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Abstract 

We report the welding of thermoplastic materials by means of embedded fully-aligned carbon 

nanotube (CNT) web. Layers of CNT web (each layer of which has a densified thickness of 50 nm) 

were placed between two polyether ether ketone (PEEK) films to create a resilient insert which was 

then embedded between two bonding interfaces. An electrical current was passed through the CNT 

webs to activate Joule heating, melting the insert and adjacent surfaces of the thermoplastic parts. 

Preliminary experiments on welded PEEK samples show that the tensile strength of the welded 

specimens reached 96% of the strength of the pristine material, even before optimizing the 

processing conditions. The potential of this welding technology is evident: the inserts are ultra-thin, 

highly flexible, so can conform to bonding surfaces of complex shape, and the anisotropy of the 

CNT-web provides an additional variable for optimizing the electro-thermal response.  
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1. Introduction 

Fusion bonding is a well-established method for welding thermoplastics [1–7] which entails the 

controlled melting of the mating surfaces and their consolidation under applied pressure. Fusion-

bonding techniques may be classified according to the heat generation mechanism into: (i)  

mechanical welding; (ii) thermal welding; and (iii) electromagnetic welding [7]. Electromagnetic 

welding, in turn, may be subdivided into induction welding, microwave welding and resistance 

welding depending on whether the heating produced in the conductive material placed at the 

bonding surface is generated through an induction coil, microwave radiation, or by the direct 

application of an electric potential. 

Resistance welding is a simple, low-cost joining solution for thermoplastic materials but generally 

requires a metal mesh or carbon fibre insert as the heating element [6,8–10] which remains in the 

joint after welding. Metal inserts may have a detrimental effect on the mechanical performance of 

the joint [11]), add to the weight of the assembly and be susceptible to corrosion.  Carbon fibres are 

light and resistant to corrosion, but they are stiff and difficult to introduce at geometrically complex 

interfaces. Moreover, they may also cause a reduction in mechanical properties and poor weld 

reproducibility, especially when a large quantity of fibre is used. Electrical connections between the 

electrodes and the carbon fibres are also problematic. Such factors hinder the process of scaling up 

the technology [12]. Brassard et al. [13] proposed a new heating element made of polyetherimide 

(PEI) made electrically conductive by mixing dispersed multi-wall carbon nanotubes (MWCNT). It 

is known that the dispersion of CNTs inside a polymer matrix is not easy, especially when viscous 

polymers are employed. Moreover, the dispersed CNTs, which are randomly oriented, create 

isotropic thermal behaviour and thus obstruct the fabrication of a specific heating path.  

An innovative solution [14] is demonstrated that uses highly-aligned carbon nanotube web (CNT-

web) as a directly energised resistive heating element, which could potentially overcome the 

aforementioned shortcomings. CNT webs are ~104 times lighter than carbon fibres of similar 
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resistance and a single layer of CNT-web has a densified thickness of only around 50 nm, so the 

inclusion effect is mitigated, if not eliminated. CNT-web is essentially catalyst-free and not prone to 

corrosion; the web can be laterally collapsed to form a yarn outside the joint, thereby facilitating 

connection to electrodes. The webs exhibit high flexibility and conformability, allowing the welding 

of very complex bonding surfaces, and their anisotropy can be exploited to tailor an optimal electro-

thermal response for the welding process [15,16].  

2. Materials and Methods 

2.1 CNT-web insert preparation and characterization 

Directly drawable CNT forests, with an average CNT length of 300 µm, and an average diameter of 

10 nm, were synthesized by chemical vapour deposition (CVD) following a procedure reported in 

[17]. CNT-web was drawn directly from the silicon growth substrate and wound to a depth of 10 

layers onto a square-section mandrel (side 70 mm) lined with a 220 µm thick PEEK film (Fig. 1a). 

The PEEK film, bearing the CNT-web, was removed and cut into squares with sides of length 16 

mm.  Conductive silver paint was sprayed onto the ends of the web to create electrodes 

perpendicular to the drawn direction. Copper busses were then stuck to the paint to facilitate 

electrical connections (Fig. 1b). A second PEEK film was then placed over the assembly to create 

the insert.  
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Figure 1 – Insert manufacturing. (a) Drawing and winding of carbon nanotube web, (b) assembly 
of the insert with copper electrodes and covering film(c) top view of the final insert before 

covering. 
 

