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For a given C*-algebra A, we establish the existence of maximal and minimal operator A-system structures on an

AOU A-space. In the case A is a W*-algebra, we provide an abstract characterisation of dual operator A-systems, and

study the maximal and minimal dual operator A-system structures on a dual AOU A-space. We introduce

operator-valued Schur multipliers, and provide a Grothendieck-type characterisation. We study the positive extension

problem for a partially defined operator-valued Schur multiplier ϕ and, under some richness conditions, characterise its

affirmative solution in terms of the equality between the canonical and the maximal dual operator A-system structures

on an operator system naturally associated with the domain of ϕ.

1 Introduction

The problem of completing a partially defined matrix to a fully defined positive matrix has attracted considerable

attention in the literature (see e.g. [5] and [8] and the references therein). Given an n by n matrix, only a subset

of whose entries are specified, this problem asks whether the remaining entries can be determined so as to yield

a positive matrix. For block operator matrices, this problem was considered in [14], where the authors showed

that it is closely related to questions about automatic complete positivity of certain positive linear maps. More

specifically, one associates to the pattern κ of the partially defined matrix (that is, the set of all given entries)

the operator system S(κ) of all fully specified matrices supported by κ. The positive completion problem is then

linked to the question of whether the operator-valued Schur multiplier with domain S(κ) is completely positive.

A continuous infinite dimensional version of the scalar-valued completion problem was considered in [11],

where the authors characterised the operator systems possessing the positive completion property in terms of
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an approximation of its positive cone via rank one operators. The original motivation behind the present paper

was the study of the operator-valued, infinite dimensional and continuous, analogue of the positive completion

problem. We relate the question to the automatic complete positivity of operator-valued Schur multipliers; in

fact, we characterise the extendability of Schur multipliers in terms of an equality between operator system

structures on an associated Archimedean order unit (AOU) *-vector space.

One of the fundamental representation theorems in Operator Space Theory is Choi-Effros Theorem [13,

Theorem 13.1], which characterises operator systems (that is, unital selfadjoint linear subspaces S of the space

B(H) of all bounded linear operators on a Hilbert space H) abstractly, in terms of properties of the cones of

positive elements in the S-valued matrix space Mn(S). Operator A-systems, that is, the operator systems which

admit a bimodule action by a unital C*-algebra A, can be characterised similarly in a way that takes into

account the extra A-module structure [13, Corollary 15.13]. Dual operator systems – that is, operator systems

that are also dual operator spaces – were characterised by D. P. Blecher and B. Magajna in [4]. However, no

analogous representation of dual operator A-systems, where A is a W*-algebra, has been known.

The idea of viewing operator spaces as a quantised version of Banach spaces has been very fruitful

in Functional Analysis [6]. Operator systems can in a similar vein be thought of as a quantised version of

Archimedean order unit (AOU) *-vector spaces. The possible quantisations, or operator system structures, on

a given AOU space, were first studied in [15], where it was shown that every AOU space possesses two extremal

operator system structures. However, no similar development has been achieved for dual AOU spaces or for

AOU A-spaces.

In this paper, we unify all aforementioned strands of questions. We provide a Choi-Effros type representation

theorem for dual operator A-systems. We study the operator A-system structures on a given AOU A-space, as

well as the dual operator A-system structures on a given dual AOU A-space. The latter results are new even

in the case where A coincides with the complex field. We introduce infinite dimensional measurable operator-

valued Schur multipliers, and provide a characterisation that generalises their well-known description by A.

Grothendieck [9] in the scalar case (see also [10] and [17]). Finally, we study the positive extension problem

for operator-valued Schur multipliers, and characterise the possibility of such an extension by equality of the

canonical and the maximal dual operator D-system structures on the domain of the given Schur multiplier. Our

context is that of an arbitrary (albeit standard) measure space (X,µ), which includes as a sub-case the discrete

case and thus the finite case considered in [14]. In this context, the algebra D is the maximal abelian selfadjoint

algebra corresponding to L∞(X,µ). Our results are a far reaching generalisation of the results of V. I. Paulsen,

S. Power and R. R. Smith [14]; in particular, they provide a different view on the positive completion problem

for block operator matrices considered therein.

The paper is organised as follows. After collecting some preliminaries in Section 2, we establish, in Section 3,

the existence of the minimal and the maximal operator A-system structures on a AOU A-space V , OMINA(V )

and OMAXA(V ). In case V is a C*-algebra, OMINA(V ) was essentially defined in [20], in relation with the
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problem of automatic complete positivity of A-module maps, whose completely bounded version was first

considered by R. R. Smith in [24] (see also the subsequent paper [19]). We show that OMAXA(V ) (resp.

OMINA(V )) is characterised by the automatic complete positivity of A-bimodule positive maps from V into

any operator A-system (resp. from any operator A-system into V ).

In Section 4, we provide a characterisation theorem for dual operator A-systems and, in Section 5, we define

dual AOU A-spaces and undertake a development, analogous to the one in Section 3, for dual operator A-system

structures.

In Section 6, we introduce the operator-valued version of measurable Schur multipliers and provide a

Grothendieck-type characterisation, noting the special case of positive Schur multipliers. In Section 7, we study

partially defined operator-valued Schur multipliers and their extension properties to a fully defined positive

Schur multiplier. Associated with the domain κ ⊆ X ×X of the Schur multiplier is an operator system S(κ).

Our analysis depends on the presence of sufficiently many operators of finite rank in S(κ). We note that, of

course, this holds true trivially in the classical matrix case. Under such richness conditions on the domain κ, we

show that the positive extension problem for operator-valued Schur multipliers defined on κ has an affirmative

solution precisely when the canonical operator system structure of S(κ) coincides with its maximal dual operator

D-system structure.

We denote by (·, ·) the inner product in a Hilbert space, and we use 〈·, ·〉 to designate duality paring. We

will assume some basic facts and notions from Operator Space Theory, for which we refer the reader to the

monographs [3, 6, 13, 18].

2 Preliminaries

In this section we recall basic results and introduce some new notions that will be needed subsequently. If W is

a real vector space, a cone in W is a non-empty subset C ⊆W with the following properties:

(a) λv ∈ C whenever λ ∈ R+ := [0,∞) and v ∈ C;

(b) v + w ∈ C whenever v, w ∈ C.

A *-vector space is a complex vector space V together with a map ∗ : V → V which is involutive (i.e. (v∗)∗ = v

for all v ∈ V ) and conjugate linear (i.e. (λv + µw)∗ = λv∗ + µw∗ for all λ, µ ∈ C and all v, w ∈ V ). If V is a

*-vector space, then we let Vh = {x ∈ V : x∗ = x} and call the elements of Vh hermitian. Note that Vh is a real

vector space.

An ordered *-vector space [16] is a pair (V, V +) consisting of a *-vector space V and a subset V + ⊆ Vh

satisfying the following properties:

(a) V + is a cone in Vh;

(b) V + ∩ −V + = {0}.
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Let (V, V +) be an ordered *-vector space. We write v ≥ w or w ≤ v if v, w ∈ Vh and v − w ∈ V +. Note that

v ∈ V + if and only if v ≥ 0; for this reason V + is referred to as the cone of positive elements of V .

An element e ∈ Vh is called an order unit if for every v ∈ Vh there exists r > 0 such that v ≤ re. The order

unit e is called Archimedean if, whenever v ∈ V and re+ v ∈ V + for all r > 0, we have that v ∈ V +. In this

case, we call the triple (V, V +, e) an Archimedean order unit *-vector space (AOU space for short). Note that

(C,R+, 1) is an AOU space in a canonical fashion.

Let A be a unital C*-algebra. Recall that a (complex) vector space V is said to be an A-bimodule

if it is equipped with bilinear maps A× V → V , (a, x)→ a · x and V ×A → V , (x, a)→ x · a, such that

(a · x) · b = a · (x · b), (ab) · x = a · (b · x), x · (ab) = (x · a) · b and 1 · x = x for all x ∈ V and all a, b ∈ A. If V

and W are A-bimodules, a linear map φ : V →W is called an A-bimodule map if φ(a · x · b) = a · φ(x) · b, for

all x ∈ V and all a, b ∈ A.

Definition 2.1. Let A be a unital C*-algebra. An AOU space (V, V +, e) will be called an AOU A-space if V

is an A-bimodule and the conditions

(a · x)∗ = x∗ · a∗, x ∈ V, a ∈ A, (1)

a · e = e · a, a ∈ A, (2)

and

a∗ · x · a ∈ V +, x ∈ V +, a ∈ A, (3)

are satisfied.

For a complex vector space V , we let Mm,n(V ) denote the complex vector space of all m by n matrices

with entries in V , and often use the natural identification Mm,n(V ) ≡Mm,n ⊗ V . We write At for the transpose

of a matrix A ∈Mm,n(V ). We set Mn(V ) = Mn,n(V ), Mm,n = Mm,n(C) and Mn = Mn(C); we write In for the

identity matrix in Mn. If V is an AOU A-space, we equip Mn(V ) with an involution by letting (xi,j)
∗ = (x∗j,i)

and set

(ai,j) · (xi,j) =

(
n∑
p=1

ai,p · xp,j

)
i,j

and (xi,j) · (bi,j) =

(
n∑
p=1

xi,p · bp,j

)
i,j

, (4)

whenever (xi,j) ∈Mm,n(V ), (ai,j) ∈Mk,m(A) and (bi,j) ∈Mn,l(A), m,n, k, l ∈ N.

Let A be a unital C*-algebra and (V, V +, e) be an AOU A-space. We write en for the element of Mn(V )

whose diagonal entries coincide with e, while its off-diagonal entries are equal to zero. A family (Pn)n∈N, where

Pn ⊆Mn(V )h is a cone with Pn ∩ (−Pn) = {0}, n ∈ N, will be called a matrix ordering of V . A matrix ordering

(Pn)n∈N will be called an operator A-system structure on V if P1 = V +,

A∗ ·X ·A ∈ Pn, whenever X ∈ Pm and A ∈Mm,n(A), (5)
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and en ∈Mn(V ) is an Archimedean order unit for Pn for every n ∈ N. Condition (5) will be referred to as the

A-compatibility of (Pn)n∈N. The triple S = (V, (Pn)n∈N, e) is called an operator A-system (see [13]); we write

Mn(S)+ = Pn. Note that if B ⊆ A is a unital C*-subalgebra, then every operator A-system is also an operator

B-system in a canonical fashion. Operator C-systems are called simply operator systems. We note that every

operator system has a canonical operator space structure (see [13]). Note that condition (2) is not a part of

the standard definition of an operator A-system; it is however automatically satisfied, as easily follows from

Theorem 2.2 below.

Let H be a Hilbert space and B(H) be the space of all bounded linear operators on H. We write B(H)+ for

the cone of all positive operators in B(H). We identify Mn(B(H)) with B(Hn), where Hn denotes the direct sum

of n copies of H, and write Mn(B(H))+ = B(Hn)+, n ∈ N. It is straightforward to see that B(H) is an operator

system when equipped with the adjoint operation as an involution, the matrix ordering (Mn(B(H))+)n∈N, and

the identity operator I as an Archimedean matrix order unit.

