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What You Need to Know 

Background: Esophageal adenocarcinoma (EAC) occurs most frequently in men. Studies are 

needed to determine whether levels of sex hormones are associated with risk of EAC or 

Barrett’s esophagus (BE). 

 

Findings: In a Mendelian randomization analysis of data from patients with EAC or BE, we 

found an association between genetically predicted levels of follicle stimulating and 

luteinizing hormones and risk of BE and EAC.  

 

Implications for patient care: Monitoring levels of follicle stimulating and luteinizing 

hormones might identify patients at risk for BE and EAC. 

  



Abstract 

Background & Aims: Esophageal adenocarcinoma (EAC) occurs most frequently in men. 

We performed a Mendelian randomization analysis to investigate whether genetic factors that 

regulate levels of sex hormones associated with risk of EAC or Barrett’s esophagus (BE). 

Methods: We conducted a Mendelian randomization analysis using data from patients with 

EAC (n=2488) or BE (n=3247) and control participants (n=2127), included in international 

consortia of genome-wide association studies in Australia, Europe, and North America. 

Genetic risk scores or single nucleotide variants were used as instrumental variables for 9 

specific sex hormones. Logistic regression provided odds ratios (ORs) with 95% CIs. 

Results: Higher genetically predicted levels of follicle stimulating hormones were associated 

with increased risks of EAC and/or BE in men (OR, 1.14 per allele increase; 95% CI, 1.01-

1.27) and in women (OR, 1.28; 95% CI, 1.03-1.59). Higher predicted levels of luteinizing 

hormone were associated with a decreased risk of EAC in men (OR, 0.92 per standard 

deviation increase; 95% CI, 0.87-0.99) and in women (OR, 0.93; 95% CI, 0.79-1.09), and 

decreased risks of BE (OR, 0.88; 95% CI, 0.77-0.99) and EAC and/or BE (OR, 0.89; 95% CI, 

0.79-1.00) in women. We found no clear associations for other hormones studied, including 

sex hormone-binding globulin, dehydroepiandrosterone sulphate, testosterone, 

dihydrotestosterone, estradiol, progesterone, or free androgen index.  

Conclusions: In a Mendelian randomization analysis of data from patients with EAC or BE, 

we found an association between genetically predicted levels of follicle stimulating and 

luteinizing hormones and risk of BE and EAC.  

Key words: esophageal neoplasms; sex difference; gonadal steroid hormones; causality 



Esophageal adenocarcinoma (EAC) and its precursor lesion Barrett’s esophagus (BE) are 

characterized by a strong male predominance, with the male-to-female ratios of EAC 

incidence of 6-to-1 on average in Western countries and up to 8-to-1 in the United States.1-3 

The reasons for this striking sex difference are not known, and seem not to be explained by 

the two major risk factors of EAC and BE, i.e. gastroesophageal reflux disease and obesity, 

given the similar exposure prevalence and strengths of associations with EAC and BE risk 

between the sexes.1 Abdominal obesity, which is more common in men than in women, may 

contribute to the male predominance in EAC and BE.1, 4 However, in a nationwide Swedish 

study, the male predominance in EAC was no weaker among lean individuals compared with 

the overweight, arguing against obesity as a factor completely explaining the excess male 

risk.5 The male predominance in EAC may be attributable to certain biological differences 

between the sexes. Particularly, it has been hypothesized that sex hormonal and reproductive 

factors may play a role in the etiology of EAC and BE, i.e. that estrogenic exposures may 

prevent EAC development, whereas androgens may increase EAC risk. Such hypothesis is 

supported by a 16-year delayed onset of EAC in women than in men.6 Recently, it has been 

proposed that a more rapid age-related immune system decline in males may explain the 

generally higher cancer risk in males than in females,7 which may be driven by sex 

hormones.8 However, the existing epidemiologic evidence regarding the role of sex hormone 

in the development of EAC or BE remains not conclusive.1, 2 Recent observational studies 

have suggested associations between circulating sex hormone levels and risk of EAC or BE,9-

12 but due to possible confounding and other biases inherent in observational studies, no 

causal relation has been established. 

Mendelian randomization analysis provides a useful tool for exploring causal effects of 

endogenous exposures on disease risk without adding any intervention.13 Inheriting a genetic 

variant, determined by the random assortment of genes at conception, associated with life-



long changes in endogenous sex hormone levels can confer altered risk for EAC or BE which 

are not confounded by the known risk factors for these diseases. Therefore, the use of 

genetically predicted sex hormone levels as instrumental variables, based on established sex 

hormone-associated genetic variants, can facilitate causal inferences about the relation 

between sex hormone levels and the risk of EAC or BE. 