The longitudinal sheet resistivity of a single layer of CNT-web, ������ = 1200 ± 160 Ohm. This 

was calculated as	������ = ��/�, where  is the longitudinal resistance of � web layers measured 

with an Agilent 34450A 5½ Digit Multimeter, � = 10 is the number of CNT-web layers,  � = 16 

mm is the width of the specimen, and � = 14 mm is the inner distance between the electrodes (see 

Fig. 1b).  

2.2 Welding process  

A Platen Press (COLLIN P 200 P) was used to make PEEK panels with a thickness of 10 mm 

following the supplier’s recommended manufacturing protocol using PEEK pellets. The panels 

were machined using a CNC machine (Stepcraft 600) in order to obtain samples of dimensions 10 

mm × 10 mm × 130 mm for weld specimens and 10 mm ×10 mm × 260 mm for controls. Before 

welding, surfaces to be joined were carefully cleaned with acetone to remove any contamination.  

The welding process (Fig. 2) consists of five steps: 

(i) alignment of the specimens (Fig. 2a); 

(ii)  positioning of the insert (Fig. 2b) with slight pressure applied; 

(iii)  application of electric power to melt insert and adjacent regions of the specimens 

(Fig. 2c); 

(iv) application of a consolidation pressure as heating is stopped (Fig. 2d); 

(v) machining to remove the welding flash. 

 

Alignment of the two specimens to be joined, and controlled application of pressure, was achieved 

with the ASTM D6641 test fixture (Fig. 2a). Heat is generated within the insert by the Joule effect 

and the total electrical energy used,	� = ��, where � is the time of exposure and the power, 
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� = �� (i.e. applied DC voltage times current). The power is kept constant (by adjusting the 

voltage) for the duration of heating. It is also convenient to use specific power, �� , and specific 

input energy, ��, obtained by normalising the power and energy with respect to the area of the 

bonding surface. The specimens were all welded at the same specific power ��	 = 	55 kW/m2 

while the effects of consolidation pressure,�, and time as expressed by specific input energy,	��, 

were studied. 

 

A thermal imaging camera and software (FLIR T640, ResearchIR) was employed to record the 

temperature profile during the entire process to investigate the change in the superficial temperature 

in the vicinity of the weld line; to understand the effects of the welding parameters on the 

temperature distribution; and to analyse heating and cooling rate of the samples.  

 

 

Figure 2 – Welding process. (a) Alignment of polymeric parts with ASTM D6641 – combined 
loading compression test fixture, (b)positioning of CNT-web insert, (c) application of electric 

power, and (d) application of consolidation pressure (b-d,                                                        
ASTM D6641 fixture deleted for clarity) 
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2.3 Characterization  

2.3.1 Mechanical test 

Tensile tests on welded and control (pristine material) specimens were conducted using a Zwick 

Roell z100 universal testing machine, equipped with a 100 kN load cell, at a cross-head speed of 1 

mm/min. The pristine material strength,	��, and that of the welded specimens, ��, were measured 

to yield a value of the joint efficiency, � = ��/��.  

2.3.2 Scanning electron microscope (SEM) and visual inspection 

Small sections were cut across the weld line from coupons, polished, sputtered with a thin layer of 

gold (Agar sputter coater B7341, 30 mA for 40 s) and examined by scanning electron microscope 

(Hitachi FlexSEM 1000). The fractured surfaces of the specimens were also visually inspected.  

3. Results and Discussion 

Preliminary experiments indicated that a suitable range of pressure and input energy to explore 

initially was approximately 1 – 4 MPa and 5000 – 10000 kJ/m2. Actual values and the number of 

specimens for each designation were selected (Table 1) to identify the best performance to-date and 

the effect of lower pressure and shorter time (lower input energy). 

Table 1 Variables studied 
Specimen Designation Pressure, 

�, ["#$] 
Input energy, 
&', [()/*+] 

Specimens
, # 

PC Pristine Control - - 3 

WB Weld best 4 8250 5 

LP Low Pressure weld 0.4 8250 5 

LE Low Energy weld 4 4950 4 

 

 

The PEEK specimens to be joined were clamped with a CNT web insert between them (Fig 3a, one 

WB specimen (�� = 8250 kJ/m2, � = 4 MPa) illustrated) and power applied to the copper buses.  
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Infrared imaging of the joint zone (Fig 3b) was captured at equilibrium temperature (about 100 

seconds) and the joint held in place until cool (Fig 3c).  Surface spot temperatures were 

continuously recorded at 0.5, 2.5, 3.5, and 5 mm (Fig 3d), respectively from the joint line where 

indicated (Fig 3b). 