Given AOU spaces (V, V +, e) and (W,W+, f), a linear map φ : V →W is called unital if φ(e) = f , and

positive if φ(V +) ⊆W+. A linear map s : V → C is called a state on V if s is unital and positive.

Let S and T be operator systems with units e and f , respectively. For a linear map φ : S → T , we let

φ(n,m) : Mn,m(S)→Mn,m(T ) be the (linear) map given by φ(n,m)((xi,j)i,j) = (φ(xi,j))i,j , and set φ(n) = φ(n,n).

The map φ is called n-positive if φ(n) is positive, and it is called completely positive if it is n-positive for all

n ∈ N. A bijective completely positive map φ : S → T is called a complete order isomorphism if its inverse φ−1

is completely positive. In this case, we call S and T are completely order isomorphic; if φ is moreover unital, we

say that S and T are unitally completely order isomorphic. Further, φ is called a complete isometry if φ(n) is

an isometry for each n ∈ N. We note that a unital surjective map φ : S → T is a complete isometry if and only

if it is a complete order isomorphism [3, 1.3.3].

We refer the reader to [13] for the general theory of operator systems and operator spaces, and in particular

for the definition and basic properties of completely bounded maps. The following characterisation, extending

the well-known Choi-Effros representation theorem for operator systems [13, Theorem 13.1], was established in

[13, Corollary 15.12].

Theorem 2.2. Let A be a unital C*-algebra and S be an operator system. The following are equivalent:

(i) S is unitally completely order isomorphic to an operator A-system;

(ii) there exist a Hilbert space H, a unital complete isometry γ : S → B(H) and a unital *-homomorphism

π : A → B(H) such that γ(a · x) = π(a)γ(x) for all x ∈ S and all a ∈ A.

We note that, if A is a unital C*-algebra and S is an operator system that is also an operator A-bimodule

satisfying (1), then S is an operator A-system precisely when the family (Mn(S)+)n∈N is A-compatible.
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3 The extremal operator A-system structures

In this section, we show that any AOU A-space can be equipped with two extremal operator A-system structures,

and establish their universal properties. We first consider the minimal operator A-system structure. Note that,

in the case where the AOU A-space is a C*-algebra containing A, this operator system structure was first defined

and studied in [20].

Let A be a unital C*-algebra and (V, V +, e) be an AOU A-space. For n ∈ N, let

Cmin
n (V ;A) = {X ∈Mn(V )h : C∗ ·X · C ∈ V +, for all C ∈Mn,1(A)}.

Remark 3.1. Suppose that (V, V +, e) is an AOU A-space and that B is a unital C*-subalgebra of A. Then

(V, V +, e) is also an AOU B-space in the natural fashion. Clearly, Cmin
n (V ;A) ⊆ Cmin

n (V ;B). In particular,

Cmin
n (V ;A) is contained in Cmin

n (V ;C); note that the latter set coincides with the cone Cmin
n (V ) introduced in

[15, Definition 3.1].

Theorem 3.2. Let A be a unital C*-algebra and (V, V +, e) be an AOU A-space. Then (Cmin
n (V ;A))n∈N is

an operator A-system structure on V . Moreover, if (Pn)n∈N is an operator A-system structure on V then

Pn ⊆ Cmin
n (V ;A) for each n ∈ N.

Proof . Since V + is a cone, Cmin
n (V ;A) is a cone, too. As a consequence of [15, Theorem 3.2] and Remark 3.1,

Cmin
n (V ;A) ∩ (−Cmin

n (V ;A)) = {0}. If X ∈ Cmin
m (V ;A), A ∈Mm,n(A) and C ∈Mn,1(A) then AC ∈Mm,1(A)

and hence

C∗ · (A∗ ·X ·A) · C = (AC)∗ ·X · (AC) ∈ V +,

showing that A∗ ·X ·A ∈ Cmin
n (V ;A). Thus, the family (Cmin

n (V ;A))n∈N is A-compatible.

Suppose that (Pn)n∈N is an operator A-system structure on V . If X ∈ Pn then, by A-compatibility,

C∗ ·X · C ∈ P1 = V +, and hence X ∈ Cmin
n (V ;A). Thus, Pn ⊆ Cmin

n (V ;A). It will follow from the proof of

Theorem 3.7 below that en is an order unit for Cmin
n (V ;A). To see that en is Archimedean, suppose that

X + ren ∈ Cmin
n (V ;A) for every r > 0. Let C ∈Mn,1(A). Using (2), we have

C∗ ·X · C + rC∗C · e = C∗ · (X + ren) · C ∈ V +, for all r > 0.

Let ε > 0 and T = (C∗C + ε1)−1/2 ∈ A. We have that

C∗ ·X · C + rC∗C · e+ rεe ∈ V +, for all r > 0

and hence, by (2) and (3),

T (C∗ ·X · C)T + re ∈ V +, for all r > 0.
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Since e is Archimedean for V +, we have that T (C∗ ·X · C)T ∈ V +. Applying (3) again, we conclude that

C∗ ·X · C = T−1(T (C∗ ·X · C)T )T−1 ∈ V +;

thus X ∈ Cmin
n (V ;A) and the proof is complete.

We call (Cmin
n (V ;A))n∈N the minimal operator A-system structure on V , and let

OMINA(V ) =
(
V, (Cmin

n (V ;A))n∈N, e
)
.

The following theorem describes its universal property. Part (i) below was established in [20] in the case V is a

C*-algebra containing A.

Theorem 3.3. Let A be a unital C*-algebra and (V, V +, e) be an AOU A-space.

(i) Suppose that S is an operator A-system and φ : S → V is a positive A-bimodule map. Then φ is

completely positive as a map from S into OMINA(V ).

(ii) If T is an operator A-system with underlying space V and positive cone V +, such that for every

operator A-system S, every positive A-bimodule map φ : S → T is completely positive, then there exists a

unital A-bimodule map ψ : T → OMINA(V ) that is a complete order isomorphism.

Proof . (i) Let S be an operator A-system and φ : S → V be a positive A-bimodule map. Suppose that

X = (xi,j) ∈Mn(S)+ and C = (ai)
n
i=1 ∈Mn,1(A). Then C∗ ·X · C ∈ S+; since φ is a positive A-bimodule map,

we have

C∗ · φ(n)(X) · C =

n∑
i,j=1

a∗i · φ(xi,j) · aj = φ

(
n∑

i,j=1

a∗i · xi,j · aj

)
= φ(C∗ ·X · C) ∈ V +.

Thus, φ(n) maps Mn(S)+ into Cmin
n (V ;A) and hence φ is completely positive.

(ii) Suppose that the operator A-system T satisfies the properties in (ii). Since the identity id :

OMINA(V )→ V is a positive A-bimodule map, we have that id : OMINA(V )→ T is completely positive. On the

other hand, the identity id : T → V is also positive and A-bimodular. By (i), id : T → OMINA(V ) is completely

positive, and we can take ψ = id.

We next consider the maximal operator A-system structure. For n ∈ N, set

Dmax
n (V ;A) =

{
k∑
i=1

A∗i · xi ·Ai : k ∈ N, xi ∈ V +, Ai ∈M1,n(A)

}

and let Dmax(V ;A) = (Dmax
n (V ;A))n∈N.
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Remark 3.4. Suppose that (V, V +, e) is an AOU A-space and that B is a unital C*-subalgebra of A. Clearly,

Dmax
n (V ;B) ⊆ Dmax

n (V ;A). Given any AOU space (V, V +, e), in [15] the authors defined

Dmax
n (V ) =

{
k∑
i=1

Bi ⊗ xi : k ∈ N, xi ∈ V +, Bi ∈M+
n

}
.

Since every matrix B ∈M+
n is the sum of matrices of the form A∗A, where A ∈M1,n, we have that Dmax

n (V ) =

Dmax
n (V ;C1).

Lemma 3.5. Let A be a unital C*-algebra and (V, V +, e) be an AOU A-space. Let Pn ⊆Mn(V )h be a cone,

n ∈ N, such that the family (Pn)∞n=1 is A-compatible and P1 = V +. Then Dmax
n (V ;A) ⊆ Pn, for each n ∈ N.

Proof . Let n ∈ N. If A ∈M1,n(A) then

A∗ · V + ·A = A∗ · P1 ·A ⊆ Pn.

Thus Dmax
n (V ;A) ⊆ Pn.

If x1, . . . , xn ∈ V we let diag(x1, . . . , xn) denote the element of Mn(V ) with x1, . . . , xn on its diagonal (in

this order) and zeros elsewhere.

Proposition 3.6. Let A be a unital C*-algebra and (V, V +, e) be an AOU A-space. The following hold:

(i) Dmax
n (V ;A) = {A∗ · diag(x1, . . . , xm) ·A : A ∈Mm,n(A), xi ∈ V +, i = 1, . . . ,m, m ∈ N};

(ii) Dmax(V ;A) is an A-compatible matrix ordering on V and e is a matrix order unit for it.

Proof . (i) Let Dn denote the right hand side of the equality in (i). We first observe that Dn is a cone in

Mn(V )h. If x1, . . . , xm ∈ V + and A = (ai,k)i,k ∈Mm,n(A) then the (i, j)-entry of A∗ · diag(x1, . . . , xm) ·A is

equal to
∑m

k=1 a
∗
k,i · xk · ak,j and, by (1),

(
m∑
k=1

a∗k,i · xk · ak,j

)∗
=

m∑
k=1

a∗k,j · xk · ak,i;

thus, Dn ⊆Mn(V )h. It is clear that Dn is closed under taking multiples with non-negative real numbers. Fix

elements

A∗ · diag(x1, . . . , xm) ·A, and B∗ · diag(y1, . . . , yk) ·B

of Dn. Letting C = [A B]t, we have

A∗ · diag(x1, . . . , xm) ·A+B∗ · diag(y1, . . . , yk) ·B

= C∗ · diag(x1, . . . , xm, y1, . . . , yk) · C ∈ Dn ;



Operator system structures 9

in other words, Dn is a cone. If B ∈Mn,l(A) then

B∗ · (A∗ · diag(x1, . . . , xm) ·A) ·B = (AB)∗ · diag(x1, . . . , xm) · (AB) ∈ Dl,

and so (Dn)∞n=1 is A-compatible. By (3), D1 = V +. Lemma 3.5 now implies that Dmax
n (V ;A) ⊆ Dn for n ∈ N.

On the other hand, if x1, . . . , xm ∈ V + then, letting Ei ∈M1,m(A) be the row with 1 at the ith coordinate

and zeros elsewhere, we have that

diag(x1, . . . , xm) =

m∑
i=1

E∗i · xi · Ei ∈ Dmax
m (V ;A).

Since the family Dmax(V ;A) is A-compatible,

A∗ · diag(x1, . . . , xm) ·A ∈ Dmax
n (V ;A), A ∈Mm,n(A).

Thus, Dn ⊆ Dmax
n (V ;A) and (i) is established.

(ii) By Remark 3.4 and [15, Proposition 3.10], en is an order unit for Dmax
n (V ;C1). By Remark 3.4 again,

en is an order unit for Dmax
n (V ;A).

