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Generating high-quality multi-particle entanglement between communicating parties is the pri-
mary resource in quantum teleportation protocols. To this aim, we show that the natural dynamics
of a single spin chain is able to sustain the generation of two pairs of Bell states –possibly shared
between a sender and a distant receiver– which can in turn enable two-qubit teleportation. In par-
ticular, we address a spin- 1

2
chain with XX interactions, connecting two pairs of spins located at

its boundaries, playing the roles of sender and receiver. In the regime where both end pairs are
weakly coupled to the spin chain, it is possible to generate at predefinite times a state that has
vanishing infidelity with the product state of two Bell pairs, thereby providing nearly unit fidelity
of teleportation. We also derive an effective Hamiltonian via a second-order perturbation approach
that faithfully reproduces the dynamics of the full system.

I. INTRODUCTION

Quantum Information Processing (QIP) has become
the subject of an increasingly intensive theoretical and
experimental effort over the last few decades. With re-
search fields spanning from computation to simulation
and metrology, QIP aims at leading the next quantum
revolution by developing devices able to outperform any
classical analogue in a variety of tasks, from cryptho-
graphic key distribution to simulation of chemical re-
actions. Nevertheless, a necessary condition for almost
any QIP task is the capability of implementing a faithful
Quantum State Transfer (QST) protocol [1–3]. Indeed,
QIP tasks such as quantum key distribution and quantum
computation require the transfer of quantum information
from a sender to a receiver, embodied by measurement
apparatus or quantum processors.

The means by which QST is achievable can be grouped
in three large classes. The first one involves the physical
displacement of a carrier encoding the information (e.g.,
photons) and has been successfully employed in cavity
QED-based architectures [4, 5]. The second one relies on
the dynamics of a physical quantum channel connecting
the sender and the receiver, the former encoding the in-
formation in a stationary qubit at its location, with the
aim that the evolution of the quantum channel allows the
information to be retrieved at the receiver’s stationary
qubit location. In this context, spin- 1

2 chains have been
intensively investigated as faithful quantum channels for
a variety of tasks [6–11]. Finally, the third QST protocol
is based on exploiting a preexisting quantum resource,
usually entanglement, and perform a teleportation pro-
tocol —which represents the most prominent example of
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quantum communication under LOCC (local operations
and classical communication) constraints. In this paper,
we focus on the use of a spin- 1

2 chain to generate such a
quantum resource, which can then be used for the deter-
ministic teleportation of an arbitrary two-qubit state.

Since the seminal work by Bennett et al. that in-
troduced the quantum teleportation protocol of a single
qubit via the use of a Bell pair and a classical communi-
cation channel [12], a great effort has been devoted both
to its experimental implementation [13] and to the gener-
alization to higher dimensional systems —in particular,
n-qubit teleportation protocols. The latter find a natural
application in LOCC-constrained quantum communica-
tion, where high-dimensional systems guarantee higher
security and increased transmission rates [14–23]. Also,
n-qubit teleportation protocols can be used in quantum
computation, especially in distributed approaches [24] —
where the state of a quantum register needs to be routed
to different processing units— and in client-server mod-
els [25] —where quantum computation is performed by
a remote unit.

While in the original protocol in Ref. [12] the quantum
channel for deterministic teleportation is embodied by
one of the Bell states, many other states have been found
to achieve the same goal, amongst which three-particle
GHZ and a class of W states [26, 27]. The search for
2-qubit teleportation protocols went along the same line:
from the original proposal exploiting tensor products of
two Bell states [28, 29] to genuine four- and five-qubit
entangled states [30, 31] and a class of four-qubit states
having cluster states as a special case [32]. Similarly,
for n-qubit teleportation, 2n-qubit states made up by
Bell tensor product states constitute a faithful quantum
channel and the necessary and sufficient conditions they
have to fulfill are given in Ref. [33].

Whereas the generation and distribution of single Bell
states – that is, the key resource for 1-qubit teleporta-
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tion – have been widely investigated, the same does not
hold for the entangled states needed for n-qubit telepor-
tation. In the context of spin chains, several schemes
have been proposed to generate a Bell state between two
distant qubits [6, 8, 34–40] based mainly on the same pro-
tocol used for one-qubit quantum state transfer. Clearly,
any of these schemes could be used to sequentially gener-
ate Bell states by removing the entangled spins from the
chain and wait that a new Bell pair is formed. A draw-
back of such a procedure is that it requires control over
the motional degree of freedom of the spins and the se-
quential use of a spin chain as a quantum entangler could
require its initialisation at each run, not to mention that
the coherent dynamics of the quantum channel has to be
preserved for longer times. It is hence evident that, also
due to scalability issues, it would be beneficial to have a
single quantum chain able to support the generation of n
pairs of Bell states, shared among a sender and a distant
receiver, to be used as a resource for the teleportation of
n qubits. Recently, the transfer of arbitrary two-qubit
states, as well as specific classes thereof, have received a
lot of attention [41–48], but the search for a protocol able
to generate, via the natural spin chain dynamics, entan-
glement involving spins at distant locations to serve as
a resource for two-qubit teleportation has yet not been
addressed.

