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Abstract

This paper proposes a robust fault tolerant control scheme for a class of second-order

uncertain nonlinear systems. First, a novel PI full-order sliding mode (PI-FOSM) con-

trol, which integrates a new PI-FOSM sliding surface and a continuous control law,

is developed. The crucial parameters of the controller are optimally selected by Bat

algorithm so that the nearly optimal performance of the controller can be achieved.

In addition, the unknown system dynamics is approximated by using a radial basic

function neural network (RBFNN) so that the proposed controller does not require an

exact model of the system. Compared with other existing sliding mode controllers for

fault tolerant control system, the proposed method provides very strong robustness, low

oscillation, fast convergence and high precision. The superior performance of the pro-

posed robust fault tolerant controller is proved through simulation results for attitude

control of a spacecraft.
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1. Introduction

Fast development of science and technology in recent decades helps to improve

quantity and quality of the products significantly. However, this increases the com-

plexity of the operational system. Consequently, since the number of component and

complexity are increased, faults occur more frequently within the system. The effects5

of faults not only reduce quality of products but also harm to the users and workplaces.

Therefore, it is significant to investigate fault diagnosis (FD) and fault tolerant con-

trol (FTC) to improve quality of the products and reliability and safety of the system

[1, 2, 3]. The integration of the FD into the system will help to detect, isolate and iden-

tify the magnitude of the faults, whilst FTC helps to reduce the effects of the faults,10

and thus improve performance of the system [4, 5]. In general, faults in the system can

be compensated by either active or passive way [6]. In the active fault tolerant control

(AFTC), faults are compensated by reconfiguring the nominal controller based on the

information feedback from a FD observer [7, 8, 9, 10, 11]. This approach, however,

requires an additional design of fault diagnosis/fault detection and isolation (FD/FDI)15

scheme, which increases the complexity and computational burden of the system. In

addition, since the system can compensate the fault only until it received the fault in-

formation from the FD observer, it delays the fault compensation time and therefore,

the system could become unstable during the transient period from normal operation

to fault operation. In the passive fault tolerant control (PFTC), a robust controller is20

designed to compensate the faults,which are considered as an additional disturbance

in the system,without requiring information feedback from a fault diagnosis observer

[12, 13]. Compared to the AFTC, the PFTC obviously compensates the fault much

faster, and thus provides higher capability to stabilize the system [13]. However, since

the faults effects imposed on the nominal controller of the PFTC are heavier than that25

of the AFTC, the nominal controller of the PFTC requires stronger robustness against

the effects of faults. Several robust controllers, which can be applied for the design of

FTC, have been developed in the literature; for example PID controller [14], fuzzy

logic controller [15, 16], neural network controller [17] or sliding mode controller

(SMC) [18, 19, 20]. Among them, SMC is widely applied due to its robustness against30
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the uncertainties and disturbances [21]. However, the conventional SMC has several

drawbacks that reduce its effectiveness for real applications, i.e., it provides singular-

ity and chattering and it does not provide finite time convergence. To overcome these

drawbacks, several approaches have been proposed in the literature. First, to obtain a

defined finite time convergence, terminal sliding mode control (TSMC), which uses a35

nonlinear sliding surface instead of a linear sliding surface of the conventional SMC,

has been proposed [22, 23, 24]. However, the TSMC has not considered the singular-

ity problem. In order to tackle this issue, nonsingular terminal sliding mode control

(NTSMC) has been developed [25, 26, 27]. The NTSMC has a similar property to

the TSMC, but the singularity problem is removed. However, both the TSMC and40

NTSMC have not considered the chattering problem in their designs. In the literature,

several individual approaches have been proposed to eliminate the chattering, includ-

ing boundary layer method [28], disturbance observer [29, 30], or high-order sliding

mode (HOSM) control [31, 32]. Although the drawbacks of the conventional SMC

have been solved individually by the above-mentioned approaches, no approaches in45

the literature could solve all the drawbacks simultaneously. Recently, full-order sliding

mode control(FOSMC), which employs the full order of the state variables into the de-

sign of the sliding surface, has been developed to resolve this issue [33]. The FOSMC

takes all the weaknesses of the conventional SMC into account and solves them all

simultaneously. Generally, the conventional SMC and its advanced techniques, i.e.,50

the NTSMC or FOSM, provide high robustness, but, unfortunately, they provide high

steady-state errors. In recent years, by taking the merits of the integral component as

in the design of the PI [34] or PID [35, 36] controllers, some approaches have demon-

strated that the robustness of the SMC can be improved and the steady-state errors can

be reduced by adding an integral term of the sliding surface into the design of the SMC55