For n ∈ N, let

Cmax
n (V ;A) = {X ∈Mn(V ) : X + ren ∈ Dmax

n (V ;A) for every r > 0}.

Theorem 3.7. Let A be a unital C*-algebra and (V, V +, e) be an AOU A-space. Then (Cmax
n (V ;A))n∈N is an

operator A-system structure on V . Moreover, if (Pn)n∈N is an operator A-system structure on V then

Cmax
n (V ;A) ⊆ Pn

for each n ∈ N.

Proof . Write Cn = Cmax
n (V ;A), n ∈ N. By Theorem 3.2 and Lemma 3.5, Cn ⊆ Cmin

n (V ;A); thus, Cn ∩ (−Cn) =

{0}. Since en is an order unit for Dmax
n (V ;A) and Dmax

n (V ;A) ⊆ Cn, we have that en is an order unit for Cn.

Suppose that X ∈Mn(V )h is such that X + ren ∈ Cn for every r > 0. Let ε > 0; then

X + εen =
(
X +

ε

2
en

)
+
ε

2
en ∈ Dmax

n (V ;A)

and hence X ∈ Cn. Thus, en is an Archimedean matrix order unit for Cn.
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It remains to show that the family (Cn)n∈N is A-compatible. To this end, let X ∈ Cn for some n ∈ N and

A ∈Mn,m(A). By Proposition 3.6, there exists R > 0 such that

Rem −A∗ · en ·A ∈ Dmax
m (V ;A).

Let r > 0. Since X + r
Ren ∈ D

max
n (V ;A) and the family Dmax(V ;A) is A-compatible (Proposition 3.6), we have

A∗ ·X ·A+ rem

=
(
A∗ ·

(
X +

r

R
en

)
·A
)

+ r

(
em −

1

R
A∗ · en ·A

)
∈ Dmax

m (V ;A).

It follows that A∗ ·X ·A ∈ Cm. Thus, (Cn)n∈N is an operator A-system structure on V .

Suppose that (Pn)n∈N is an operator A-system structure on V and X ∈ Cn for some n ∈ N. By Lemma 3.5,

X + ren ∈ Pn for all r > 0 and since en is an Archimedean order unit for Pn, we conclude that X ∈ Pn. Thus,

Cn ⊆ Pn, and the proof is complete.

We call (Cmax
n (V ;A))n∈N the maximal operator A-system structure on V and let

OMAXA(V ) = (V, (Cmax
n (V ;A))n∈N, e).

Remark. Recall that, given an AOU space (V, V +, e), the maximal operator system structure (Cmax
n (V ))n∈N

on V was defined in [15] by letting Cmax
n (V ) be the Archimedeanisation of the cone Dmax

n (V ) defined in Remark

3.4. It follows that the maximal operator system OMAX(V ) defined in [15] coincides with OMAXC(V ).

Theorem 3.8. Let A be a unital C*-algebra and (V, V +, e) be an AOU A-space.

(i) Suppose that S is an operator A-system and φ : V → S is a positive A-bimodule map. Then φ is

completely positive as a map from OMAXA(V ) into S.

(ii) Suppose that T is an operator A-system with underlying space V and positive cone V +, such that for

every operator A-system S, every positive A-bimodule map φ : T → S is completely positive. Then there exists

a unital A-bimodule map ψ : T → OMAXA(V ) that is a complete order isomorphism.

Proof . (i) Let S is an operator A-system and φ : V → S be a positive A-bimodule map. The modularity

property of φ and the definition of Dmax
n (V ;A) imply that φ(n)(Dmax

n (V ;A)) ⊆Mn(S)+. Suppose that X ∈

Cmax
n (V ;A). Letting z = φ(e), we now have that φ(n)(X) + r(z ⊗ In) ∈Mn(S)+ for every r > 0. Since Mn(S)+

is closed, this implies that φ(n)(X) ∈Mn(S)+. Thus, φ is completely positive.

(ii) is similar to the proof of Theorem 3.3 (ii).

Remark. Let A be a C*-algebra and AA (resp. SA) be the category, whose objects are AOU A-spaces (resp.

operator A-systems) and whose morphisms are unital positive (resp. unital completely positive) maps. It is easy
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to see that the correspondences V → OMINA(V ) and V → OMAXA(V ) are covariant functors from AA into

SA.

We finish this section with considering the case where V = Mk and A coincides with its subalgebra Dk of

all diagonal matrices.

Proposition 3.9. We have that Mk = OMINDk(Mk) = OMAXDk(Mk).

Proof . Suppose that X = (Xi,j)i,j belongs to Mn(OMINDk(Mk))+. Let ξ = (λi,1, . . . , λi,k)ni=1 be a vector in

Cnk. Let Di = diag(λi,1, . . . , λi,k), and write ξi for the vector (λi,1, . . . , λi,k) in Ck, i = 1, . . . , n. Letting e be

the vector in Ck with all entries equal to one, we have

(Xξ, ξ) =

n∑
i,j=1

(Xi,jξj , ξi) =

n∑
i,j=1

(D∗iXi,jDje, e).

It follows by the assumption that (Xξ, ξ) ≥ 0; thus, X ∈M+
nk and, by Theorem 3.2, Mk = OMINDk(Mk).

Now fix X = (Xi,j)i,j ∈M+
nk. Since X is the sum of rank one operators in M+

nk, in order to show that

X ∈Mn(OMAXDk(Mk))+, it suffices to assume that X is itself of rank one. Write X = RR∗, where R ∈Mnk,1,

and suppose that R = (R1, . . . , Rn)t, where Ri ∈Mk,1, i = 1, . . . , n. We have that X = (RiR
∗
j )
n
i,j=1. Let J ∈Mk

be the matrix with all its entries equal to one, and let Di be the diagonal matrix whose entries coincides with

the vector Ri, i = 1, . . . , n. Then X = (DiJD
∗
j )ni,j=1, showing that X ∈Mn(OMAXDk(Mk))+. By Theorem 3.7,

Mk = OMAXDk(Mk).

Remark. We note that the minimal and the maximal operator A-system structure are in general distinct.

Indeed, this is the case even when V = Mk and A = CI [15].

4 Dual operator A-systems

In this section, we establish a representation theorem for dual operator A-systems. An operator system S is

called a dual operator system if it is a dual operator space, that is, if there exists an operator space S∗ such that

(S∗)∗ ∼= S completely isometrically [4]. Here, and in the sequel, we denote by X ∗ the operator space dual [3] of

an operator space X , and we use the same notation for the dual Banach space of a normed space X ; it will be

clear from the context with which category we are working.

Let S be an operator system. If H is a Hilbert space and φ : S → B(H) is a unital complete isometry such

that φ(S) is weak* closed, then φ(S), and therefore S, is a dual operator space; thus, in this case, S is a dual

operator system. The converse statement was established by Blecher and Magajna in [4].

Theorem 4.1 ([4]). If S is a dual operator system then there exists a Hilbert space H, a weak* closed

operator system U ⊆ B(H) and a unital surjective complete order isomorphism φ : S → U that is also a weak*

homeomorphism.
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Remark 4.2. Suppose that S is a dual operator system and S∗ is an operator space such that, up to a complete

isometry, S = (S∗)∗. Then Mn(S) is an operator system in a canonical fashion; in fact, if S ⊆ B(H) for some

Hilbert space H, then Mn(S) ⊆ B(Hn). By [3, 1.6.2], up to a complete isometry, Mn(S) = (S∗⊗̂M∗n)∗, where ⊗̂

is the projective operator space tensor product. It follows that Mn(S) is a dual operator system, and its canonical

weak* topology coincides with the topology of entry-wise weak* convergence: for a net ((xαi,j)i,j)α ⊆Mn(S) and

an element (xi,j)i,j ∈Mn(S), we have

(
(xαi,j

)
i,j

)α →w∗

α (xi,j)i,j ⇐⇒
〈
xαi,j , φ

〉
→ α 〈xi,j , φ〉 , i, j = 1, . . . , n, φ ∈ S∗.

Recall that a W*-algebra is a C*-algebra that is also a dual Banach space; by Sakai’s Theorem [21],

every W*-algebra possesses a faithful *-representation on a Hilbert space H, whose image is a von Neumann

algebra (that is, a weak* closed subalgebra of B(H) containing the identity operator), which is also a weak*

homeomorphism.

Definition 4.3. Let A be a W*-algebra. An operator system S will be called a dual operator A-system if

(i) S is an operator A-system,

(ii) S is a dual operator system, and

(iii) the map from A× S into S, sending the pair (a, x) to a · x, is separately weak* continuous.

Note that, if S is a dual operator system then the involution is weak* continuous, and thus (1) implies that

if S is in addition a dual operator A-system then the map

A× S ×A → S, (a, x, b)→ a · x · b,

is separately weak* continuous.

If S and T are dual operator systems, a linear map φ : S → T will be called normal if it is weak* continuous.

Suppose that H is a Hilbert space, γ : S → B(H) is a unital complete order isomorphism such that γ(S) is weak*

closed and γ : S → γ(S) is a weak* homeomorphism, and π : A → B(H) is a unital normal *-homomorphism

such that γ(a · x) = π(a)γ(x) for all x ∈ S and all a ∈ A. It is clear that, in this case, S is a dual operator A-

system. Theorem 4.7 below establishes the converse of this fact. The result is both a weak* version of Theorem

2.2 and an A-module version of Theorem 4.1.

We will need two lemmas. Recall that, if A is a W*-algebra and n ∈ N then Mn(A) is a W*-algebra in a

canonical way.

Remark 4.4. Let A be a W*-algebra and S be a dual operator A-system. It is straightforward to verify that

Mn(S) is a dual operator Mn(A)-system, when it is equipped with the action defined in (4).
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Lemma 4.5. Let A be a W*-algebra, S be a dual operator A-system and φ : S → C be a normal state. Then

the functional ω : A → C given by ω(a) = φ(a · 1), a ∈ A, is a normal state of A and

|φ(a · x · b)| ≤ ω(aa∗)1/2ω(b∗b)1/2, (6)

for all a ∈M1,m(A), b ∈Mm,1(A), x ∈Mm(S) with ‖x‖ ≤ 1, and m ∈ N.

Proof . Let H, γ and π be as in Theorem 2.2, and let φ′ : γ(S)→ C be given by φ′(γ(x)) = φ(x), x ∈ S. If

a, b ∈ A then

ω(ab) = φ((ab) · 1) = φ′(γ((ab) · 1)) = φ′(π(ab)γ(1)) = φ′(π(ab))

= φ′(π(a)γ(1)π(b)) = φ′(γ(a · 1 · b)) = φ(a · 1 · b).

Thus, ω(a∗a) = φ(a∗ · 1 · a) ≥ 0 for every a ∈ A, and hence ω is positive. Moreover, ω(1) = φ(1) = 1 and hence

ω is a state. By the separate weak* continuity of the A-module action on S, the state ω is normal.