In the present paper we address such a question. In
Refs. [28, 29] it was shown that a perfect two-qubit tele-
portation can be achieved by means of a four-qubit max-
imally entangled state, being the tensor product of a
pair of two-qubit entangled states shared by the sender
and receiver blocks. Here, we show how a 1D spin- 1

2
chain with nearest-neighbor couplings of the XX-type
and open boundary conditions can give rise to such a
state when the spins residing at the opposite edges of
the chain are weakly coupled to the channel. The paper
is organised as follows: in Sec. II we introduce the spin
model and in Sec. III we work out an effective perturba-
tive Hamiltonian that faithfully reproduce its dynamics;
in Sec. IV we evaluate the bipartite entanglement be-
tween the two pairs of spins located at the edges of the
chain and we show its usefulness for a 2-qubit teleporta-
tion protocol; finally, in Sec. V we draw our conclusions
and outlooks.

II. THE MODEL

Our model consists of a 1D spin- 1
2 chain with open

boundaries and isotropic nearest-neighbor interaction in
theXY directions, the first two spins are the sender party
(A1, A2), the last two are the receiver party (B1, B2), and
the M spins in between represent the channel:

H =
∑
i

Ji
2

(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
, (1)

where σ̂αi (α = x, y, z) are the Pauli matrices and index
i comprises A1, A2, 1, . . . ,M,B1, and B2. The Hamilto-

nian described by Eq. (1) exhibits U(1) symmetry, thus
conserving the total magnetisation in the z-direction,
and can be reduced to a model of non-interacting spin-
less fermions [see Eq. (8)]. We set couplings strengths
Ji to be uniform along the chain except those interfac-
ing the sender/receiver blocks with the channel, that is,
Ji = J for i 6= A2,M and Ji = g otherwise, with g � J
and J = 1 being the energy unit (see Fig. 1). A simi-
lar scheme has been found to yield high-fidelity 2-qubit
quantum state transfer in Ref. [44].

In our protocol, the initial state of the quantum chan-
nel is fully polarized and each pair of qubits located at
the edges A and B can be judiciously initialised, that is
|Ψ〉 = |ϕ〉A1A2

|0〉1...M |ϕ〉B1B2
, with |0〉1...M = |00 . . . 0〉

involving all the channel spins. We denote by |0〉 and |1〉,
respectively the spin up |↑〉 and spin down |↓〉 state of a
single spin- 1

2 system. Our primary goal is to achieve a
tensor product of two Bell states, which in their general-
ized version read∣∣∣Φ1,2

θ

〉
=

1√
2

(
|01〉 ∓ e−iθ |10〉

)
, (2)∣∣∣Φ3,4

θ

〉
=

1√
2

(
|00〉 ∓ e−iθ |11〉

)
, (3)

(note that the entanglement featuring in a Bell state
is independent of its relative phase) between blocks A
and B. To do so, we need to determine the Hamiltonian
dynamics in the invariant subspaces with (0, 2, 4),
(1, 3), or (2) flipped spins, depending on which Bell
states enter the product. For instance, if we were

considering the tensor product state
∣∣Φ1
θ

〉 ∣∣∣Φ3
φ

〉
=

1
2

(
|0100〉 − e−iθ |1000〉 − e−iφ |0111〉+ e−i(θ+φ) |1011〉

)
,

the dynamics would occur in the Hilbert space with
one and three spins down, i.e., in the (1, 3)-excitations
invariant subspaces. Nevertheless, as Bell states are all
equivalent under local unitary operations, each of the
16 tensor products can be obtained from an arbitrary
one. Clearly, because of the conservation of the total
magnetization along the z-axis, the initial number of
flipped spin is conserved and so in the A∪B block there
have to be n ≥ 2 flipped spins. In the following we
investigate the case n = 2 since, as we show in our per-
turbation analysis later on, the quantum channel (bulk
of the chain) will not effectively support any flipped
spin during the dynamics. (Henceforth we omit |0〉1...M
for easiness.) Therefore, in order to possibly generate
a tensor product of Bell states lying in subspaces with
(0, 2, 4) or (1, 3) flipped spins, the initial state cannot be
a simple tensor product of single-qubit states, implying
that it should contain some entanglement. Although
this could be achieved by exploiting the dynamics of
the spins in blocks A and B before coupling them
to the quantum channel, it would require additional
time-control over the couplings if the initial states are
not eigenstates of their respective Hamiltonian.