To test the hypothesis that genetically determined endogenous sex hormone levels influence 

the risk of EAC and BE, we performed a Mendelian randomization analysis based on merged 

data from several large genome-wide association studies (GWAS) conducted in Australia, 

Europe, and North America.  

  



Methods 

Study participants 

We analyzed GWAS data from participants in studies included in three consortia:  

1) The Barrett's and Esophageal Adenocarcinoma Genetic Susceptibility Study (BEAGESS) 

within the Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON; 

http://beacon.tlvnet.net/), which included 1516 patients with histologically confirmed EAC, 

2416 patients with BE, and 2187 control participants from 14 population-based case-control 

and cohort studies conducted in Australia, Europe, and North America;14  

2) The Barrett’s Oesophagus Gene Study in the United Kingdom, which included 882 BE 

patients who were identified at endoscopy and confirmed with histopathology;15  

3) The Stomach and Oesophageal Cancer Study in the United Kingdom, which included 1003 

EAC patients with International Classification of Disease coding of esophageal cancer (C15) 

and a pathological diagnosis of adenocarcinoma (M8140-8575).15  

After GWAS data cleaning, quality control, and imputation procedures, the current study 

included 2488 EAC patients, 3247 BE patients, and 2127 control participants. The 

distribution of participants by study is shown in Supplementary Table 1. The individual 

studies included in this analysis were approved by institutional review boards or research 

ethics committees. Informed consent was obtained from each participant. 

 

Genotyping and imputation 

Genotyping of DNA from buffy coat or whole blood samples was performed using the 

Illumina Omni1M Quad platform (San Diego, CA) in accordance with standard quality-

control procedures.15, 16 The annotations were based on version H of the Illumina product 

files and corresponded to the Genome Reference Consortium GRCh37 release. For quality 



control, genotyped single nucleotide polymorphisms (SNPs) or samples with call rate <95% 

were excluded. Based on control participants, SNPs with Hardy-Weinberg Equilibrium P 

value <10-4 or minor allele frequency <0.01 were also excluded. Imputation was conducted at 

the study level, based on SHAPEIT2/IMPUTE2 using 1000 Genomes Phase 3 integrated 

variant set release in NCBI build 37 (hg19) coordinates.17 Post-imputation quality control 

excluded SNPs with IMPUTE2 info score <0.8, call rate <95%, Hardy-Weinberg Equilibrium 

P value <10-4 based on control participants, or minor allele frequency <0.01 in control 

participants. 

 

Genetic risk scores or genetic variants of sex hormones 

SNPs associated with sex hormones at the GWAS significance level (P <5×10-8) in 

populations of European descent were identified from published GWAS indexed in the 

NHGRI-EBI GWAS Catalog (http://www.ebi.ac.uk/gwas). SNPs predicting the levels of the 

following nine sex hormones were found: sex hormone-binding globulin,18-20 

dehydroepiandrosterone sulphate,20, 21 testosterone,22, 23 dihydrotestosterone,23 estradiol.20 

follicle stimulating hormone (FSH),20 luteinizing hormone (LH),20, 24 progesterone,20 and free 

androgen index.20 Multiple SNPs were identified for each of the following six hormone 

measures: sex hormone-binding globulin, dehydroepiandrosterone sulphate, testosterone, 

dihydrotestosterone, LH, and progesterone. For these six hormones, sex hormone-specific 

genetic risk scores (GRSs) were calculated by summing the number of risk alleles (0 for none, 

1 for heterozygous, and 2 for homozygous) weighted by the per allele change in the sex 

hormone level for each participant. For example, we constructed a GRS of sex hormone-

binding globulin for each male participant based on five SNPs as follows:  



GRS sex hormone-binding globulin in men = rs12150660-T × 0.110 + rs2411984-A × 0.034 – 

rs7910927-T × 0.050 – rs293428-A × 0.029 – rs1042522-G × 0.127.18, 20 

Sex-specific GRSs were constructed for sex hormone-binding globulin, whereas GRSs for 

testosterone and dihydrotestosterone were constructed in men only because the availability of 

identified SNPs predicting levels of these sex hormone measures limited to men. More 

detailed information about the included genetic variants is presented in Table 1.  