Suppose that φ′ has the form

φ′(T ) =

∞∑
i=1

(Tξi, ξi), T ∈ γ(S),

where (ξi)i∈N ⊆ H with
∑∞

i=1 ‖ξi‖2 = 1. If x ∈Mm(S), ‖x‖ ≤ 1, a ∈M1,m(A) and b ∈Mm,1(A), then

|φ(a · x · b)| =
∣∣∣φ′ (π(1,m)(a)γ(m)(x)π(m,1)(b)

)∣∣∣
=

∣∣∣∣∣
∞∑
i=1

(
π(1,m)(a)γ(m)(x)π(m,1)(b)ξi, ξi

)∣∣∣∣∣
≤

∞∑
i=1

∣∣∣(γ(m)(x)π(m,1)(b)ξi, π
(m,1)(a∗)ξi

)∣∣∣
≤

( ∞∑
i=1

∥∥∥π(m,1)(b)ξi

∥∥∥2)1/2( ∞∑
i=1

∥∥∥π(m,1)(a∗)ξi

∥∥∥2)1/2

= φ′(π(b∗b))1/2φ′(π(aa∗))1/2 = ω(aa∗)1/2ω(b∗b)1/2.

We will need the following modification of a result of R. R. Smith [24] on automatic complete boundedness.

Its proof is a straightforward modification of the proof of [24, Theorem 2.1] and is hence omitted.

Theorem 4.6. Let A be a unital C*-algebra, S be an operator A-system and ρ : A → B(H) be a cyclic *-

representation. Suppose that Φ : S → B(H) is a linear map such that Φ(a · x · b) = ρ(a)Φ(x)ρ(b) for all x ∈ S

and all a, b ∈ A. If Φ is contractive then Φ is completely contractive.

Theorem 4.7. Let A be a W*-algebra and S be a dual operator A-system. Then there exist a Hilbert space

H, a unital complete order embedding γ : S → B(H) with the property that γ(S) is weak* closed and γ is a
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weak* homeomorphism, and a unital normal *-homomorphism π : A → B(H), such that

γ(a · x) = π(a)γ(x), x ∈ S, a ∈ A. (7)

Proof . The proof is motivated by the proof of [4, Theorem 1.1] and relies on ideas which go back to the proof

of Ruan’s Theorem [6, Theorem 2.3.5]. Fix n ∈ N and let B = Mn(A). By Remark 4.4, Mn(S) is a dual operator

B-system. Let x ∈Mn(S) be a selfadjoint element of norm one and ε ∈ (0, 1). By the proof of Theorem 1.1 given

in [4], there exists a normal state φ on Mn(S) such that

|φ(x)| > 1− ε. (8)

Let ω : B → C be the normal state given by ω(b) = φ(b · 1), b ∈ B. By Lemma 4.5,

|φ(a · y · b)| ≤ ω(aa∗)1/2ω(b∗b)1/2, (9)

for all y ∈Mnm(S) with ‖y‖ ≤ 1, a ∈M1,m(B) and b ∈Mm,1(B), m ∈ N.

Let ρ : B → B(H) be the GNS representation arising from ω and ξ be its corresponding unit cyclic vector. By

[25, Proposition III.3.12], ρ is normal. It follows that there exists a normal unital *-representation θ : A → B(K)

such that, up to unitary equivalence, H = K ⊗Cn and ρ = θ(n). Inequality (9) implies

|φ(a∗ · y · b)| ≤ ‖ρ(b)ξ‖‖ρ(a)ξ‖‖y‖, a, b ∈ B, y ∈Mn(S).

Thus, the sesqui-linear form Ly : (ρ(B)ξ)× (ρ(B)ξ)→ C given by

Ly(ρ(b)ξ, ρ(a)ξ) = φ(a∗ · y · b), a, b ∈ B,

is bounded and has norm not exceeding ‖y‖. It follows that there exists a linear operator Φ(y) : ρ(B)ξ → ρ(B)ξ

such that

(Φ(y)ρ(b)ξ, ρ(a)ξ) = φ(a∗ · y · b), a, b ∈ B, (10)

and

‖Φ(y)‖ ≤ ‖y‖. (11)

Since ρ(B)ξ in dense in H, the operator Φ(y) can be extended to an operator on H. By (10), the map

Φ : Mn(S)→ B(H) is linear and hermitian and, by (11), it is contractive.
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For a, b, c, d ∈ B, by (10), we have

(Φ(c∗ · y · d)ρ(b)ξ, ρ(a)ξ) = (ρ(c∗)Φ(y)ρ(d)ρ(b)ξ, ρ(a)ξ).

The density of ρ(B)ξ in H now implies that

Φ(c∗ · y · d) = ρ(c∗)Φ(y)ρ(d), c, d ∈ B, y ∈Mn(S). (12)

We show that Φ is weak* continuous. With the aim of applying Krein-Smulian Theorem, suppose that

(yα)α ⊆Mn(S) is a net of contractions such that yα →α 0 in the weak* topology. Fix δ > 0, η, ζ ∈ H, and

choose a, b ∈ B such that

‖ρ(b)ξ − η‖ < δ and ‖ρ(a)ξ − ζ‖ < δ.

Let α0 be such that |φ(a∗ · yα · b)| < δ if α ≥ α0. For α ≥ α0 we have

|(Φ(yα)η, ζ)|

≤ |(Φ(yα)η, ζ)− (Φ(yα)ρ(b)ξ, ρ(a)ξ)|+ |(Φ(yα)ρ(b)ξ, ρ(a)ξ)|

= |(Φ(yα)η, ζ)− (Φ(yα)ρ(b)ξ, ρ(a)ξ)|+ |φ(a∗ · yα · b)|

≤ |(Φ(yα)η, ζ)− (Φ(yα)ρ(b)ξ, ζ)|

+ |(Φ(yα)ρ(b)ξ, ζ)− (Φ(yα)ρ(b)ξ, ρ(a)ξ)|+ |φ(a∗ · yα · b)|

≤ δ(‖ζ‖+ ‖ρ(b)ξ‖+ 1).

We thus showed that Φ(yα)→α 0 in the weak operator topology; since the net (Φ(yα))α is bounded, the

convergence is in fact in the weak* topology. It follows from the Krein-Smulian Theorem [22, 6.4, Corollary]

that the map Φ is weak* continuous.

Identity (12) easily implies that there exists a (normal) map Ψ : S → B(K) such that Φ = Ψ(n). Since Φ is

hermitian and contractive, so is Ψ. By (12) and Theorem 4.6, the map Φ, and hence Ψ, is completely contractive.

Now (12) implies

Ψ(a · z · b) = θ(a)Ψ(z)θ(b), z ∈ S, a, b ∈ A. (13)

By (10),

1 = φ(1) = (Φ(1)ξ, ξ) ≤ ‖Φ(1)‖‖ξ‖2 ≤ 1.

Thus Φ(1)ξ = ξ; by (12),

Φ(1)ρ(b)ξ = ρ(b)Φ(1)ξ = ρ(b)ξ, b ∈ B,

and since ξ is cyclic for ρ, we conclude that Φ(1) = 1. It follows that Ψ(1) = 1.
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The map Ψ, constructed in the previous paragraph, depends on the element x ∈Mn(S), and on the chosen ε.

Note that, by (8) and (10),
∥∥Ψ(n)(x)

∥∥ > 1− ε. Let γ (resp. π) be the direct sum of the maps Ψ (resp. θ) as above,

over all selfadjoint x ∈Mn(S) with norm one, all n ∈ N, and all ε ∈ (0, 1). The map γ is unital, weak* continuous,

hermitian, and has the property that if x ∈Mn(S) is selfadjoint then ‖x‖ = 1 implies
∥∥γ(n)(x)

∥∥ = 1. This easily

yields that γ is completely positive and has a completely positive inverse. As in the proof of [4, Theorem 1.1],

the image of γ is weak* closed and γ is a weak* homeomorphism onto its range. In addition, π is a normal

*-representation as a direct sum of such. Condition (7) follows from (13).

5 The dual extremal operator A-system structures

In this section, we study dual versions of the extremal operator A-system structures considered in Section 3. We

start with the definition of a dual AOU space. Note first that, if (V, V +, e) is an AOU space then the expression

‖v‖ = sup{|f(v)| : f a state on V }

defines a norm on V , called the order norm [16]; in the sequel we equip V with its order norm. If V is a dual

Banach space, the weak* continuous functionals on V will be called normal functionals.

Definition 5.1. A dual AOU space is an AOU space (V, V +, e), which is also a dual Banach space, and

(i) the involution is weak* continuous;

(ii) V + is weak* closed, and

(iii) for v ∈ V , ‖v‖ = sup{|f(v)| : f a normal state on V }, and the weak* topology of V is determined by

normal states of V .

Suppose that (V, V +, e) is a dual AOU space, and let V∗ be the predual of V . Note that the algebraic tensor

product V∗ ⊗M∗n can be canonically embedded into the dual of Mn(V ). By the weak* topology on Mn(V ) we

will mean the topology arising from this duality; thus, (xαi,j)→α (xi,j) if and only if xαi,j →α xi,j for every i, j.

Definition 5.2. Let A be a W*-algebra. A dual AOU space (V, V +, e) will be called dual AOU A-space if

(i) (V, V +, e) is an AOU A-space, and

(ii) the left (and hence the right) A-module action is separately weak* continuous.

Definition 5.3. Let A be a W*-algebra and (V, V +, e) be a dual AOU A-space. A matrix ordering (Cn)n∈N on

V will be called a dual operator A-system structure on V if (V, (Cn)n∈N, e) is a dual operator A-system whose

weak* topology coincides with that of V , and C1 = V +.
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Theorem 5.4. Let A be a W*-algebra, (V, V +, e) be a dual AOU A-space and (Cn)n∈N be an operator A-system

structure on V . The following are equivalent:

(i) (Cn)n∈N is a dual operator A-system structure on V ;

(ii) Cn is weak* closed for each n ∈ N.

Proof . (i)⇒(ii) Let S = (V, (Cn)n∈N, e). By Theorem 4.7, there exist a Hilbert space H and a complete order

embedding γ : S → B(H) such that γ(S) is weak* closed and γ is a weak* homeomorphism. Clearly, Mn(γ(S))+

is weak* closed in Mn(B(H)). Note that the weak* topology on Mn(B(H)) = B(Hn) is given by entry-wise

weak* convergence. On the other hand, since γ is a weak* homeomorphism, we have that if ((xαi,j))α ⊆Mn(V )

and (xi,j) ∈Mn(V ) then (xαi,j)→α (xi,j) weak* if and only if γ(xαi,j)→α γ(xi,j) for every i, j. It follows that

Cn is weak* closed.

(ii)⇒(i) Let S = (V, (Cn)n∈N, e). For each n, let

Pn = {φ : V →Mn : weak* continuous unital completely positive map} .

Let H = ⊕n∈N ⊕φ∈Pn Cn and let J : V → B(H) be the map given by J(x) = ⊕n∈N ⊕φ∈Pn φ(x). It is clear that J

is a weak* continuous completely positive map. In addition, by condition (iii) from Definition 5.1, J is isometric.