Our analysis is thus made upon initial states
of the form (using notation |sA1

sA2
sB1

sB2
〉 ≡
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J J J J JJ g g
A1 B2

Alice BobChannel

A2 B1

FIG. 1. Alice (A) and Bob (B) each has access to a pair of qubits located at the opposite edges of a quantum channel. Their

aim is to generate, via the natural dynamics of the spin chain, an entangled state of the form, e.g.,
∣∣∣Φk1θ 〉

A1B2

⊗
∣∣∣Φk2θ 〉

A2B1

,

that is the tensor product of two Bell states, to be used as a resource for 2-qubit teleportation.

∣∣∣sA1
sA2

00 . . . 0sB1
sB2

〉
with si ∈ {0, 1}):

|Ψ1(0)〉 = |1100〉 ≡ |1100 . . . 000〉 , (4)

|Ψ2(0)〉 = |1010〉 ≡ |1000 . . . 010〉 , (5)

|Ψ3(0)〉 = |1001〉 ≡ |1000 . . . 001〉 , (6)

|Ψ4(0)〉 = |0110〉 ≡ |0100 . . . 010〉 . (7)

Note that the remaining options |0011〉 and |0101〉 are
symmetric to |Ψ1(0)〉 and |Ψ2(0)〉, respectively.

Eq. (1) can be mapped to a spinless fermion model via

the Jordan-Wigner transformation [49]

H =

N−1∑
i=1

Ji

(
ĉ†i ĉi+1+ĉ†i+1ĉi

)
, (8)

where N = M + 4 and ĉ†i (ĉi) is the fermionic creation
(annihilation) operator at site i. Because of the quadratic
nature of the Hamiltonian, the one-particle spectrum is
sufficient to describe its full dynamics. Denoting by εk
and |εk〉 = ĉ†k |{0}〉 the single-particle k-th energy eigen-
value and its corresponding eigenvector (with |{0}〉 being
the vacuum state), the full Hamiltonian operator acting
on a 2N dimensional Hilbert space is easily decomposed
into a direct sum over all particle number-conserving in-

variant subspaces H =
⊕N

n=1Hn, where

Hn=

N∑
k1<k2<...<kn=1

(εk1+εk2+...+εkn) ĉ†k1 ĉ
†
k2
...ĉ†kn |{0}〉 〈{0}| ĉkn ...ĉk2 ĉk1 . (9)

Each Hn can then be constructed quite simply once
the single-particle spectrum is known. Notice that the
specific ordering of the ki’s in the sum of Eq. (9) is
taken in such a way that unwanted phase factors do
not arise when mapping back into spin operators via
the inverse Jordan-Wigner transformation. Every in-
variant subspace is spanned by a set of states hav-
ing a fixed number of flipped spins. Hence, single-

particle states |j〉 = ĉ†j |{0}〉 are obtained by by flip-
ping the j-th spin of the system, two-particle states
|ji〉 = ĉj

†ĉi
† |{0}〉 are created by flipping the j-th and i-th

spins of the chain (with j < i), and so forth. The non-
interacting nature of the fermionic Hamiltonian in Eq. (9)
allows to reduce the two-particle transition amplitudes
hpqnm(t) = 〈pq| e−itH2 |nm〉 to determinants of matrices
whose elements are single-particle transition amplitudes
f ji (t) = 〈j| e−itH1 |i〉, where i={n,m} and j={p, q} (see,
e.g., Ref. [42, 43]):

hpqnm(t)=

∣∣∣∣fpn(t) fqn(t)
fpm(t) fqm(t)

∣∣∣∣ . (10)

Consequently, the evolved state in the two-particle sector
results in

|Ψ(t)〉 =

N∑
p<q=1

hpqn0m0
(t) |pq〉 , (11)

for an initial state |n0m0〉.
Notwithstanding we are able to solve the exact full dy-

namics of Hamiltonian (1) numerically, it is instructive
to rely on a perturbative approach due to the presence of
weak couplings g in order to derive an effective Hamilto-
nian. This allows us to identify more easily the peculiar
dynamical behaviour behind the generation of highly en-
tangled states between blocks A and B.

III. PERTURBATIVE ANALYSIS

Similarly to the one-particle subspace dynamics, the
model supports one- and two-particle Rabi-like oscilla-
tions between its edge spins. This has been used to
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generate a Bell state in the one-particle subspace in a
XX-type spin−1/2 chain with even number of sites and
a single weakly coupled spin residing at each end, given
one gets |10〉 → 1√

2
(|10〉 − |01〉) shared between them at

half the QST time [8].