 

Covariates 

We assumed that genetically predicted hormone levels were not associated with any risk 

factor for EAC or BE, and thus act as confounders. Yet, in the analyses (see Statistical 

Analysis below) we still considered the potential influence of the main risk factors recurrent 

gastroesophageal reflux symptoms,25 body mass index (BMI),26 and tobacco smoking.27 

Information on these four covariates was retrieved from written questionnaires or personal 

interviews. Data were harmonized across studies and merged into a single dataset. Recurrent 

reflux symptoms were defined as symptoms of heartburn or regurgitation occurring at least 

weekly. BMI was calculated as the body weight divided by square of height (kg/m2). Adult 

weight before any disease-related weight loss was used when available. Otherwise, we used 

weight at 1 year, 5 years, or 20 years before the data collection, depending on the varying 

data collection in the individual studies. Participants who had ever smoked at least 100 

cigarettes or smoked regularly were defined as ‘ever smokers’. In BEAGESS, the missing 

data on covariates was low, but among the 1885 patients with EAC or BE from the United 

Kingdom, information regarding reflux symptoms was missing in 776 (41%) participants and 

BMI data were missing in 1209 (64%) participants. 

 



Statistical analysis 

Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) 

for the associations between sex hormone-specific GRSs or single SNPs and the risk of EAC, 

BE, as well as a combined outcome of EAC or BE (hereafter ‘EAC/BE’), and separately in 

men and women. The ORs were adjusted for age (continuous) and the first four principal 

components that reflected the population structure to control for population stratification. The 

GRSs and single SNPs were included in the models as continuous variables and the ORs and 

95% CIs were calculated for per standard deviation increase in GRS and for per allele 

increase when single SNPs were used.  

To ensure the ‘exclusion restriction’ assumption of an instrumental variable analysis that the 

instrumental variables (GRSs or single SNPs) were independent of the four covariates, we 

assessed the associations between the instrumental variables and these covariates, i.e. 

recurrent reflux symptoms (yes or no), BMI (continuous), and tobacco smoking (yes or no) 

among the control participants, using analysis of variance or chi square test, whichever was 

appropriate. Participants with missing data were excluded in each of these analyses. 

We used the MR-Egger method, which was adapted from the Egger regression used in meta-

analysis, to assess the possible pleiotropic effects (in which a SNP might affect more than 1 

phenotypic characteristics) of the SNPs included in the GRSs. In the MR-Egger regression, 

an intercept differing from zero suggests existence of directional horizontal pleiotropy. The 

MR-Egger regression was performed for the GRSs based on three or more SNPs only, i.e. 

those for sex hormone-binding globulin, dehydroepiandrosterone sulphate, and testosterone. 

Some SNPs were included in two or more GRSs of different sex hormones, i.e. rs12150660 

and rs727428 predicting both sex hormone-binding globulin and testosterone. Thus, we re-



estimated the associations between the corresponding GRSs and the risk of EAC and BE after 

excluding these SNPs, to assess the robustness of the estimates. 

All statistical tests were two-sided. The statistical software packages R 3.4.2 (R Foundation 

for Statistical Computing, Vienna, Austria) and SAS 9.4 (SAS Institute, Cary, NC) were used 

for the analyses.  

 

Power estimation 

We estimated the statistical power using in the web tool mRnd for power calculations in 

Mendelian randomization analysis (http://cnsgenomics.com/shiny/mRnd).28 Assuming the 

predicting SNPs explain 20% of the variance in levels of a sex hormone, with the given 

sample size at the significance level of 0.05, our study had 78% and 29% power to detect an 

OR of 1.2 in men and in women, respectively, for per standard deviation change in the sex 

hormone levels.   



Results 

Participants 

Selected characteristics of the study participants are shown in Table 2. The mean age 

(standard deviation) was 65.1 (10.4) years in EAC patients, 63.1 (12.0) years in BE patients, 

and 61.7 (11.2) in control participants. There were more male than female participants in all 

groups. Compared with control participants, more patients with EAC and BE had recurrent 

reflux symptoms, higher BMI, and were ever smokers.   

 

Genetically predicted sex hormone levels and EAC/BE risk  

Table 3 presents the sex-specific ORs and 95% CIs for GRSs or single SNPs predicting sex 

hormone levels in relation to the risk of EAC, BE and EAC/BE. Higher genetically predicted 

FSH levels were associated with increased risks of EAC, BE, and EAC/BE in both men and 

women. The point estimates (ORs) for per allele increase in FSH level were numerically 

higher in women (OR 1.28, 95% CI 1.03 to 1.59 for EAC/BE) than in men (OR 1.14, 95% CI  

1.01 to 1.27 for EAC/BE).  

Higher genetically predicted LH levels were associated with reduced risk of EAC in men (OR 

for per standard deviation increase 0.92, 95% CI 0.87 to 0.99), and we observed a similar 

association in women (OR 0.93, 95% CI 0.79 to 1.09). Higher genetically predicted LH 

levels were also associated with reduced risks of BE (OR for per standard deviation increase 

0.88, 95% CI 0.77 to 0.99) and EAC/BE (OR 0.89, 95% CI 0.79 to 1.00) in women, but no 

such associations were observed in men.  