To show that J is a complete order isomorphism, assume that J (n)(X) ≥ 0 for some X = (xi,j) ∈Mn(V )h

and that, by way of contradiction, X does not belong to Cn. The space Mn(V ), equipped with the topology of

weak* convergence, is a locally convex topological vector space. By the Hahn-Banach separation theorem, there

exists a functional s : Mn(V )→ C, continuous with respect to the topology of entry-wise weak* convergence,

such that s(Cn) ⊆ R+ but s(X) < 0. By [13, Theorem 6.1], the map φs : V →Mn, given by φs(x) = (si,j(x))i,j

(and where si,j(x) = s(Ei,j ⊗ x)), is completely positive. It is clear that φs is normal. In addition, φ
(n)
s does not

map X to a positive matrix. After normalisation, we may assume that φs is contractive.

Let P = φs(e); then P is a positive contraction. Assume that rank(P ) = k and let Q be the projection

onto ker(P )⊥. It was shown in the proof of [13, Theorem 13.1] that, if A ∈Mn,k and B ∈Mk,n are matrices

such that A∗PA = Ik and AB = Q, and ψ is the mapping given by ψ(x) = A∗φs(x)A, then ψ is a (unital

completely positive) map such that ψ(n)(X) is not positive. Clearly, ψ is normal, and hence an element of Pk.

This contradicts the fact that J (n)(X) ≥ 0.

To show that J is a weak* homeomorphism, suppose that J(xα)→α J(x) in the weak* topology, for some

net (xα) ⊆ V and some element x ∈ V . Then φ(xα)→ φ(x) for all normal positive functionals φ. By condition

(iii) of Definition 5.1, xα → x in the weak* topology of V .

We finally note that J(V ) is weak* closed in B(H). Suppose that J(xα)→ T , where T ∈ B(H) and

(xα)α ⊆ V is a net such that the net J(xα)α is bounded. Since J is an isometry, (xα)α is also bounded, and

hence has a subnet (xβ)β , weak* convergent to an element of V , say x. Since J is weak* continuous, we conclude
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that T = limβ J(xβ) = J(x), and hence T ∈ J(V ). By the Krein-Smulian theorem [22, 6.4, Corollary], J(V ) is

weak* closed.

By the previous paragraphs, the weak* topology of V coincides with the weak* topology of the operator

system S. It now follows that the A-module operations on S are separately weak* continuous; thus, S is a dual

operator A-system and the proof is complete.

As the next two statements show, if (V, V +, e) is a dual AOU A-space then the minimal operator A-system

structure defined in Section 3 is automatically a dual minimal operator A-system structure.

Theorem 5.5. Let A be a W*-algebra and (V, V +, e) be a dual AOU A-space. Then (Cmin
n (V ;A))n∈N is a dual

operator A-system structure.

Proof . Since the A-module actions on V are weak* continuous, Cmin
n (V ;A) is weak* closed for each n ∈ N. By

Theorem 5.4, (Cmin
n (V ;A))n∈N is a dual operator A-system structure.

Theorem 5.6. Let A be a W*-algebra and (V, V +, e) be a dual AOU A-space.

(i) Suppose that S is a dual operator A-system and φ : S → V is a normal positive A-bimodule map. Then

φ is completely positive as a map from S into OMINA(V ).

(ii) If T is a dual operator A-system with underlying space V and positive cone V +, such that for every

dual operator A-system S, every normal positive A-bimodule map φ : S → T is completely positive, then there

exists a unital normal A-bimodule map ψ : T → OMINA(V ) that is a complete order isomorphism and a weak*

homeomorphism.

Proof . (i) is a direct consequence of Theorem 3.3 (i). The proof of (ii) follows by a standards argument, similar

to the one given in the proof of Theorem 3.3 (ii).

In the remainder of the section, we consider the dual maximal operatorA-system structure. For a W*-algebra

A and a dual AOU A-space (V, V +, e), set

Wmax
n (V ;A) = Cmax

n (V ;A)
w∗

, n ∈ N.

Theorem 5.7. Let A be a W*-algebra and (V, V +, e) be a dual AOU A-space. Then (Wmax
n (V ;A))n∈N is a

dual operator A-system structure on V . Moreover, if (Pn)n∈N is a dual operator A-system structure on V then

Wmax
n (V ;A) ⊆ Pn for each n ∈ N.

Proof . By Theorem 3.7, (Cmax
n (V ;A))n∈N is an operator system A-structure on V . It follows by the separate

weak* continuity of the A-module actions on V and the definition of the Mn(A)-module operations on Mn(V )

(see (4)) that the family (Wmax
n (V ;A))n∈N is A-compatible.

Since the element e is a matrix order unit for (Dmax
n (V ;A))n∈N (see Proposition 3.6) and Dmax

n (V ;A) ⊆

Wmax
n (V ;A) for each n ∈ N, e is a matrix order unit for (Wmax

n (V ;A))n∈N. To show that e is an Archimedean
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matrix order unit for (Wmax
n (V ;A))n∈N, suppose that X ∈Mn(V ) is such that X + ren ∈Wmax

n (V ;A) for all

r > 0. Since X + ren →r→0 X in the weak* topology and Wmax
n (V ;A) is weak* closed, X ∈Wmax

n (V ;A).

It follows that (V, (Wmax
n (V ;A))n∈N, e) is an operator A-system; by condition (ii) of Definition 5.1,

V + = Wmax
1 (V ;A). Since its cones are weak* closed, Theorem 5.4 implies that it is a dual operator A-system.

Suppose that (Pn)n∈N is a dual operator A-system structure on V . Fix n ∈ N. By Theorem 3.7,

Cmax
n (V ;A) ⊆ Pn. By Theorem 5.4, Pn is weak* closed. It follows that Wmax

n (V ;A) ⊆ Pn.

We denote by OMAXw∗

A (V ) the operator system (V, (Wmax
n (V ;A))n∈N, e).

Theorem 5.8. Let A be a W*-algebra and (V, V +, e) be a dual AOU A-space.

(i) Suppose that S is a dual operator A-system and φ : V → S is a normal positive A-bimodule map. Then

φ is completely positive as a map from OMAXw∗

A (V ) into S.

(ii) If T is a dual operator A-system with underlying space V and positive cone V +, such that for every

dual operator A-system S, every normal positive A-bimodule map φ : T → S is completely positive, then there

exists a unital normal A-bimodule map ψ : T → OMAXw∗

A (V ) that is a complete order isomorphism and a

weak* homeomorphism.

Proof . (i) By Theorem 3.8 (i), φ(n)(Cmax
n (V ;A)) ⊆Mn(S)+. Since φ is weak* continuous and Mn(S)+ is weak*

closed, φ(n)(Wmax
n (V ;A)) ⊆Mn(S)+.

(ii) similar to the proof of Theorem 3.3 (ii).

Remark. Let A be a W*-algebra and Aw
∗

A (resp. Sw∗

A ) be the category, whose objects are dual AOU A-

spaces (resp. dual operator A-systems) and whose morphisms are weak* continuous unital positive (resp. weak*

continuous unital completely positive) maps. It is easy to see that the correspondences V → OMINw∗

A (V ) and

V → OMAXw∗

A (V ) are covariant functors from Aw
∗

A into Sw∗

A , here OMINw∗

A (V ) = OMINA(V ) as per Theorem

5.5.

We finish the section with a statement, analogous to Proposition 3.9, for dual operator system structures.

Proposition 5.9. Let D be the masa of all diagonal operators in B(`2). We have that B(`2) = OMINw∗

D (B(`2)) =

OMAXw∗

D (B(`2)).

Proof . Let {ei}i∈N be the standard basis of `2 and Qk ∈ B(`2) be the projection with range spanned by {ei :

i = 1, . . . , k}. We identify QkB(`2)Qk (resp. QkDQk) with Mk (resp. Dk) in the natural way. If T ∈Mn(B(`2))+

then Tk := (Qk ⊗ IMn)T (Qk ⊗ IMn) ∈Mn(Mk)+ and, by Proposition 3.9, Tk ∈Mn(OMAXDk(Mk))+. Since

Mn(OMAXDk(Mk))+ sits inside Mn(OMAXw∗

D (B(`2)))+ and the latter is weak* closed, we have that T =

w∗- limk→∞ Tk is in Mn(OMAXw∗

D (B(`2)))+.

On the other hand, suppose that T ∈Mn(OMINw∗

D (B(`2)))+. Then Tk ∈Mn(OMINw∗

Dk(Mk))+ =

Mn(OMINDk(Mk))+. By Proposition 3.9, Tk ∈Mn(Mk)+ ⊆Mn(B(`2))+. Since Mn(B(`2))+ is weak* closed,

we have that T ∈Mn(B(`2))+.
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Remark. Let K(`2) be the algebra of all compact operators on `2. It is not difficult to note that, if n ∈ N, then

Mn(K(`2))+ ⊆Mn(OMAXD(B(`2)))+; in other words, the norm-closed maximal operator D-system cones on

B(`2) contain the respective positive cones of K(`2). We do not know if the maximal operator system structure

OMAXD(B(`2)) coincides with the canonical operator system structure on B(`2).

6 Inflated Schur multipliers

In this section, we introduce an operator-valued version of classical measurable Schur multipliers, and characterise

them in a fashion, similar to the well-known descriptions in the scalar-valued case [9, 17].

Let (X,µ) be a standard measure space. We denote by χα the characteristic function of a measurable set

α ⊆ X. If f and g are measurable functions defined on X, we write f ∼ g when f(x) = g(x) for almost all x ∈ X.

Throughout the section, let H = L2(X,µ) and fix a separable Hilbert space K. For a function a ∈ L∞(X,µ),

let Ma be the operator on H given by Maf = af , f ∈ H, and set

D = {Ma : a ∈ L∞(X,µ)} .

We denote by H ⊗K the Hilbertian tensor product of H and K. Note that H ⊗K is unitarily equivalent to the

space L2(X,K) of all weakly measurable functions g : X → K such that ‖g‖2 :=
(∫
X
‖g(x)‖2dµ(x)

)1/2
<∞.

If U ⊆ B(H) and V ⊆ B(K), we denote by U⊗̄V the spatial weak* tensor product of U and V. We write

M(X,B(K)) for the space of all functions F : X → B(K) such that, for all ξ0 ∈ K, the functions x→ F (x)ξ0

and x→ F (x)∗ξ0 are weakly measurable. Note that D⊗̄B(K) can be canonically identified with the space

L∞(X,B(K)) of all bounded functions F in M(X,B(K)) [25]. Through this identification, a function F gives

rise to the operator MF ∈ B(L2(X,K)), defined by

(MF ξ)(x) = F (x)(ξ(x)), x ∈ X, ξ ∈ L2(X,K).

It is easy to see that if k ∈M(X ×X,B(K)) then the function (x, y)→ ‖k(x, y)‖ is measurable as a function

from X ×X into [0,+∞]. Let L2(X ×X,B(K)) be the space of all functions k ∈M(X ×X,B(K)) for which

‖k‖2 :=

(∫
X×X

‖k(x, y)‖2dµ(x)dµ(y)

)1/2

<∞.

(Note that the functions from the space L2(X ×X,B(K)) need not be weakly measurable.) If k ∈ L2(X ×

X,B(K)) and ξ, η ∈ L2(X,K) then, by [25, Lemma 7.5], the function (x, y)→ (k(x, y)(ξ(y)), η(x)) is measurable.