However a straightforward extension involving two
non-interacting edge spins, such as proposed in Ref. [47],
each weakly coupled to the quantum channel, does
not yield a tensor product of Bell states. Indeed,
starting from, e.g., |1100〉, because of permutation
symmetry of the edge spins the amplitudes of states
{|1001〉 , |1010〉 , |0101〉 , |0110〉} have to be equal at all
times, thereby preventing the generation of any Bell state
between both end blocks.

Turning our attention back to the system arrange-
ment displayed in Fig. 1, where the edge spins are
interacting, in the n = 2 flipped-spins subspace
the states whose dynamics we are about to investi-
gate are listed in Eqs. (4)-(7). Given the dynamics
is restricted to the two-excitation subspace and that

g � J , our task now is to carry out a perturba-
tive approach in order to derive an effective Hamil-
tonian involving only the six possible configurations
spanning over both edge blocks (A and B), that is
{|A1B1〉 , |A1B2〉 , |A2B1〉 , |A2B2〉 , |A1A2〉 , |B1B2〉} us-

ing the occupation-site index notation |ji〉 = ĉj
†ĉi
† |{0}〉.

A. Effective description

Let us split Hamiltonian (8) into H = H0 +Hch +HI ,
where

H0 = J(c†A1
cA2 + c†B1

cB2 + H.c.), (12)

Hch =

M−1∑
i=1

J(c†i ci+1 + H.c.), (13)

HI = g(c†A2
c1 + c†McB1

+ H.c.). (14)

The effective Hamiltonian can be obtained via a second-
order perturbation method that gives [50]

〈ψ0,i|Heff |ψ0,j〉 = Ejδi,j −
1

2

∑
k

[
(HI)ik(HI)kj
λk − Ei

+
(HI)ik(HI)kj
λk − Ej

]
, (15)

where (HI)ik ≡ 〈ψ0,i|HI |λk〉, with {|ψ0,i〉} and {|λk〉}
being, respectively, the eigenstates of H0 and Hch with
corresponding energies {Ei} and {λk}.

The unperturbed eigenstates of the subsystem of inter-
est, that is blocks A and B, read

|ψ0,1〉 = |A+B+〉 , (16)

|ψ0,2〉 = |A+B−〉 , (17)

|ψ0,3〉 = |A−B+〉 , (18)

|ψ0,4〉 = |A−B−〉 , (19)

|ψ0,5〉 = |A1A2〉 , (20)

|ψ0,6〉 = |B1B2〉 , (21)

where |AµBν〉 = (|A1〉+µ |A2〉)⊗ (|B1〉+ν |B2〉)/2, with
µ, ν = ±1. Their corresponding eigenvalues are E1 =
2J,E4 = −2J , and E2,3,5,6 = 0.

The single-particle eigenstates of the channel Hamilto-
nian Hch are

|εm〉 =

√
2

M + 1

M∑
x=1

sin

(
πmx

M + 1

)
|x〉 , (22)

with energies εm = 2Jcos( πm
M+1 ). Then one can con-

struct 4×M unperturbed states as
∣∣λk=(l,m)

〉
= |ηl〉 |εm〉

(l = 1, 2, 3, 4 and m = 1, . . . ,M), with |η1,2〉 = (|A1〉 ±
|A2〉)/

√
2 and |η3,4〉 = (|B1〉 ± |B2〉)/

√
2. The corre-

sponding eigenvalues read λl,m = εm + J for l = 1, 3

and λl,m = εm − J for l = 2, 4 The remaining unper-
turbed eigenstates involve linear combinations of states
containing no excitations in either block A or B. Those
provide no contribution to the sum in Eq. (15) given
〈ψ0,i|HI |x1x2〉 = 0 for all i and x1, x2 ∈ {1, . . . ,M}.

With all the above relations at hand, one is able to
evaluate the matrix elements of Heff through Eq. (15).
When doing so, it is possible to show that all of them are
functions of four parameters, namely

Λ±1 ≡
g2

2

∑
m

a2
m

εm ± J
, Λ±2 ≡

g2

2

∑
m

a2
me

2iθm

εm ± J
, (23)

for a mirror-symmetric channel fulfilling |αm1 | = |αmM | =
am and (αm1 ) = (αmM )∗ = ame

iθm , with αmx ≡ 〈x|εm〉 [51].
The expressions above yield Λ±1 = 0 and Λ±2 = −g2/2J
if M = 6n (n = 1, 2, . . .) and Λ±1 = ±g2/2J and Λ±2 =
g2/2J for M = 6n+ 4. We also point out that the above
perturbation approach is not valid for M = 6n+2 given it
yields εm = ±J thereby causing divergence of the sums
above. Without loss of generality, though, we consider
M = 6n for the remainder of this paper.