No statistically significant associations were found between single SNPs of estradiol or free 

androgen index and the risk of EAC, BE, or EAC/BE in any of the sexes. No associations 



were observed between GRSs of sex hormone-binding globulin, dehydroepiandrosterone 

sulphate, or progesterone and the risk of EAC, BE, or EAC/BE in men or women. No 

associations were found for GRS of testosterone or dihydrotestosterone in men. All ORs for 

per standard deviation increase in GRSs of these sex hormones were close to one (range 0.95-

1.15).  

 

Assessment of pleiotropy 

The MR-Egger regressions found no evidence for pleiotropy for GRSs of sex hormone-

binding globulin (MR-Egger intercept 0.013, P=0.724 for EAC/BE in men; intercept -0.012, 

P=0.219 in women) or testosterone (intercept -0.028, P=0.352) (Supplementary Table 2). The 

ORs for sex hormone-binding globulin and testosterone remained unchanged after excluding 

the SNPs predicating levels of multiple sex hormones from the GRSs (Table 3). On the other 

hand, pleiotropy was indicated for GRS of testosterone (MR-Egger intercept 0.111, P=0.045 

for EAC/BE in men; intercept 0.231, P=0.055 in women; Supplementary Table 2).  

 

Independence of instrumental variables with covariates 

As expected, the genetic variants for FSH and LH were not associated with any of the four 

covariates, i.e. recurrent reflux symptoms, BMI, or tobacco smoking in control participants 

(P <0.05 for all comparisons; Supplementary Tables 3-5). 

  



Discussion 

This Mendelian randomization analysis indicated that higher genetically predicted FSH levels 

increase the risk of EAC and BE and higher LH levels decrease the risk, in both sexes. No 

associations were found for the other seven sex hormones under study.  

The strong male predominance in EAC and BE has prompted the hypothesis that sex 

hormonal and reproductive factors may be involved in the etiology of these conditions. But 

the existing evidence is limited and inconclusive.1, 2 A few studies have directly investigated 

the associations between circulating sex hormone levels and the risk of EAC or BE.9-12 

However, these studies were all restricted to men because of the low incidence of EAC in 

women, and most had a cross-sectional design, i.e. the sex hormone levels were tested at the 

time of the cancer diagnosis for which why the temporal relation could not be established. A 

recent case-control study nested in prospective cohorts found inverse associations between 

higher circulating levels of dehydroepiandrosterone and estradiol and the risk of EAC or 

gastric cardia adenocarcinoma in men,12 but these findings were not supported by the results 

of the present study. No previous study has specifically assessed the association between 

endogenous FSH or LH levels and risk of EAC or BE.  

FSH and LH are essential gonadotropins, stimulating the secretion of sex steroids in both 

sexes.29-31 Elevated levels of these hormones have been associated with some health problems, 

e.g. increased FSH levels may cause infertility in women,32 and higher LH levels may 

contribute to cognitive deficits in Alzheimer's disease.33 The increased risk of EAC and BE 

associated with higher FSH levels observed in this study is in line with previous findings of a 

decreased risk of EAC associated with more childbearing and breastfeeding.34 Interestingly, 

the receptors of both FSH and LH are highly expressed in the human lower esophagus, i.e. 

where EAC and BE arise. According to the Bgee dataBase for Gene Expression Evolution, a 



database to retrieve and compare gene expression patterns in multiple species, the expression 

levels of FSH and LH receptors are in fact highest in the lower esophagus among all 

anatomical entities with available expression data in human.35 Yet, the specific downstream 

mechanisms after binding to their receptors in EAC development are unclear. Notably, the 

FSH receptor has been found to be selectively expressed on the endothelial surface of the 

blood vessels of a wide range of tumors,36 indicating an angiogenesis-related mechanism for 

the potential involvement of FSH in tumor development. The specificity of associations 

observed only with FSH and LH in the present study suggests that these two hormones may 

be involved in the development of EAC through pathways independent of other sex 

hormones. It should be noted that two genetic variants used for predicting FSH and LH levels 

(rs11031005 and rs11031002) in this study are in linkage disequilibrium with a functional 

polymorphism in the promoter of FSHB gene, which codes for the beta polypeptide of FSH.20 

In addition, previous studies have generated conflicting findings regarding the direction of 

effect of these variants on FSH and LH levels,37-39 although we assumed the minor allele 

would be negatively associated with FSH levels and positively associated with LH levels 

based on the results of the only relevant GWAS.20 Overall, the specific etiologic roles and 

mechanisms of FSH and LH in EAC development remain to be identified.  