Standard arguments (see [12, p. 391]) show that the formula

(Tkξ, η) =

∫
X×X

(k(x, y)(ξ(y)), η(x)) dµ(y)dµ(x), x, y ∈ X, ξ, η ∈ L2(X,K),
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defines a bounded operator on L2(X,K) with ‖Tk‖ ≤ ‖k‖2. If K = C, the operators of the form Tk are precisely

the Hilbert-Schmidt operators on H.

Remark 6.1. For an element k ∈ L2(X ×X,B(K)), we have that Tk = 0 if and only if k(x, y) = 0 for almost

all (x, y) ∈ X ×X.

Proof . Suppose that Tk = 0; then, for ξ, η ∈ K and f, g ∈ L2(X), we have∫
X×X f(x)g(y)(k(x, y)ξ, η)dµ(y)dµ(x) = 0. Thus, (k(x, y)ξ, η) = 0 almost everywhere. Since K is separa-

ble and k(x, y) is bounded for all x, y ∈ X, this implies that k(x, y) = 0 almost everywhere. The converse

direction is trivial.

We equip the linear space {Tk : k ∈ L2(X ×X,B(K))} with the operator space structure arising from its

inclusion into B(H ⊗K). Similarly, whenever S is an operator system and S0 ⊆ S is a self-adjoint (not necessarily

unital) subspace of S, we equip S0 with the matrix ordering inherited from S, and thus talk about a linear map

from S0 into an operator system T being positive or completely positive.

For functions ϕ ∈ L∞(X ×X,B(K)) and k ∈ L2(X ×X), let ϕk : X ×X → B(K) be the function given

by

(ϕk)(x, y) = k(x, y)ϕ(x, y), x, y ∈ X.

It is straightforward to check that ϕk ∈ L2(X ×X,B(K)).

Definition 6.2. A function ϕ ∈ L∞(X ×X,B(K)) will be called an (inflated) Schur multiplier if the map

Tk −→ Tϕk, k ∈ L2(X ×X),

is completely bounded.

We will denote by S(X,K) the space of all inflated Schur multipliers with values in B(K). If ϕ ∈ S(X,K)

then the map Sϕ : Tk → Tϕk defined on the space S2(H) of all Hilbert-Schmidt operators on H extends to a

completely bounded map from K(H) into B(H ⊗K), which will be denoted in the same way. By taking the

second dual of Sϕ, and composing with the weak* continuous projection from B(H ⊗K)∗∗ onto B(H ⊗K), we

obtain a completely bounded weak* continuous map from B(H) into B(H ⊗K) which for simplicity will still be

denoted by Sϕ.

Theorem 6.3. Let ϕ ∈ L∞(X ×X,B(K)). The following are equivalent:

(i) ϕ ∈ S(X,K);

(ii) there exist functions Ai ∈ L∞(X,B(K)) and Bi ∈ L∞(X,B(K)), i ∈ N, such that the series∑∞
i=1Ai(x)Ai(x)∗ and

∑∞
i=1Bi(y)∗Bi(y) converge almost everywhere in the weak* topology,

esssup
x∈X

∥∥∥∥∥
∞∑
i=1

Ai(x)Ai(x)∗

∥∥∥∥∥ <∞, esssup
y∈X

∥∥∥∥∥
∞∑
i=1

Bi(y)∗Bi(y)

∥∥∥∥∥ <∞,
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and

ϕ(x, y) =

∞∑
i=1

Ai(x)Bi(y), a.e. on X ×X, (14)

where the sum is understood in the weak* topology.

Proof . (ii)⇒(i) Considering Ai, Bi ∈ D⊗̄B(K), i ∈ N, the assumptions imply that A = (Ai)i∈N (resp. B =

(Bi)i∈N) is a bounded row (resp. column) operator. It follows that the map Ψ : B(H)→ B(H ⊗K), given by

Ψ(T ) =

∞∑
i=1

Ai(T ⊗ I)Bi, T ∈ B(H),

is well-defined and completely bounded. Let k ∈ L2(X ×X) ∩ L∞(X ×X), ξ, η ∈ K and f, g ∈ L2(X) ∩ L1(X).

For almost all (x, y) ∈ X ×X, we have

∣∣∣k(x, y)f(y)g(x) (ϕ(x, y)ξ, η)
∣∣∣

≤ ‖k‖∞|f(y)||g(x)|
∞∑
i=1

|(Bi(y)ξ, Ai(x)∗η)|

≤ ‖k‖∞|f(y)||g(x)|
∞∑
i=1

‖Bi(y)ξ‖‖Ai(x)∗η‖

≤ ‖k‖∞|f(y)||g(x)|

( ∞∑
i=1

‖Bi(y)ξ‖2
)1/2( ∞∑

i=1

‖Ai(x)∗η‖2
)1/2

≤ ‖k‖∞|f(y)||g(x)|‖A‖‖B‖‖ξ‖‖η‖,

while the function (x, y)→ |f(y)||g(x)| is integrable with respect to µ× µ. By the Lebesgue Dominated

Convergence Theorem, we now have

(Ψ(Tk)(f ⊗ ξ), g ⊗ η)

=

( ∞∑
i=1

Ai(Tk ⊗ I)Bi(f ⊗ ξ), g ⊗ η

)

=

∞∑
i=1

∫
X×X

k(x, y)f(y)g(x)(Bi(y)ξ, Ai(x)∗η)dµ(x)dµ(y)

=

∫
X×X

k(x, y)f(y)g(x)

(( ∞∑
i=1

Ai(x)Bi(y)

)
ξ, η

)
dµ(x)dµ(y)

=

∫
X×X

k(x, y)f(y)g(x) (ϕ(x, y)ξ, η) dµ(x)dµ(y)

=

∫
X×X

f(y)g(x) ((ϕk)(x, y)ξ, η) dµ(x)dµ(y)

= (Tϕk(f ⊗ ξ), g ⊗ η) .

By linearity and the density of L2(X ×X) ∩ L∞(X ×X) in L2(X ×X) and of L2(X) ∩ L1(X) in L2(X), it

follows that ϕ ∈ S(X,K) and Ψ = Sϕ.
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(i)⇒(ii) Let ϕ ∈ S(X,K). For k ∈ L2(X ×X), a, b ∈ L∞(X), ξ, η ∈ K and f, g ∈ L2(X), we have

(Sϕ(MbTkMa)(f ⊗ ξ), g ⊗ η)

=

∫
X×X

a(y)b(x)f(y)g(x) ((ϕk)(x, y)ξ, η) dµ(x)dµ(y)

= ((Mb ⊗ I)Sϕ(Tk)(Ma ⊗ I)(f ⊗ ξ), g ⊗ η) .

By continuity,

Sϕ(BTA) = (B ⊗ I)Sϕ(T )(A⊗ I), T ∈ K(H), A,B ∈ D.

Let Φ1 : K(H)⊗ 1→ B(H ⊗K) be the map given by Φ1(T ⊗ I) = Sϕ(T ); then Φ1 is a completely bounded

D ⊗ 1-bimodule map. Using [13, Exercise 8.6 (ii)], we can find a completely bounded weak* continuous

D ⊗ 1-bimodule map Φ2 : B(H ⊗K)→ B(H ⊗K) extending Φ1. By [10], there exist a bounded row operator

A = (Ai)
∞
i=1 and a bounded column operator B = (Bi)i∈N, where Ai, Bi ∈ D⊗̄B(K), i ∈ N, such that

Φ2(T ) =

∞∑
i=1

AiTBi, T ∈ B(H ⊗K).

Using the identification D⊗̄B(K) ≡ L∞(X,B(K)), we consider Ai (resp. Bi) as a function Ai : X → B(K) (resp.

Bi : X → B(K)). The boundedness of A and B now imply that there exists a null set N ⊆ X such that the

series
∞∑
i=1

Ai(x)Ai(x)∗ and

∞∑
i=1

Bi(y)∗Bi(y)

are weak* convergent whenever x, y 6∈ N . If (x, y) 6∈ N ×N then the series
∑∞

i=1Ai(x)Bi(y) is weak* convergent.

As in the first part of the proof, we conclude that ϕ(x, y) coincides with its sum for almost all (x, y).

An inspection of the proof of Theorem 6.3 shows the following description of inflated Schur multipliers.

Remark 6.4. The following are equivalent, for a completely bounded map Φ : K(H)→ B(H ⊗K):

(i) Φ(BTA) = (B ⊗ I)Φ(T )(A⊗ I), for all T ∈ K(H) and all A,B ∈ D;

(ii) there exists a Schur multiplier ϕ ∈ S(X,K) such that Φ = Sϕ.

Definition 6.5. A Schur multiplier ϕ ∈ S(X,K) will be called positive if the map Sϕ : B(H)→ B(H ⊗K) is

positive.

For the next theorem, note that, if ϕ ∈ L∞(X ×X,B(K)) and α ⊆ X is a subset of finite measure then the

function ϕχα×α belongs to L2(X ×X,B(K)) and hence the operator Tϕχα×α : H → H ⊗K is well-defined.

Theorem 6.6. The following are equivalent, for a Schur multiplier ϕ ∈ S(X,K):

(i) ϕ is positive;

(ii) the map Sϕ : B(H)→ B(H ⊗K) is completely positive;

(iii) for every subset α ⊆ X of finite measure, the operator Tϕχα×α is positive;
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(iv) there exist functions Ai ∈ L∞(X,B(K)), i ∈ N, such that the series
∑∞

i=1Ai(x)Ai(x)∗ converges almost

everywhere in the weak* topology,

esssup
x∈X

∥∥∥∥∥
∞∑
i=1

Ai(x)Ai(x)∗

∥∥∥∥∥ <∞,
and

ϕ(x, y) =

∞∑
i=1

Ai(x)Ai(y)∗, a.e. on X ×X.

Proof . (i)⇒(iii) Let α ⊆ X be a subset of finite measure. Then χα ∈ H; let χα ⊗ χ∗α be the corresponding

(positive) rank one operator. Then

Tϕχα×α = Sϕ(χα ⊗ χ∗α),

and the conclusion follows.

(iii)⇒(ii) Let n ∈ N, Xi = X for i = 1, . . . , n, Y = X1 ∪ · · · ∪Xn and ν be the disjoint sum of n copies

of the measure µ. Identify Cn ⊗H with L2(Y, ν), and define ψ : Y × Y → B(K) by letting ψ(x, y) = ϕ(x, y) if

(x, y) ∈ Xi ×Xj = X ×X. Note that Sψ = idMn
⊗Sϕ and hence ψ ∈ S(Y,K). Let α ⊆ X have finite measure

and J ∈Mn be the matrix all of whose entries are equal to 1. Let αi ⊆ Xi be the set that coincides with α,

i = 1, . . . , n, and α̃ = ∪ni=1αi; we have that

Tψχα̃×α̃ ≡ J ⊗ Tϕχα×α . (15)

By assumption, Tϕχα×α is positive; thus, by (15), Tψχα̃×α̃ is positive. For g ∈ L∞(Y, ν) ∩ L2(Y, ν) and h ∈ L∞(α̃),

we have

(Sψ(g ⊗ g∗)h, h) =
(
Tψχα̃×α̃(gh), gh

)
≥ 0.