After working out every term of the effective Hamilto-
nian via Eq. (15), its matrix form written in basis {|ψ0,i〉}
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reads

Heff =



2J 0 0 0 g2

2J
g2

2J

0 0 0 0 g2

2J −
g2

2J

0 0 0 0 g2

2J −
g2

2J

0 0 0 −2J g2

2J
g2

2J
g2

2J
g2

2J
g2

2J
g2

2J 0 0
g2

2J −
g2

2J −
g2

2J
g2

2J 0 0


. (24)

We finally express its eigenvectors and corresponding
eigenvalues in terms of {|sA1

sA2
sB1

sB2
〉}, recalling that,

e.g., |A1B1〉 ≡ |1010〉:

|ξ1〉≈
1

2
(|1010〉+ |1001〉+ |0110〉+ |0101〉), (25)

|ξ2〉≈
1

2
(|1010〉− |1001〉− |0110〉+ |0101〉), (26)

|ξ3〉≈
1√
2

(|1100〉+ |0011〉), (27)

|ξ4〉=
1√
2

(− |1001〉+ |0110〉), (28)

|ξ5〉=
1

2
(|1010〉− |0101〉+ |1100〉− |0011〉), (29)

|ξ6〉=
1

2
(|1010〉− |0101〉− |1100〉+ |0011〉), (30)

with ξ1≈2J , ξ2≈−2J , ξ3=ξ4=0, ξ5=g2/J , and
ξ6=−g2/J . We stick to the above notation hereafter.

In Fig. 2 we report the infidelity between the states
obtained via Eq. (8) and Eq. (24) taken at a specific time
for initial state |Ψ1(0)〉 and different values of g and N .
We see that the infidelity scales as Ng2, thus validating
the second-order perturbation approach for g � 1√

N
. As

we are interested in a protocol generating long-distance
entanglement between the qubits in the sender block and
those in the receiver block, we have reported the infidelity
between the exact and perturbative dynamics only at the
time t = πJ

g , corresponding to the first half of the Rabi-

like oscillation of the excitations.

B. Generation of Bell product states

We are now ready to track down the time evolution
of the initial states displayed in Eqs. (4)-(7) in the light
of second-order perturbation theory and check whether
a tensor product of Bell states can be achieved involving
blocks A and B. We stress that the effective description
in Eq. (24) entails no excitation within the channel at
any time.

According to the eigenstates obtained above, we arrive
at the following dynamics for |Ψ1(0)〉 = |1100〉:

|Ψ1(t)〉 =
1

2

[(
1− cos g

2t
J

)
|0011〉+ i sin g2t

J |0101〉

−i sin g2t
J |1010〉+

(
1 + cos g

2t
J

)
|1100〉

]
.

(31)

FIG. 2. Infidelity between exact dynamics and perturbative
one versus the weak coupling g (in units of J) for N = 94
and N = 16 evaluated at t = πJ/g2. We take as initial state
|Ψ1(0)〉.

Given the above is a pure state, we can evalu-
ate the amount of entanglement block A is sharing
with block B by means of the entanglement entropy
E(ρA1A2) = Tr[ρA1A2 log2 ρA1A2 ], with ρA1A2(t) =
TrB1B2(|Ψ1(t)〉 〈Ψ1(t)|), which is reported in Fig. 3
wherein we check via exact diagonalisation of the full
Hamiltonian, Eq. (1), that it reaches the maximum value

attainable for two qubits, E = 2, at t∗ = (2n+1)πJ
2g2 , with

n = 0, 1, 2, . . .. Notice that after many Rabi-like oscil-
lations n, the perturbative dynamics does not reproduce
anymore faithfully the exact dynamics. This is due to the
fact that leakage of the excitations in the chain is build-
ing up with time and, in the long-time regime, Rabi-like
oscillations eventually are completely suppressed. Never-
theless, in any practical implementation of our protocol,
the generated entanglement would be exploited after the
first few oscillations, where the agreement between exact
and perturbative dynamics is excellent. At such times,
the state of Eq. (31) reads

|Ψ1 (t∗)〉 =
1

2
(|0011〉+ (−1)ni |0101〉

+(−1)n+1i |1010〉+ |1100〉
)
. (32)

This state can be also written as a tensor product of two
Bell states between pairs (A1, B2) and (A2, B1), namely
|Ψ1 (t∗)〉 =

∣∣Φ1
θn

〉
A1B2

⊗
∣∣Φ2
θn

〉
A2B1

, where

∣∣Φ1
θn

〉
A1B2

=
1√
2

(
|01〉+ (−1)n+1i |10〉

)
, (33)∣∣Φ2

θn

〉
A2B1

=
1√
2

(|01〉+ (−1)ni |10〉) , (34)

and θn = −π 2n+1
2 .