EAC has a poor prognosis, with an overall 5-year survival rate below 20% in Western 

populations.2 Clarifying the role of sex hormones in the development of this cancer may 

unravel novel targets for prevention and treatment. If an important role of FSH and LH in 

EAC development is confirmed in future research, it may be worth evaluating potential 

therapeutic targets, e.g. blocking FSH receptors signaling in the prevention of EAC among 

high-risk individuals and as adjuvant therapy to counteract tumor recurrences in patients who 

have undergone curatively intended treatment.  



This study is, to the best of our knowledge, the first Mendelian randomization analysis of 

associations between endogenous sex hormone levels and the risk of EAC and BE. We used 

data from many high-quality GWASs, which have been merged and analyzed in collaboration 

through large consortia. A weakness is the lack of a replication analysis in an independent 

sample, but the availability of such a sample collection will depend on future large-scale 

collaborative endeavors because of the relatively low incidence of EAC. However, the 

observed associations, particularly for FSH levels, are less likely to be due to chance 

considering the consistent findings in separate analyses of EAC, BE, and EAC/BE, as well as 

in both sexes. In a Mendelian randomization analysis, the genetic variants are ideally strongly 

associated with the endogenous exposure of interest to avoid weak-instrument problems, i.e. 

biased results if the ‘exclusion restriction’ is violated or lowered statistical power,40 which 

might be a limitation in the present study. Because only a limited number of genetic variants 

predicting sex hormone levels have been identified from existing GWAS, the instrumental 

variables used in this study were based on no more than five genetic variants or even single 

variants only. This could have reduced the statistical power, particularly in the analyses with 

relatively weak instruments. Specifically, only one or two SNPs have been used for 

predicting endogenous FSH and LH levels, and these SNPs only account for a small 

proportion of the variations in FSH and LH levels (Supplementary Table 6). Thus, the 

estimated associations between genetically predicted sex hormone levels and risk of EAC or 

BE were probably biased towards the null in this Mendelian randomization analysis. Potential 

pleiotropy of the SNPs used for predicting sex hormone levels could not be ruled out. 

Notably, a few SNPs used in this study correlated moderately or strongly, including the pair 

of rs11031005 predicting FSH levels and rs11031002 predicting LH levels (r2 of linkage 

disequilibrium 0.79). Thus, the observed specific genetic instrument-outcome associations 

might be partially attributable to correlations between sex hormones. In addition, although all 



selected sex hormone-associated SNPs have been confirmed by GWAS in populations of 

European descent,18-23 we were unable to verify the validity of the instrumental variables in 

the study due to unavailability of directly measured sex hormone levels. Taken together, the 

findings of the present study need to be interpreted with caution when making causal 

inferences. 

In summary, this Mendelian randomization analysis based on GWAS data from high-quality 

studies provides the first line of evidence of a role of endogenous FSH and LH levels in the 

etiology of EAC and BE. Whether the observed associations are causal remains to be 

confirmed in independent samples with valid instruments or in randomized controlled trials, 

if ethical and feasible.  
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Table 1. Characteristics of selected genetic variant associated with sex hormone levels from previous genome-wide association studies 

Sex(s) Hormone SNP Chr. Position Gene Minor/ 

major allele 

Effect/ 

other allele 

Beta * P † Call 

rate  

Male Sex hormone-binding globulin rs12150660 17 7521915 SHBG T/G T/G 0.110  4×10-80 0.99 

Male  Sex hormone-binding globulin rs2411984 17 47445751 ZNF652 A/G A/G 0.034  2×10-10 0.98 

Male  Sex hormone-binding globulin rs7910927 10 65138910 JMJD1C G/T T/G -0.050  1×10-25 1.00 

Male  Sex hormone-binding globulin rs293428 4 69591782 UGT2B15 G/A A/G -0.029  3×10-8 1.00 

Female Sex hormone-binding globulin rs12150660 17 7521915 SHBG T/G T/G 0.087  6×10-30 0.99 

Female  Sex hormone-binding globulin rs7910927 10 65138910 JMJD1C G/T T/G -0.046  2×10-13 1.00 

Female  Sex hormone-binding globulin rs780093 2 27742603 GCKR T/C T/C -0.041  9×10-11 1.00 

Female  Sex hormone-binding globulin rs727428 17 7537792 FXR2/SHBG/ 

SAT2/ATP1B2 

T/C T/C -0.126  2×10-16 1.00 

Both Sex hormone-binding globulin rs1042522 ‡ 17 7520197 TP53 G/C G/C -0.127  1×10-15 1.00 

Both  Dehydroepiandrosterone sulphate rs78900934 1 101738121 PPIAP7 A/G A/C 0.050  6×10-12 1.00 