Since the set {
h ∈ L2(Y, ν) : ∃ a set of finite measure α ⊆ X with h ∈ L∞(α̃)

}
is dense in L2(Y, ν), we have that Sψ(g ⊗ g∗) ∈ B(H ⊗K)+. By weak* continuity, Sψ(T ) ∈ B(H ⊗K)+ whenever

T ∈ B(L2(Y, ν))+. Thus, Sψ is positive, that is, Sϕ is n-positive.

(ii)⇒(i) is trivial.

(ii)⇒(iv) follows from the proof of Theorem 6.3 by noting that in the case Sϕ is completely positive, one

can choose Bi = A∗i , i ∈ N.

(iv)⇒(i) follows from the proof of Theorem 6.3.
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7 Positive extensions

In this section, we apply our results on maximal operator system A-structures to questions about positive

extensions of inflated Schur multipliers. We first recall some measure theoretic background from [2] and [7],

required in the sequel. A subset E ⊆ X ×X is called marginally null if E ⊆ (M ×X) ∪ (X ×M), where M ⊆ X

is null. We call two subsets E,F ⊆ X ×X marginally equivalent (resp. equivalent), and write E ∼= F (resp.

E ∼ F ), if their symmetric difference is marginally null (resp. null with respect to product measure). We say

that E is marginally contained in F (and write E ⊆ω F ) if the set difference E \ F is marginally null. A

measurable subset κ ⊆ X ×X is called

• a rectangle if κ = α× β where α, β are measurable subsets of X;

• ω-open if it is marginally equivalent to a countable union of rectangles, and

• ω-closed if its complement κc is ω-open.

Recall that, by [23], if E is any collection of ω-open sets then there exists a smallest, up to marginal equivalence,

ω-open set ∪ωE , called the ω-union of E , such that every set in E is marginally contained in ∪ωE . Given a

measurable set κ, one defines its ω-interior to be

intω(κ) =
⋃

ω {R : R is a rectangle with R ⊆ω κ} .

The ω-closure clω(κ) of κ is defined to be the complement of intω(κc). For a set κ ⊆ X ×X, we write

κ̂ = {(x, y) ∈ X ×X : (y, x) ∈ κ}. The subset κ ⊆ X ×X is said to be generated by rectangles if κ ∼= clω(intω(κ))

[7, 11].

For any ω-closed subset κ ⊆ X ×X, let

S2(κ) =
{
Tk : k ∈ L2(κ)

}
, S0(κ) = S2(κ)

‖·‖
and S(κ) = S2(κ)

w∗

,

where L2(κ) is the space of functions in L2(X ×X) which are supported on κ, up to a set of zero product

measure. Note that the spaces S2(κ), S0(κ) and S(κ) are D-bimodules. We equip them with the operator space

structures inherited from B(H).

Partially defined scalar-valued Schur multipliers were defined in [11]. Here we extend this notion to the

operator-valued setting.

Definition 7.1. Let κ ⊆ X ×X be a subset generated by rectangles. A function ϕ ∈ L∞(κ,B(K)) will be called

a partially defined Schur multiplier if the map Sϕ from S2(κ) into B(H ⊗K), given by

Sϕ(Tk) = Tϕk, k ∈ L2(κ),

is completely bounded.
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Remark 7.2. For Schur multipliers ϕ,ψ ∈ L∞(κ,B(K)), we have that Sϕ = Sψ if and only if ϕ ∼ ψ.

Proof . Suppose ϕ,ψ ∈ L∞(κ,B(K)) are such that Sϕ = Sψ. Then Tϕk = Tψk for every k ∈ L2(κ). By Remark

6.1, ϕk ∼ ψk. It now easily follows that ϕ ∼ ψ. The converse implication follows by reversing the previous

steps.

Let κ ⊆ X ×X be a subset generated by rectangles. We note that the map Sϕ from Definition 7.1 is D-

bimodular. In addition, if ψ ∈ S(X,K) is given as in Definition 6.2, then its restriction ψ|κ : κ→ B(K) is an

inflated Schur multiplier.

Proposition 7.3. Let K be a separable Hilbert space, κ ⊆ X ×X a subset generated by rectangles and

ϕ ∈ L∞(κ,B(K)). The following are equivalent:

(i) ϕ is a Schur multiplier;

(ii) there exists a Schur multiplier ψ : X ×X → B(K) such that ψ|κ ∼ ϕ;

(iii) there exists a unique completely bounded map Φ0 : S0(κ)→ B(H ⊗K) such that Φ0(Tk) = Tϕk, for

each k ∈ L2(κ);

(iv) there exists a unique completely bounded weak* continuous map Φ : S(κ)→ B(H ⊗K) such that

Φ(Tk) = Tϕk, for each k ∈ L2(κ).

Proof . (i)⇒(ii) Since ϕ is a Schur multiplier, the map Φ2 : S2(κ)→ B(H ⊗K), given by Φ2(Tk) = Tϕk, extends

to a completely bounded linear map Φ0 : S0(κ)→ B(H ⊗K). By continuity,

Φ0(BTA) = (B ⊗ I)Φ0(T )(A⊗ I), T ∈ S0(κ), A,B ∈ D.

Let Φ̂ : S0(κ)⊗ 1→ B(H ⊗K) be the map given by

Φ̂(T ⊗ I) = Φ0(T ), T ∈ S0(κ).

By [13, Exercise 8.6 (ii)], there exists a completely bounded D ⊗ 1-bimodule map Φ̂1 : B(H ⊗K)→ B(H ⊗K),

extending Φ̂. Let Ψ̂ : K(H)⊗ 1→ B(H ⊗K) be the restriction of Φ̂1; then Ψ̂|S0(κ)⊗1 = Φ̂. Let Ψ : K(H)→

B(H ⊗K) be given by Ψ(T ) = Ψ̂(T ⊗ I). Clearly,

Ψ(BTA) = (B ⊗ I)Ψ(T )(A⊗ I), T ∈ K(H), A,B ∈ D.

By Remark 6.4, there exists ψ ∈ S(X,K) such that Ψ = Sψ. For every k ∈ L2(κ) we have Sψ(Tk) = Sϕ(Tk). By

Remark 7.2, ψ|κ ∼ ϕ.

(ii)⇒(iv) Take Φ = Sψ|S(κ). The uniqueness of Φ follows from the fact that the Hilbert-Schmidt operators

with integral kernels in L2(κ) are weak* dense in S(κ).
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(iv)⇒(iii)⇒(i) are trivial.

If ϕ : κ→ B(K) is a Schur multiplier then we will denote still by Sϕ the weak* continuous map defined on

S(κ) whose existence was established in Proposition 7.3 (iv).

We say that a subset κ ⊆ X ×X is symmetric if κ ∼= κ̂. We call κ a positivity domain [11] if κ is symmetric,

generated by rectangles and the diagonal ∆ := {(x, x) : x ∈ X} is marginally contained in κ. The following was

established in [11]:

Proposition 7.4. If κ ⊆ X ×X is generated by rectangles, then the following are equivalent:

(i) S(κ) is an operator system;

(ii) κ is a positivity domain.

Let ϕ : κ→ B(K) be a Schur multiplier. We say that the Schur multiplier ψ : X ×X → B(K) is a positive

extension of ϕ if ψ is positive and ψ|κ ∼ ϕ.

Proposition 7.5. Let κ be a positivity domain and ϕ : κ→ B(K) be a Schur multiplier. The following are

equivalent:

(i) ϕ has a positive extension;

(ii) the map Sϕ : S(κ)→ B(H ⊗K) is completely positive.

Proof . (i)⇒(ii) Suppose that ψ : X ×X → B(K) is a positive extension of ϕ. By Theorem 6.6, Sψ is completely

positive. On the other hand, Sψ|S(κ) = Sψ|κ . Since ψ|κ = ϕ, we conclude that Sϕ is completely positive.

(ii)⇒(i) Let Φ0 be the restriction of Sϕ to S0(κ) + CI; clearly, Φ0 is a completely positive map. By

Arveson’s Extension Theorem, there exists a completely positive map Ψ0 : K(H) + CI → B(H ⊗K) extending

Φ0. The restriction Ψ of Ψ0 to K(H) is then a completely positive extension of Sϕ|S0(κ). Let Ψ∗∗ be the second

dual of Ψ, and E : B(H ⊗K)∗∗ → B(H ⊗K) be the canonical projection. We have that the map Ψ̃ = E ◦Ψ∗∗ :

B(H)→ B(H ⊗K) is completely positive and weak* continuous extension of Sϕ. Let Ψ̂ : B(H)⊗ 1→ B(H ⊗K)

(resp. Φ̂ : S(κ)⊗ 1→ B(H ⊗K)) be the map given by Ψ̂(T ⊗ I) = Ψ̃(T ) (resp. Φ̂(T ⊗ I) = Sϕ(T )); then Ψ̂ is

a completely positive extension of map Φ̂. Note that Φ̂ is a D ⊗ 1-bimodule map. By [13, Exercise 7.4], Ψ̂ is a

D ⊗ 1-bimodule map. By Remark 6.4, there exists ψ ∈ S(X,K) such that Ψ̃ = Sψ; the function ψ is the desired

positive extension of ϕ.

If S is an operator system, we write S++ for the cone of all positive finite rank operators in S. If T is

an operator system, we call a linear map Φ : S → T strictly positive if Φ(S) ∈ T + whenever S ∈ S++. We call

Φ strictly completely positive if Φ(n) is strictly positive for all n ∈ N. A Schur multiplier ϕ : κ→ B(K) will be

called strictly positive (resp. strictly completely positive) if the map Sϕ : S(κ)→ B(H ⊗K) is strictly positive

(resp. strictly completely positive).

Lemma 7.6. Let κ be a positivity domain. Every positive finite rank operator in Mn(S(κ)) has the form

(Tki,j )
n
i,j=1, where ki,j ∈ L2(κ), i, j = 1, . . . , n.
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Proof . Recall that S2(κ) = {Tk : k ∈ L2(κ)} and S0(κ) = S2(κ)
‖·‖

. It follows that Mn(S0(κ)) = Mn(S2(κ))
‖·‖

.

Suppose that T ∈Mn(S(κ))++ and let T = (Ti,j)
n
i,j=1, where Ti,j ∈ S(κ), i, j = 1, . . . , n. Since T has finite rank,

so does Ti,j ; in particular, Ti,j is a Hilbert-Schmidt operator and, by [7, Lemma 6.1], Ti,j ∈ S2(κ).

Recall that the Banach space projective tensor product

T (X) = L2(X,µ)⊗̂L2(X,µ)

can be canonically identified with the predual of B(H) (and the dual of K(H)). Indeed, each element h ∈ T (X)

can be written as a series h =
∑∞

i=1 fi ⊗ gi, where
∑∞

i=1 ‖fi‖22 <∞ and
∑∞

i=1 ‖gi‖22 <∞, and the pairing is

then given by

〈T, h〉 =

∞∑
i=1

(Tfi, gi), T ∈ B(H).

We have [2] that h can be identified with a complex function on X ×X, defined up to a marginally null set,

and given by

h(x, y) =

∞∑
i=1

fi(x)gi(y).