Although the state in Eq. (32) is a legitimate one for
two-qubit teleportation, Alice may apply a single-qubit
phase gate R

(
π
2

)
to retrieve the standard Bell states and

subsequently follow the protocol addressed in Ref. [28] to
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0

1

2

0 ⇡ 2⇡

E
(⇢

A
1
A
2
)

t[J/g2]

g=1/10
g=1/20
g=1/40

FIG. 3. Exact time evolution of the entanglement entropy
E(ρA1A2) for N = 22, |Ψ1(0)〉 = |1100〉, and different
values of g. Maximum entanglement is achieved at times

t∗ = (2n+1)πJ

2g2
, with n being a positive integer, when the state

can be expressed as a tensor product of Bell states shared by
pairs (A1, B2) and (A2, B1).

carry out the teleportation. Otherwise, as pointed out in
Ref. [12], there will be a different set of two local unitary
operations Bob has to perform on each of his qubits which
we report in the following section.

We reach to a similar scenario starting from |Ψ2(0)〉 =
|1010〉,

|Ψ2(t)〉 =
1

2

[(
cos 2Jt+ cos g

2t
J

)
|1010〉

+
(

cos 2Jt− cos g
2t
J

)
|0101〉

−i sin 2Jt (|1001〉+ |0110〉)

−i sin g2t
J (|1100〉 − |0011〉)

]
, (35)

with maximum entanglement entropy E(ρA1A2) at the

same time t∗ = (2n+1)πJ
2g2 , when the state reads

|Ψ2 (t∗)〉 =
1

2
[i(−1)n (|0011〉 − |1100〉)

+ cos 2Jt∗ (|0101〉+ |1010〉)
−i sin 2Jt∗ (|0110〉+ |1001〉)] . (36)

If we now assume that the ratio J2/g2 is commensurate
such that 2Jt∗=2mπ or 2Jt∗=(2m+1)π, we have that
the cosine and sine functions yield, respectively, ±1 and
0. The state in Eq. (36) thus becomes

|Ψ2 (t∗)〉 =
1

2
[i(−1)n (|0011〉 − |1100〉)

+µn (|0101〉+ |1010〉)] , (37)

with µn ≡ Sign[cos 2Jt∗], which can be readily seen
to be the product state |Ψ2 (t∗)〉 = i(−1)n

∣∣Φ1
η

〉
A1B2

⊗

∣∣Φ1
η

〉
A2B1

, where

∣∣Φ1
η

〉
A1B2

=
1√
2

(|01〉 − µn(−1)ni |10〉) , (38)

and η = π µn

2 . Similarly, for 2Jt∗ = π/2 + 2nπ or 2Jt∗ =
3π/2+2nπ, cosine and sine functions give, respectively, 0
and ±1, and the state in Eq (36) evolves into |Ψ2 (t∗)〉 =
i(−1)n

∣∣Φ1
η

〉
A1B1

⊗
∣∣Φ1
η

〉
A2B2

. For times different from

those reported above, altough the entanglement entropy
is maximum, the state can not be decomposed into a
tensor product of Bell states.

The two remaining initial states in our investigation,
|Ψ3(0)〉 = |1001〉 and |Ψ4(0)〉 = |0110〉, do not yield any
entanglement between block A and B at any time, that
is E(ρA1A2

(t)) = 0. It is interesting to note that their
dynamics does not even involve g in the second-order
perturbation expansion.

IV. ENTANGLEMENT OF TELEPORTATION

The 1-qubit teleportation protocol establishes that Al-
ice and Bob share a pair of qubits in a maximally entan-
gled (Bell) state

∣∣Φkθ〉AB [cf. Eqs. (2) and (3)] and that
the former performs a Bell-measurement on her shared
qubit and an unknown one |ϕ〉X . It is thus convenient to
express the initial state of the protocol as

|ϕ〉X ⊗
∣∣Φkθ〉AB =

1

2

4∑
j=1

∣∣∣Φjθ〉
XA
⊗Okj |ϕ〉B , (39)

where the operators Okj depend on the initially shared
entangled state. Alice must now perform a Bell-
measurement depending on the relative phase θ. The
state reduces, with equal probability, to one of the Bell
states and Alice classically communicates her result to
Bob. Depending on the outcome, he is able to recover
the unknown state |ϕ〉B performing the right operation