Both  Dehydroepiandrosterone sulphate rs2911280 16 81591313 CMIP A/G A/G 0.090  6×10-10 0.99 

Both  Dehydroepiandrosterone sulphate rs148982377 7 99075038 ZNF789 C/T C/T -0.255  2×10-14 1.00 

Male  Testosterone rs12150660 17 7521915 SHBG T/G T/G 1.103  1×10-41 0.99 

Male  Testosterone rs6258 17 7534678 SHBG T/C T/C -2.856  2×10-22 1.00 

Male  Testosterone rs10822184 10 65337153 JMJD1C C/T T/C -0.058  1×10-8 0.99 

Male  Testosterone rs727428 17 7537792 SHBG T/C T/C -0.073  1×10-12 1.00 

Male  Dihydrotestosterone rs72829446 17 7552123 SHBG T/C T/C 0.164  9×10-10 0.98 

Male  Dihydrotestosterone rs727428 17 7537792 SHBG T/C T/C -0.103  1×10-11 1.00 

Both  Progesterone rs112295236 11 62915346 SLC22A9 G/C G/C 0.255  8×10-12 0.99 



Both  Progesterone rs34670419 7 99130834 ZKSCAN5 T/G T/G -0.346  6×10-14 0.99 

Both  Estradiol rs117585797 12 6011490 ANO2 A/C A/C Single 

variant 

2×10-8 0.98 

Both  Follicle-stimulating hormone rs11031005 11 30226356 FSHB C/T C/T Single 

variant 

2×10-8 0.99 

Both  Luteinizing hormone rs11031002 11 30215261 FSHB A/T A/T 0.221 4×10-9 1.00 

Both Luteinizing hormone rs139643250 19 49517146 RUVBL2 T/C T/C -0.68 3×10-50  

Both  Free androgen index rs117145500 16 52947630 LOC643714 C/A C/A Single 

variant 

2×10-8 0.99 

* Changes per effect allele in µmol/L for dehydroepiandrosterone sulphate, in unit/L for luteinizing hormone, and in nmol/L for other hormones.  
† P value for the association between the single nucleotide variant and the specific sex hormone measure as reported in the original genome-wide 

association study. 
‡ Replacing rs1641549 of high linkage disequilibrium (r2=0.95) due to low call rate (0.44). 

Chr.: chromosome; SNP: single nucleotide polymorphism. 

 

 

 

  



Table 2. Characteristics in study participants, number (%) 

Characteristic Control 

participants 

(N=2127) 

Esophageal 

adenocarcinoma 

patients (N=2488) 

Barrett’s esophagus 

patients  

(N=3247) 

Age, years    

    <50 301 (14.2) 185 (7.4) 438 (13.5) 

    50-59 533 (25.1) 540 (21.7) 766 (23.6) 

    60-69 736 (34.6) 878 (35.3) 1002 (30.9) 

    70-79 521 (24.5) 688 (27.7) 827 (25.5) 

    ≥80 36 (1.7) 177 (7.1) 207 (6.4) 

    Missing 0 (0) 20 (0.8) 7 (0.2) 

    Mean ± standard deviation 61.7 ± 11.2 65.1 ± 10.4 63.1 ± 12.0 

Sex    

    Male 1670 (78.5) 2173 (87.3) 2454 (75.6) 

    Female 457 (21.5) 315 (12.7) 793 (24.4) 

Recurrent reflux symptoms 

    No 1411 (66.3) 956 (38.4) 1042 (32.1) 

    Yes 344 (16.2) 845 (34.0) 1164 (35.9) 

    Missing 384 (18.1） 687 (27.6) 1041 (32.1) 

Body mass index    

    <25 772 (36.3) 241 (9.7) 596 (18.4) 

    25-29.9 918 (4.2) 442 (17.8) 1178 (36.3) 

    ≥30 420 (19.7) 295 (11.9) 919 (28.3) 

    Missing 17 (0.8) 1510 (60.7) 554 (17.1) 

    Mean ± standard deviation 27.0 ± 4.7 28.4 ± 5.2 28.7 ± 5.1 

Tobacco smoking    

    Never 866 (40.7) 563 (22.6) 1065 (32.8) 

    Ever 1249 (58.7) 1664 (66.9) 1964 (60.5) 

    Missing 12 (0.6) 261 (10.5) 219 (6.7) 



Table 3. Associations between genetic risk scores or single nucleotide variants of sex hormones and the risk of esophageal adenocarcinoma 

(EAC) and Barrett’s esophagus (BE) 

