immunity.   305 

An interesting alternative to the use of canonical antiproteases is inhaled heparin, which has 306 

been shown to improve pulmonary function in COPD (67). 2-O, 3-O-desulfated heparin, a 307 

modified polysulfated molecule, possesses both anti-NSP and anti-inflammatory properties 308 

with minimal anti-coagulant activity (16, 68). In some instances, repurposed drugs might offer 309 

a simpler and faster route to protease inhibition than the development of novel inhibitors, 310 
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especially regarding their safety profile. One drug which has emerged is the tetracycline 311 

antibiotic doxycycline. A 2017 study highlighted FEV1 improvements following doxycycline 312 

treatment during acute pulmonary exacerbations in CF patients, seemingly independent of 313 

doxycycline’s antibiotic properties, via MMP-9 neutralisation and TIMP-1 enhancement (69). 314 

Currently, there are no other licensed drugs that are known to fall into this category.  315 

 316 

 317 

Summary and outlook 318 

What is evident from the research to date is that proteases play a role in many of the most 319 

damaging facets of CF lung disease and as such could be targeted in combination with current 320 

antibiotic, mucolytic, bronchodilator and CFTR modulator therapies. A return to protease-321 

antiprotease parity may indeed facilitate the breaking of the inflammatory cycle and slow the 322 

rate of structural and functional decline in CF. For proteases such as NE and CTSS, which are 323 

elevated from an early stage in the pathogenesis of CF lung disease, the age of CF patients at 324 

the start of protease inhibitor therapy and the frequency and duration of treatments may well 325 

be crucial factors to consider for the design of clinical trials. A significant challenge remains 326 

in developing protease inhibitors that retain specificity, stability and efficacy in the complex 327 

milieu of the CF lung and that are well tolerated over longer courses of treatment.  328 

Our knowledge of the role and functions of proteases continues to evolve through the 329 

development and use of new experimental tools, reagents and pathobiological models. Because 330 

of their differential expression and activity profiles in CF lung disease, proteases (and their 331 

endogenous inhibitors) may serve as useful biomarkers for diagnostic and monitoring purposes 332 

to enable, for example, detection of lung disease severity and prediction of progression or 333 

response to treatment. Nonetheless, further work is needed to extensively characterise the lung 334 
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degradome, in addition to the status of endogenous antiproteases, activators, substrates and 335 

cleavage products in the CF lung.   336 
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Figure legends 583 

Figure 1. A model of the cystic fibrosis (CF) airway and associated protease-mediated 584 

pathologies. A healthy airway maintains a thin layer of well-hydrated mucus covering the 585 

airway surface. Invading pathogens and particulates are trapped and subsequently removed 586 

from the airway by mucociliary clearance. In CF airways, malfunction of cystic fibrosis 587 

transmembrane conductance regulator (CFTR) anion channels and increased activity of 588 

epithelial sodium channels (ENaC) results in airway surface dehydration, altered viscoelastic 589 

properties of airway mucus and impaired mucociliary clearance, which makes the airway 590 

susceptible to chronic infection and inflammation. Neutrophils recruited to the airway, along 591 

with macrophages and epithelial cells, secrete proteases which aggravate key aspects of the 592 

pathophysiology of CF. Active proteases compromise the structural integrity of the airway 593 

through the degradation of elastin and collagen, leading to bronchiectasis. In addition, other 594 

protease roles in CF include (top to bottom): the enhancement of mucin/mucus production and 595 

secretion; the activation of protease-activated receptors (PARs) leading to pro-inflammatory 596 

signalling; the trans-activation of other proteases by cleaving pro-domains and degrading 597 

cognate antiproteases; the aggravation of basic CF ion transport defects by the proteolytic 598 

degradation of CFTR and activation of ENaC and; the cleavage of various host protein 599 

substrates precipitating either activation (in the case of some pro-inflammatory cytokines) or 600 

inactivation (in the case of some antimicrobial peptides and surfactant proteins).  601 
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Figures 602 

Figure 1. 603 

  604 
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Tables 605 

Table 1. Protease functions and redundancy in CF lung disease 606 

Function Protease class involved References 

Matrix degradation Serine, cysteine, MMP (52, 54, 55, 70) 

Cytokine processing Serine, cysteine, MMP (14, 18, 46, 56) 

Cytokine upregulation Serine, cysteine, MMP (15, 48, 54, 55) 

PAR activation Serine, cysteine, MMP (48, 71) 

Trans-class protease activation Serine, cysteine (9, 12, 26, 27) 

Host defence protein degradation 

(including antiproteases) 

Serine, cysteine (21–23, 29, 42–45) 

ENaC activation Serine, cysteine (38, 49, 50) 

CFTR degradation Serine (37) 

Mucus modulation Serine (33–36, 48) 

Iron liberation Serine (24, 25) 

 607 

Definition of abbreviations: MMP = matrix metalloprotease; PAR = protease-activated receptor; ENaC 608 

= epithelial sodium channel; CFTR = cystic fibrosis transmembrance conductance regulator. 609 