The positive cone T (X)+ consists, by definition, of all functions h ∈ T (X) that give rise to positive functionals

on B(H), that is, functions h of the form h =
∑∞

i=1 fi ⊗ fi, where
∑∞

i=1 ‖fi‖22 <∞. It is well-known that a

function ϕ ∈ L∞(X ×X) is a Schur multiplier if and only if, for every h ∈ T (X), there exists h′ ∈ T (X) such

that ϕh ∼ h′ (see [17]). In particular, if the measure µ is finite then S(X,C) can be naturally identified with a

subspace of T (X).

Theorem 7.7. Let κ ⊆ X ×X be a positivity domain. The following are equivalent:

(i) for every separable Hilbert space K, every strictly positive Schur multiplier ϕ : κ→ B(K) is strictly

completely positive;

(ii) for every n ∈ N, every positive finite rank operator in Mn(S(κ)) is the norm limit of sums of operators

of the form (DiSD
∗
j )i,j , where (Di)

n
i=1 ⊆ D and S ∈ S(κ)++.

Proof . (i)⇒(ii) We first assume that the measure µ is finite. Suppose that there exists n ∈ N and a positive

finite rank operator T ∈Mn(S(κ)) that is not equal to the limit, in the norm topology, of the operators

of the form (DiSD
∗
j )ni,j=1, where (Di)

n
i=1 ⊆ D and S ∈ S(κ)++. By Lemma 7.6, T = (Tki,j )

n
i,j=1, for some

ki,j ∈ L2(κ), i, j = 1, . . . , n. By the Hahn-Banach separation theorem, there exist a norm continuous functional

ω : Mn(S0(κ))→ C and γ < 0 such that

ω(T ) < γ and ω
(
(DiSD

∗
j )ni,j=1

)
≥ 0, S ∈ S(κ)++, (Di)

n
i=1 ⊆ D. (16)
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Let ωi,j : S0(κ)→ C be the norm continuous functionals such that

ω((Si,j)
n
i,j=1) =

n∑
i,j=1

ωi,j(Si,j), Si,j ∈ S0(κ), i, j = 1, . . . , n.

After extending ωi,j to K(H), we may assume that ωi,j ∈ T (X) for i, j = 1, . . . , n.

Suppose first that ωi,j ∈ S(X,C), i, j = 1, . . . , n. Identify ω with the function (denoted by the same

symbol) ω : X ×X →Mn, given by ω(x, y) = (ωi,j(x, y))ni,j=1. Since Sω : S2(H)→ B(H)⊗Mn is given by

Sω(Tk) = (Sωi,j (Tk)), k ∈ L2(X ×X), and the maps Sωi,j are completely bounded, we have that the map Sω is

completely bounded, that is, ω ∈ S(X,Mn).

We claim that S
(n)
ω is not strictly positive. Note that

S(n)
ω (T ) =

(
Sωi,j (Tkp,q )

)
i,j,p,q

.

Writing e for the vector in Hn with all its entries equal to the constant function 1, we have that

γ > ω(T ) =

n∑
i,j=1

∫
κ

ωi,j(x, y)ki,j(x, y)d(µ× µ)(x, y)

=
((
Sωi,j (Tki,j )

)
i,j
e, e
)
. (17)

Suppose that S
(n)
ω (T ) is positive. Then its submatrix (Sωi,j (Tki,j ))i,j is positive, which contradicts (17).

We now show that Sω is strictly positive. Let S ∈ S(κ)++. Using Lemma 7.6, write S = Tk for some

k ∈ L2(κ). We have that Sω(S) = (Tωi,jk)ni,j=1. For i = 1, . . . , n, let ξi ∈ L∞(X,µ) and note that, since µ is

finite, ξi ∈ H. Let Di = Mξi , i = 1, . . . , n, and set ξ = (ξi)
n
i=1. We have that

(Sω(S)ξ, ξ) =

n∑
i,j=1

(Tωi,jkξj , ξi)

=

n∑
i,j=1

∫
κ

ωi,j(x, y)k(x, y)ξj(x)ξi(y)d(µ× µ)(x, y)

= ω
(
(D∗i SDj)

n
i,j=1

)
≥ 0.

Since L∞(X,µ) is dense in H, we have that Sω(S) ∈Mn(B(H))+.

Now relax the assumption that ωi,j ∈ S(X,C). By standard arguments (see e.g. the proof of [1, Lemma

3.13]), there exist measurable sets Xm ⊆ X with Xm ⊆ Xm+1, m ∈ N, such that µ(X \Xm)→m→∞ 0 and

the restriction ω
(m)
i,j of ωi,j to Xm ×Xm belongs to S(Xm,C) for all m ∈ N. Let ω(m) : X ×X →Mn be the

function given by ω(m)(x, y) = (ω
(m)
i,j (x, y))i,j if (x, y) ∈ Xm ×Xm and ω(m)(x, y) = 0 otherwise, and note that

ω(m) defines a functional on Mn(K(H)) in the natural way (which will be denoted by the same symbol). Let
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Pm be the projection from H onto L2(Xm). We have that

ω(m)(R) = ω((Pm ⊗ In)R(Pm ⊗ In)), R ∈Mn(K(H)).

Since (Pm ⊗ In)R(Pm ⊗ In)→m→∞ R in norm, for every R ∈Mn(K(H)), we have that (16) eventually holds

true for ω(m) in the place of ω. By the previous paragraph, ω(m) is a Schur multiplier for which Sω(m) is strictly

positive, but not strictly completely positive.

Finally, relax the assumption that µ be finite. Let (Xm)m∈N be an increasing sequence of sets of

finite measure such that ∪∞m=1Xm = X, and let Qm be the projection from H onto L2(Xm), m ∈ N. Let

T ∈Mn(S(κ))++. Since T is a positive operator of finite rank, (QmTQm)m∈N is a sequence of positive finite

rank operators, converging to T in norm. By the first part of the proof, QmTQm is a norm limit of operators of

the form (DiSD
∗
j )i,j , where (Di)

n
i=1 ⊆ D and S ∈ S(κ)++. The conclusion follows.

(ii)⇒(i) Let ϕ : κ→ B(K) be a Schur multiplier such that Sϕ : S(κ)→ B(H ⊗K) is strictly positive.

It follows from the assumption and fact that Sϕ is a D-bimodule map that S
(n)
ϕ (T ) is positive whenever

T ∈Mn(S(κ))++.

Definition 7.8. Let κ be a positivity domain. We call κ rich if

Mn(S(κ))+ = Mn(S(κ))++
w∗

for every n ∈ N.

Suppose that X is a countable set equipped with counting measure. In this case, positivity domains can be

identified with undirected graphs with vertex set X in the natural way. This identification will be made in the

subsequent remark and in Theorem 7.12.

Remark 7.9. Let X be a countable set. Then any graph κ ⊆ X ×X is rich.

Proof . For X = N, write Qm for the projection onto the span of {ei}mi=1, m ∈ N, where {ei}i∈N is the standard

basis of `2. If T ∈Mn(S(κ))+ then ((Qm ⊗ In)T (Qm ⊗ In))m∈N is a sequence in Mn(S2(κ))++, converging in

the weak* topology to T .

By Proposition 7.5, if a Schur multiplier ϕ : κ→ B(K) has a positive extension then the map Sϕ : S(κ)→

B(H ⊗K) is necessarily positive. We call ϕ admissible if Sϕ is a positive map. The main result of this section

is a characterisation of when an admissible Schur multiplier has a positive extension, in terms of the maximal

operator D-system structure defined in Section 5. Note that S(κ) is a dual AOU D-space in the natural fashion.

Theorem 7.10. Let κ ⊆ X ×X be a rich positivity domain. The following are equivalent:

(i) for every separable Hilbert space K, every admissible Schur multiplier ϕ : κ→ B(K) has a positive

extension;
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(ii) S(κ) = OMAXw∗

D (S(κ)).

Proof . (i)⇒(ii) Let ϕ : κ→ B(K) be a strictly positive Schur multiplier. Since S(κ)+ = S(κ)++
w∗

and Sϕ is

weak* continuous, Sϕ is positive. By the assumption and Proposition 7.5, Sϕ is completely positive. In particular,

Sϕ is strictly completely positive. By Theorem 7.7 and the fact that the matricial cones of any operator system

are norm closed, we have that

Mn(S(κ))++ ⊆Mn(OMAXD(S(κ)))+. (18)

Since κ is rich, by taking weak* closures on both sides in (18) we obtain that

Mn(S(κ))+ ⊆Mn(OMAXw∗

D (S(κ)))+. (19)

Since the converse inclusion in (19) always holds, we conclude that S(κ) = OMAXw∗

D (S(κ)).

(ii)⇒(i) follows from Theorem 5.8 and Proposition 7.5.

Theorem 7.10 and Remark 7.9 have the following immediate corollary. In the case where X is finite, it is a

reformulation, in terms of operator system structures, of [14, Theorem 4.6].

Corollary 7.11. Let X be a countable set, equipped with counting measure and κ ⊆ X ×X be a symmetric

set containing the diagonal. The following are equivalent:

(i) for every Hilbert space K, every admissible Schur multiplier ϕ : κ→ B(K) has a positive extension;

(ii) S(κ) = OMAXw∗

D (S(κ)).

Let X be a countable set. Recall that a graph κ ⊆ X ×X is called chordal if every 4-cycle in κ has an edge

connecting two non-consecutive vertices of the cycle (see e.g. [14]).

Theorem 7.12. Let X be a countable set and κ ⊆ X ×X be a chordal graph. Then S(κ) = OMAXw∗

D (S(κ)).

Proof . Fix n ∈ N and let [n] = {1, . . . , n}. Suppose that κ ⊆ X ×X is a chordal graph. Let

κ(n) = {((x, i), (y, j)) ∈ (X × [n])× (X × [n]) : (x, y) ∈ κ} .

Then κ(n) is a chordal graph on X × [n]. By [11, Theorem 2.5], every positive operator in Mn(S(κ)) is a weak*

limit of rank one positive operators in Mn(S(κ)).

Suppose that K is a Hilbert space and ϕ : κ→ B(K) is a Schur multiplier such that Sϕ : S(κ)→ B(H ⊗K)

is a positive map. Let R ∈Mn(S(κ)) be a positive rank one operator. After identifying Mn(S(κ)) with S(κ(n)),

we see that there exists a subset α ⊆ X × [n] such that R is supported on α× α. Let

β = {x ∈ X : ∃ i ∈ [n] with (x, i) ∈ α}.
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Since α× α ⊆ κ(n), we have that β × β ⊆ κ. Setting β̃ = β × [n], we have that α ⊆ β̃, and hence R is

supported on β̃ × β̃. The restriction ψ of ϕ to β × β is a positive Schur multiplier. By Theorem 6.6, the map

Sψ : S(β × β)→ B(H ⊗K) is completely positive. Thus, S
(n)
ϕ (R) = S

(n)
ψ (R) ∈ B(H ⊗K)+. Since Sϕ is weak*

continuous, the previous paragraph implies that Sϕ is completely positive. By Proposition 7.5, ϕ has a positive

extension and, by Corollary 7.11, S(κ) = OMAXw∗

D (S(κ)).
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