Õkj (according to initial shared state) among the set

Õ1
j ={−R(θ), R(θ)σz, σx, σzσx} , (40)

Õ2
j ={−R(θ)σz, R(θ), σzσx, σx} , (41)

Õ3
j ={−R(−θ)σx,−R(−θ)σzσx, I,−σz} , (42)

Õ4
j ={R(−θ)σzσx, R(−θ)σx,−σz, I} , (43)

(44)

with

R(θ) =

(
eiθ 0
0 e−iθ

)
. (45)

Observe that Õkj is simply the inverse of Okj in Eq. (39).
The quantum resource for this protocol is a maximally
entangled state, i.e., the Bell state of two qubits.

For 2-qubit teleportation protocol let us suppose Al-

ice and Bob share the state
∣∣∣Φk1θ 〉

A1B2

⊗
∣∣∣Φk2θ 〉

A2B1

and
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Alice wants to teleport an arbitrary two-qubit state
|ϕ〉XY =a |00〉+b |01〉+c |10〉+d |11〉. The initial state of
the protocol can then be written as

|ϕ〉XY ⊗
∣∣∣Φk1θ 〉

A1B2

⊗
∣∣∣Φk2θ 〉

A2B1

= (46)

1

4

4∑
j1,j2=1

∣∣∣Φj1θ 〉
XA1

⊗
∣∣∣Φj2θ 〉

YA2

⊗
(
Ok2j1⊗O

k2
j2

)
|ϕ〉B1B2

.

As a consequence, a measurement in the generalized Bell
basis given above on Alice’s pairs of qubits (X,A1) and
(Y,A2), reduces the scheme to the standard single-qubit
teleportation protocol for each qubit X and Y .

In Ref. [28], the Entanglement of Teleportation (EoT),
ET (|Φ〉), has been introduced as a measure of the use-
fulness of a 2n-qubit pure state, |Φ〉, for n-qubit telepor-
tation. In the following we report its expression for the
case of four qubits. The EoT is based on the general-

ized concurrence [52], C (|Φ〉) = | 〈Φ| Φ̃〉|, where
∣∣∣Φ̃〉 =

σ̂yA1
σ̂yA2

σ̂yB1
σ̂yB2
|Φ〉∗ and the state is expressed in the com-

putational basis. Hence, ET (|Φ〉) = 1
16

∑16
i=1 C

(∣∣Φ(i)
〉)

,

where
∣∣Φ(i)

〉
are all the orthogonal states that can be

obtained from |Φ〉 by applying certain single-qubit uni-
tary operations, as reported in Ref. [28]. Let us point
out that the EoT is independent of the choice of basis as
long as each of the 16 basis states are composed of tensor
product of maximally entangled states. Straightforward
calculations shows that in the case of θ = π

2 the states
reported in Eqs. (32) and (37) have unit EoT.

Although the states obtained by the full and effective
dynamics have vanishing infidelity, as shown in Fig. 2,
let us also compare, for the sake of completeness, the ef-
ficiency of the teleportation protocol performed via the
exact and the reduced states as, in principle, states with
high fidelity may not share the same resources [53]. To
this aim we report the fidelity of teleportation, FT , by
means of the full and the effective Hamiltonians reported
in the previous sections, in Eqs. (8) and (24), respec-
tively. The fidelity of teleportation is given by the over-
lap of the unknown state to be teleported, say |ϕin〉, and
Bob’s output state ρ̂out, that is FT = 〈ϕin| ρ̂out |ϕin〉.
Using the two-qubit parametrization as in Ref. [42]

|ϕ〉in =

√
1− s

2

(
cos

θ1

2
|0〉+ eiφ1 sin

θ1

2
|1〉
)
⊗
(

cos
θ2

2
|0〉+ eiφ2 sin

θ2

2
|1〉
)

+√
1 + s

2

(
e−iφ1 sin

θ1

2
|0〉 − cos

θ1

2
|1〉
)
⊗
(
e−iφ2 sin

θ2

2
|0〉 − cos

θ2

2
|1〉
)
, (47)

with 0 ≤ θ1,2 ≤ π , 0 ≤ φ1,2 ≤ 2π , and −1 ≤ s ≤ 1.