Sex Hormone Missing * 
EAC 

OR (95% CI) † 

BE 

OR (95% CI) † 

EAC/BE 

OR (95% CI) † 

Single nucleotide variants 

Male Follicle-stimulating hormone 3 1.17 (1.03, 1.34) 1.12 (0.99, 1.27) 1.14 (1.01, 1.27) 

Female Follicle-stimulating hormone 0 1.29 (0.96, 1.73) 1.26 (1.00, 1.59) 1.28 (1.03, 1.59) 

Male Estradiol 101 1.23 (0.69, 2.18) 0.74 (0.40, 1.35) 0.95 (0.57, 1.60) 

Female Estradiol 29 0.28 (0.03, 2.43) 0.49 (0.14, 1.68) 0.42 (0.13, 1.35) 

Male Free androgen index 73 1.09 (0.91, 1.31) 1.08 (0.90, 1.29) 1.09 (0.93, 1.28) 

Female Free androgen index 20 0.82 (0.52, 1.30) 0.74 (0.52, 1.05) 0.78 (0.56, 1.08) 

Genetic risk scores 

Male Luteinizing hormone 91 0.92 (0.87, 0.99) 0.99 (0.93, 1.06) 0.96 (0.91, 1.02) 

Female Luteinizing hormone 22 0.93 (0.79, 1.09) 0.88 (0.77, 0.99) 0.89 (0.79, 1.00) 

Male Sex hormone-binding globulin 171 0.96 (0.91, 1.04) 0.99 (0.93, 1.05) 0.98 (0.93, 1.04) 

Male Sex hormone-binding globulin ‡ 102 0.97 (0.91, 1.04) 1.00 (0.94, 1.07) 0.99 (0.94, 1.05) 

Female Sex hormone-binding globulin 14 1.04 (0.89, 1.21) 0.97 (0.86, 1.09) 0.99 (0.89, 1.11) 

Female Sex hormone-binding globulin ‡ 0 0.97 (0.84, 1.13) 1.00 (0.90, 1.13) 1.00 (0.90, 1.12) 

Male Dehydroepiandrosterone sulphate 81 0.98 (0.92, 1.05) 0.98 (0.92, 1.05) 0.98 (0.92, 1.04) 

Female Dehydroepiandrosterone sulphate 24 1.15 (0.97, 1.36) 0.98 (0.88, 1.11) 1.02 (0.91, 1.14) 

Male Progesterone 72 0.99 (0.93, 1.06) 0.97 (0.91, 1.04) 0.98 (0.92, 1.04) 



Female Progesterone 19 0.95 (0.81, 1.11) 0.97 (0.86, 1.09) 0.96 (0.86, 1.07) 

Male Testosterone 89 0.95 (0.89, 1.02) 0.97 (0.91, 1.03) 0.96 (0.91, 1.02) 

Male Testosterone ‡ 20 0.97 (0.90, 1.03) 0.99 (0.93, 1.06) 0.98 (0.92, 1.04) 

Male Dihydrotestosterone 129 1.03 (0.97, 1.10) 0.97 (0.91, 1.04) 1.00 (0.95, 1.06) 

* Number of missing values of genetic risk score or single nucleotide variant. 

† Odd ratios (95% confidence intervals) of per allele increase in estradiol, follicle-stimulating hormone and free androgen index and odds 

ratios of per standard deviation increase in genetic risk score for the remaining, adjusted for age (continuous) and the first four genetic 

principal components. 

‡ Excluding SNPs rs12150660 and rs727428. 

 

 



Supplementary Table 1. Distribution of study participants by study 

Location  EAC 

cases 

BE 

case 

Control 

participants 

Total 

Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON) 

Australia Australia-wide 236 0 248 481 

 Queensland, Australia 0 326 323 649 

Europe Sheffield, England 102 167 0 269 

 Sweden-wide 64 0 116 180 

 Ireland 194 199 218 611 

North America Northern California, United 

States 

0 242 215 457 

 Washington & New Jersey, 

United States 

56 0 114 170 

 Rochester, Minnesota, United 

States 

503 814 0 1317 

 Toronto, Ontario, Canada 248 0 259 507 

 Raleigh, North Carolina, 

United States 

0 100 0 100 

 Washington, United States 0 157 167 324 

 Washington, United States 0 296 0 296 

 Nova Scotia, Canada 54 115 92 261 

 Los Angeles, California, 

United States 

59 0 438 497 

Subtotal in BEACON 1516 2416 2187 6119 

Barrett’s Oesophagus Gene Study 

Europe United Kingdom-wide 

excluding Northern Ireland 

0 882 0 882 

Stomach and Oesophageal Cancer Study 

Europe United Kingdom-wide 

excluding Northern Ireland 

1003 0 0 1003 

Total genotyped 2519 3298 2187 8004 

Total analyzed in this study 2488 3247 2127 7862 



Supplementary Table 2. Assessment of  directional pleiotropy using the MR-Egger method 