[37, 38, 39]. This statement has been proved in the previous work [39]. However,

the work in [39] only considers the linear sliding surface in the design, and thus the

aforementioned drawbacks of the conventional SMC still exist. On the other hand, one

of the most challenges in the design of robust controller is to obtain an exact dynamic

model of the system, which is usually difcult to obtain in advance in real applications60

[14, 15, 16, 17, 18, 19, 20]. In an attempt to approximate the unknown system model,
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universal approximation techniques based on neural networks (NNs) or fuzzy logic

have been utilized [40, 41, 42, 43, 44]. In this paper, a PFTC based on a novel PI-

full order sliding mode (PI-FOSM) control is proposed to integrate the merits of the

full-order sliding surface and the PI sliding surface. However, similar to the properties65

of the PI controller, the performance of the PI-FOSMC depends hugely on the selec-

tion of the proportional and integral gains of the PI sliding surface. In the literature,

several approaches based on fuzzy logic [45], genetic algorithm [46], particle swarm

optimization (PSO) [47], or bee algorithm [48] have been developed to select the op-

timal parameters of the conventional PI and PID controllers. In recent few years, a70

relatively new swarm intelligent technique, called Bat algorithm (BA), has been intro-

duced [49]. The BA computing employs a frequency tuning method to increase the

searching diversity of the solutions. It has been successfully utilized as a new power-

ful heuristic optimization method to solve many optimization problems in the practical

applications [50, 51]. The superior performance of the BA compared to other heuristic75

optimization methods has been demonstrated in [52]. Therefore, the BA is employed

in this paper to effectively select the gains of the proposed sliding surface to enhance

the performance of the system. In addition, an adaptive radial basis function neural

network (RBFNN) is employed to exclude the requirement of the exact model of the

system and the prior knowledge of the fault in formation in the design of the proposed80

controller. In summary, the major contributions of this paper are as follows:

• APFTC based on a novel PI-FOSM controller, which combines a PI-FOSM slid-

ing surface and a continuous control law, is proposed. This design mechanism

provides many advantages compared to the existing approaches. For example,

compared to the conventional SMC [18, 19, 20], the proposed technique over-85

comes all the existing drawbacks of the conventional SMC. Compared to the

NFTSMC [25, 26, 27], or FOSMC [33], the proposed method provides lower

steady-state error and faster convergence. Compared to the HOSMC [31, 32],

the proposed method has the same property in terms of chattering reduction, but

provides higher robustness against the effects of the uncertainties and faults.90

• The crucial parameters of the proposed PI-FOSM controller, i.e., the proportional
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and integral gains, are optimally selected off-line using BA so that the nearly op-

timal performance of the system can be achieved. This results in higher tracking

performance of the proposed approach compared to the conventional PID-SMC

[39].95

• The unknown components in the system dynamics are approximated using an

adaptive RBFNN so that the proposed controller does not require an exact model

of the dynamic system. Since the exact dynamic model of the system is very

difficult to obtain in advance in the practical systems, the use of RBFNN in this

paper is useful because it makes the proposed approach more applicable for wide100

practical applications.

The remainder of this paper is organized as follows. Section 2 introduces some

preliminaries. Problem statement is described in section 3. Section 4 presents the

design of the finite-time integral sliding mode control. The nominal controller of the

integral sliding mode control based on a finite-time backstepping control is presented105

in section 5. The effectiveness of the proposed approach is demonstrated in section 6.

Section 7 provides conclusions and proposes future works.