 

 

At 0.5 mm from the nominal welding line, surface temperature reaches 390 °C after about 100 

seconds. It then appears to fall slightly although this is likely due to accumulation of flashing which 

blocks the IR camera view and presents a larger surface area for heat dissipation.  Further from the 

joint, the temperature stabilises from about 100 seconds and then rises very slowly thereafter, 

reaching about 265, 200 and 155 °C, at 2.5, 3.5 and 5 mm respectively when heating is stopped 

(�=150 s). Thereafter, the passive cooling rate is equal to 550, 90, 35, and 20 °C/min at 0.5, 2.5, 3.5, 

and 5 mm, respectively. 
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Figure 3 – (a) Setup of welding; (b)Thermal image of the WB specimen during welding; (c) 
welded specimen with surrounding polymer flash; (d) temperature curves at different distances 

from the weld line during the welding process 
  

After cooling, the welded specimens were machined back to a 10 mm square section to remove 

flashing and tensile tested. Other specimens (WB and LE) were polished and analysed using the 

SEM. The weld region for the WB specimen (Fig 4a) does not show any imperfection or visible 

voids. Moreover, a notch was introduced in a corner of the specimen in proximity of the weld line 

in order to reveal the carbon nanotube location which is otherwise extremely difficult to see (detail 

in Fig 4a). 

In contrast, the LE specimen exhibits a clear separation between the different regions of the joint 

(Fig. 4b) showing that enough energy has not been provided for melting. 
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Figure 4 – SEM images of (a) WB specimen weld line with detail (mag. x10) showing the 
presence of CNTs, and (b) LE specimen weld line. 

 

3.1 Mechanical performance and inspection 

Mechanical testing of the welded specimens (Table 2) demonstrated that within the range of 

parameters studied, the best identified conditions (specimens WB) were � = 4 MPa and 	�� =

8250 kJ/m2, where this total energy is delivered over a treatment period of 150 seconds. 

 Table 2 – Experimental results. 
Designation Tensile strength Mean value SD Efficiency 

  �, [MPa] �-,	[MPa] �, [MPa]  �,	 [%] 



 

10 

 

PC 
102 

99 6 - 93 
103 

WB 

94 

95 3 96 
93 
99 
97 
93 

LP 

37 

25 18 25 
7 
21 
12 
51 

LE 

16 

18 7 18 
16 
27 
11 

 

The simultaneous use of higher input energy and consolidation pressure (Fig. 5, Table 2) yields a 

bond strength of 96% efficiency. A lower pressure, and particularly a lower energy (which entails a 

treatment period of just 90 s) results in very poor bonding with an efficiency of just 25% and 18% 

respectively.  
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Figure 5 – Comparison between the tensile strength of pristine and welded samples. The error 
bars indicate the standard deviation. 

 
 

The fracture surfaces of the WB and PC samples (Fig. 6a) show similar morphology being that of a 

cohesive fracture and indicating that effective molecular diffusion was achieved for the weld. In 

contrast, an adhesive type of fracture due to the insufficient pressure (LP) or input energy (LE) is 

seen for these specimens (Fig. 6c, d). The LP specimen (Fig. 6c) exhibits bubbling at the surface 

due to the inability of the applied pressure to overcome the high melt viscosity of the PEEK in order 

to expel entrained air or adsorbed moisture, whilst the LE specimen also shows partially unmelted 

material at the centre region because of insufficient heating time [6].  

 

Figure 6 – Fracture surface of specimens after tensile test; (a) specimen PC; (b) specimen WB; (c) 
specimen LP; (d) specimen LE. 

 

Conclusions 

An innovative resistance welding method for thermoplastics, using CNT web as the directly 

energised Joule heating element, has been demonstrated. This preliminary investigation using 

PEEK specimens showed that the best results for bond tensile strength were achieved with a 

specific power of �� = 55 kW/m2, the specific energy of �� = 8250 kJ/m2, and a consolidation 
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pressure of � = 4 MPa. The welded specimens achieved a strength of 95 ± 3 MPa and a joint 

efficiency of 96%. 

This proposed welding technology is anticipated to have a substantial impact. The manufacture of 

the CNT web is well understood and the method is scalable. The resulting small added weight and 

thickness, high conformability, and tailorable electro-thermal response make this approach highly 

practical for the welding of thermoplastic structures. It is envisaged that this may result in simpler, 

faster, and more reliable welding processes.  
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Highlights 

 

• We have made an insert placing layers of CNT web between two PEEK films. 

• We have embedded the CNT-web/PEEK inserts between two bonding surfaces. 

• We have applied electrical current and pressure causing the welding of the parts. 

• We have tested the welded joints in tension finding a joint efficiency of 96%. 

 