After working out the fidelity of teleportation of such
a state, according to the effective Hamiltonian descrip-
tion, we integrate it over all possible inputs to obtain the

average fidelity of teleportation

F̄eff(t) =
1

2
− 7

54
cos

2g2t

J
+

10

27
sin

g2t

J
. (48)

On the other hand, the average FT for the full dynam-
ics reads

F̄T (t) =
1

27

(
7 + 3|h12 |2 + 3|h

1N−1
|2 + 6|h

1N
|2 + 3|h

N−1N
|2 + 3|h

2N
|2

−2

N−2∑
n=3

(
|h1n |2 + |h2n |2 + |h

nN−1
|2 + |h

nN
|2
)

+ 14Re(h12h
∗
N−1N

− h
2N
h∗

1N−1
)

+10Im(h
12
h∗

1N−1
+ h

2N
h∗

N−1N
− h

1N−1
h∗

N−1N
− h

12
h∗

2N
)− 4

N−2∑
n=3

Im(h
1n
h∗

nN
− h

2n
h∗

nN−1
)

)
, (49)

where, for conciseness, hpq stands for hpq12 as defined in
Eq. (10), and Re (Im) denote the real (imaginary) part.
In Fig. 4 we report F̄T for a chain with N = 22 sites
for different values of g comparing it with the effective

description F̄eff. It can be seen that already for values
of g/J = 1/40, the effective description is faithful and
the average fidelity of teleportation is very close to unit
at time t∗ obtained from the perturbative analysis (see
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FIG. 4. Average fidelity of teleportation for the full model
for a random two-qubit state for various values of g. Time is
being expressed in units of J/g2. The black curve represents
the same quantity for the effective dynamics obtained from
the second-order perturbation approach.

inset of Fig. 4). From Figs. 3,4 we can also infer that, for
g � 1, being the entanglement entropy and the average
fidelity of teleportation obtained by the perturbative ap-
proach an excellent approximation of the same quantities
derived via the exact dynamics, the infidelity of the two
respective maps should be negligible at any time, and not
only at the times shown in Fig. 2.

Finally, as the resource for 2-qubit teleportation may
be used at an arbitrary time after t∗, we consider the
case where Alice and Bob decouple, at t = t∗, their re-
spective blocks from the channel, i.e., set g = 0. The
qubits in each block are still interacting according to H0

in Eq. 12, but the entanglement between the blocks re-
mains constant. This can be easily shown as the pair of
spins in each block are left, at t = t∗, in a state close to

the maximally mixed state one. As
[
Ĥij , ρ̂ij

]
= 0, for

i, j = A1, A2 and B1, B2, the entanglement of telepor-
tation also stays almost constant, exhibiting oscillations
with less that 1% of the values at t = πJ

2g2 (see Fig. 3) as

we have numerically verified.

V. CONCLUSIONS

We worked out a protocol for generating four-qubit
generalized Bell states, to be used in quantum telepor-
tation of an arbitrary two-qubit state, via the natu-
ral Hamiltonian dynamics of a XX spin-1/2 chain with
weakly coupled end blocks. We derived analytically the
effective dynamics of the system in the two-excitation
manifold up to second-order perturbation theory.

We found that a simple initialisation of the sender and
receiver blocks, i.e., a two-spin flip on a overall fully po-
larized spin background of the quantum channel, results
in the generation of the appropriate resource (entangle-
ment) upon which the teleportation protocol will rely
on. Note that, at variance with entanglement distribu-
tion schemes, where entanglement is shared initially be-
tween two pairs of qubits (of which only one belongs to
the chain) and the quantum channel is used to distribute
the initial entanglement, our protocol generates entan-
glement via the natural dynamics of the chain and no
pre-existing entanglement is required.

Motivated by the need, in several quantum informa-
tion processing tasks, to transfer many-qubit states with
the minimum amount of resources, we have set a first
step in this direction by implementing the two-qubit case
in a quantum channel, which also fulfills the one-qubit
scheme. Remarkably, the time scale for sharing a tensor
product of two Bell states is the same as that required for
a single Bell state, hinting towards the possibility that the
generation of an arbitrary tensor product of Bell states,
via our protocol, is independent of the wanted number of
Bell pairs. This seems to be a consequence of the non-
interacting nature of the model, where the many-particle
dynamics can be evaluated through single-particle tran-
sition amplitudes. This will be addressed in a future
project.

Our work was inspired on the idea of using preengi-
neered spin chains for transmitting (and generating)
states from one point to another with minimal control,
which may find applications in intermediate-scale quan-
tum computations as well [54]. Further extensions of this
work should generalize the protocol to cover the gener-
ation of resources for n−qubit teleportation as well as
investigate the effects static disorder and other forms of
noise, as well as other ways to perturbatively couple the
sender and the receive blocks to the quantum channel –
e.g., using strong local magnetic fields [41, 42, 55]. Fi-
nally, considering the high level of control achievable in
cold atoms settings, we believe that our protocol is within
experimental reach [56–58].
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