Sex Hormone 
EAC  BE  EAC/BE 

Intercept (SE) P *  Intercept (SE) P *  Intercept (SE) P * 

Male Sex hormone-binding globulin -0.021 (0.05) 0.680  0.021 (0.040) 0.599  0.013 (0.037) 0.724 

Female Sex hormone-binding globulin -0.121 (0.127) 0.343  -0.092 (0.101) 0.361  -0.112 (0.091) 0.219 

Male Dehydroepiandrosterone sulphate 0.110 (0.066) 0.098  0.106 (0.066) 0.112  0.111 (0.055) 0.045 

Female Dehydroepiandrosterone sulphate 0.255 (0.030) 0.263  0.125 (0.082) 0.128  0.231 (0.121) 0.055 

Male Testosterone -0.048 (0.037) 0.192  -0.009 (0.037) 0.810  -0.028 (0.030) 0.352 
* The P value of the intercept is a test of directional pleiotropy. 

BE: Barrett’s esophagus; CI: confidence interval; EAC: esophageal adenocarcinoma; OR: odds ratio; SE: standard error. 



 

Supplementary Table 3. Distribution of covariates by genotype rs11031005 predicting 

follicle stimulating hormone levels in control participants 

Covariates  Genotype  P value* 

TT TC CC 

Recurrent reflux symptoms, n (%)  

    No 990 (79.5) 384 (83.5) 37 (74.0) 0.096 

    Yes 255 (20.5) 76 (16.5) 13 (26.0)  

Body mass index     

    Mean ± standard deviation 27.0 ± 4.6 27.0 ± 5.0 26.7 ± 3.8 0.890 

Tobacco smoking, n (%)     

    Never 614 (40.8) 225 (40.5) 27 (49.1) 0.460 

    Ever 890 (59.2) 330 (59.5) 28 (50.9)  

* From analysis of variance for body mass index and chi square tests for the other variables 

   



Supplementary Table 4. Distribution of covariates by genotype rs11031002 predicting 

luteinizing hormone levels in control participants 

Covariates  Genotype  P value* 

TT TA AA 

Recurrent reflux symptoms, n (%)  

    No 1012 (79.6) 366 (83.6) 32 (74.4) 0.115 

    Yes 260 (20.4) 72 (16.4) 11 (25.6)  

Body mass index     

    Mean ± standard deviation 27.0 ± 4.6 27.0 ± 5.0 27.0 ± 3.9 0.999 

Tobacco smoking, n (%)     

    Never 625 (40.7) 218 (41.2) 23 (48.9) 0.526 

    Ever 910 (59.3) 311 (58.8) 24 (51.1)  

* From analysis of variance for body mass index and chi square tests for the other variables 

 

  



Supplementary Table 5. Distribution of covariates by genotype rs139643250 predicting 

luteinizing hormone levels in control participants 

Covariates  Genotype  P value* 

CC TC TT 

Recurrent reflux symptoms, n (%)  

    No 1200 (80.2) 185 (81.1) 9 (100.0) 0.312 

    Yes 297 (19.8) 43 (18.9) 0 (0.0)  

Body mass index     

    Mean ± standard deviation 27.0 ± 4.6 27.0 ± 5.0 27.7 ± 5.0 0.858 

Tobacco smoking, n (%)     

    Never 737 (40.8) 117 (42.4) 7 (58.3) 0.417 

    Ever 1067 (59.2) 159 (57.6) 5 (41.7)  

* From analysis of variance for body mass index and chi square tests for the other variables 

 

  



Supplementary Table 5. Assessment of instrument strength for genetic variants predicting follicle-stimulating hormone and luteinizing 

hormone levels 

Sex Hormone SNP 
Minor allele effect 

(% standard deviation) 
R2 Number of participants F * 

Male Follicle-stimulating hormone rs11031005 -0.232 [1] 0.013 6294 86 

Female Follicle-stimulating hormone rs11031005 -0.232 [1] 0.013 1565 22 

Male Luteinizing hormone rs11031002 0.252 [1]  0.016 6285 103 

Female Luteinizing hormone rs11031002 0.252 [1] 0.016 1560 26 

Male Luteinizing hormone rs139643250 -0.893 [2] 0.166 6218 1239 

Female Luteinizing hormone rs139643250 -0.893 [2] 0.166 1548 309 

* First-stage F-statistics calculated as , where R2 is the proportion of variability in the sex hormone levels explained by the genetic 

variant, N is the sample size, and k is the number of instrument. [3] 
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