2. Problem statement

Without loss of generality, the following second-order dynamical model is consid-

ered:

X1 = X2

X2 = f (X)+G(X)u+∆

(1)

where X1 = (x1, ...,xn)
T ∈ ℜn, X2 = (xn+1, ...,x2n)

T ∈ ℜn and X = (X1,X2)
T are the

state vectors, f (X) ∈ ℜn and G(X) ∈ ℜnxm are the dynamic nonlinear smooth func-110

tion with f (0) = 0. u = (u1, ...,um) ∈ ℜm with m ≥ n is the actuator inputs, ∆ =

(∆1, ...,∆n)
T ∈ ℜn represents the system uncertainties and/or disturbances, and (·)T

denotes the transpose of a vector or a matrix.

Remark 1. The dynamic model under consideration (1) introduces a general second-

order mechanical system. Therefore, the controller developed for this model can be115
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applicable for several practical systems such as surface vessels, robot manipulators,

mobile robot and aircraft, etc.

In this paper, we consider actuator faults because they are the most popular faults

and have severe effects on the system [26]. When a fault occurs, the actual control

input of the system u differs from the designed input ud . The relationship between

them can be described as

u = ud +ρ(t− t f )δu(X , t) (2)

where ρ(t − t f )δu(X , t) represents the unexpected actuator fault components, and t f

denotes the time instant that the fault occurs. The function ρ(t − t f ) characterizes

the time profile of the fault, and δu(X , t) is bounded but uncontrollable portion of the120

actuator output. Two types of faults have been widely considered in the literature:

(i) Abrupt Faults:

ρ(t− t f ) =

0, t ≤ t f

1, t > t f

(3)

(ii) Incipient Faults:

ρ(t− t f ) =

0, t ≤ t f

1− e−β (t−t f ), t > t f

(4)

where β > 0 represents the unknown fault evolution rate. A small value of β represents

the incipient fault, while a large value of β characterizes the abrupt faults.

Let ud =(ud1, ...,udm)∈ℜm be the designed actuator input, and δu =(δu1, ...,δum)∈

ℜm the actuator faults. When a fault exists in the system, (1) can be described as:

X1 = X2

X2 = f (X)+G(X)(ud +δu)+∆

(5)

The system (5) can be rewritten as [3]:

X1 = X2

X2 = f (X)+G(X)ud +M(X ,δu)+∆

(6)
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where M(X ,δu)∈ℜn is utilized to represent the effects of the faults in the system. The

aim of this paper is to design a robust FTC law u= ud such that the desired performance125

of the system can be achieved for both normal and fault operations.

3. PFTC based on PI-Full Order Sliding Mode Control

In the design of the PFTC, the effects of faults in the system are usually treated as

the effects of an additional disturbance, and a robust PI-FOSM is developed to com-

pensate all the effects of the uncertainties, disturbances and faults in the system. As130

a similar design procedure to the conventional SMC [24], the design of the PI-FOSM

controller consists of two steps. In the first step, a novel PI-FOSM sliding surface is se-

lected. Then, a continuous reaching law is reconstructed based on the selected sliding

surface to get a continuous system.

For the first step, a PI-FOSM sliding surface is selected as:

sPI−FOSM = KpsFOSM(t)+Ki

∫ t

0
sFOSM(t)dt (7)

where, the full-order sliding surface is selected as [33]:

sFOSM = Ẋ2 + c2|X2|α2sign(X2)+ c1|X1|α1sign(X1) (8)

where sPI−FOSM is the sliding variable, c1,c2,a1 and a2 are constants, which are se-135

lected as in [33]. Kp and Ki are the proportional and integral gains. The main idea of

the proposed PI-FOSM sliding surface in (7) compared to the conventional FOSMC is

to integrate an integral component to improve the robustness and transient response,

while reducing the steady-state errors of the system. The following assumptions are

made for the design of the PI-FOSM controller.140

Assumption 1. The system uncertainties and faults and their derivative are bounded

by:

|M(X ,δu)+∆| ≤ Ξ (9)

| d
dt
(M(X ,δu)+∆)| ≤Π (10)
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where Ξ and Π are constants.

The above assumption is a generic assumption and has been widely utilized in

the design of FTC system [53]. This condition states that the FTC is designed for

the situations where the system is not exploding. It means the Lipschitz condition is

practically satisfied in the considered operational region [53]. This assumption may145

not be satisfied for some conditions when the changing rates of the faults are high. In

these conditions, the system might become unstable. Fortunately, due to the benefits of

the proposed PI-FOSM sliding surface, the system responses against the effects of the

faults very quick, and thus the stability of the system can be recovered quickly. This is

one of the major contributions of the paper. This exciting feature will be verified in the150

results and discussions section.

To obtain the desired performance, the following controller is proposed for the

system (6):

uPI−FOSM =− 1
Kp

G+(X)(ueq +Kpur) (11)

where,

ueq = Kp f (X)+Kp(c2|X2|α2sign(X2)+ c1|X1|α1sign(X1))

+Ki

∫ t

0
(Ẋ2 + c2|X2|α2sign(X2)+ c1|X1|α1sign(X1))dt

(12)

and,

u̇r = (Π+ζ )sign(sPI−FOSM) (13)

where the pseudoinverse G+(X)=GT (X)[G(X)GT (X)]−1, the initial value of the reach-

ing phase ur(0) = 0. Π is defined as in (10) and ζ is a positive constant. The stability

and convergence of the system is stated in Theorem 1.

Theorem 1. Consider the nonlinear dynamic model (6). If the proposed control laws155

in (11)-(13) are employed for the system (6), then the stability of the system and the

convergence of the tracking errors are guaranteed.

Proof. Substituting the composite control law (11)-(13) into the sliding surface (7),
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one yields

sPI−FOSM = Kp(Ẋ2 + c2|X2|α2sign(X2)+ c1|X1|α1sign(X1))+Ki

∫ t

0
sFOSMdt

= Kp( f (X)+G(X)uPI−FOSM +M(X ,δu)+∆+ c2|X2|α2sign(X2)+ c1|X1|α1sign(X1))

+Ki

∫ t

0
sFOSMdt

= Kp(M(X ,δu)+∆−ur)

(14)

Differentiating (14) with respect to time and combining the result with (13), we

have

ṡPI−FOSM = Kp

(
d
dt
(M(X ,δu)+∆−ur)− (Π+ζ )sign(sPI−FOSM)

)
(15)

Consider the following Lyapunov function candidate:

V =
1

2Kp
sT

PI−FOSMsPI−FOSM (16)

Differentiating the Lyapunov function (16) with respect to time and combining the

result with (15), we have

V̇ = sT
PI−FOSM

(
d
dt
(M(X ,δu)+∆−ur)− (Π+ζ )sign(sPI−FOSM)

)
=

d
dt
(M(X ,δu)+∆−ur)sPI−FOSM− (Π+ζ )|sPI−FOSM|

=

(
d
dt
(M(X ,δu)+∆−ur)sPI−FOSM−Π|sPI−FOSM|

)
−ζ |sPI−FOSM|

<−ζ |sPI−FOSM|< 0

(17)

Therefore, based on the Lyapunov criterion, we can verify that the stability and conver-

gence of the sliding surface, i.e., sPI−FOSM , is guaranteed under the composite control

law (11-13) despite the existing of the uncertainties, disturbances and faults. This com-160

pletes the proof.

Once the ideal sliding mode sPI−FOSM = 0 is established, then based on (7), we

have sFOSM = 0. As a result, from (7), we have

Ẋ1 = X2

Ẋ2 =−c2|X2|α2sign(X2)− c1|X1|α1sign(X1)
(18)
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With suitable chosen parameters of c1,c2,α1 and α2, the tracking errors of the

system (18) can converge to its equilibrium point X = [X1,X2]
T = [0,0]T from any

initial condition X(0) 6= 0 along the terminal sliding surface sFOSM = 0 in a finite-time

[33].165

4. Adaptive Neural PI-Full Order Sliding Mode Control

4.1. Radial Basis function Neural Network

The RBFNN is a three-layer forward neural network, consisting of one input layer,

one hidden layer, and one output layer. The output of the RBFNN can be defined as:

f (τ) = θ
T

ψ(τ)+ ε(τ) (19)

where τ and f (τ) are the input and output of the RBFNN, respectively. θ T ∈ℜnxl is the

weight matrix of the hidden nodes. ψ(τ) ∈ℜl is the nonlinear function of the hidden

nodes. ε(τ) is an approximating error with bound. A Gaussian function is chosen for

the nonlinear function

ψi(τ) = exp
(
−(τ−µi)

T (τ−µi)

σ2
i

)
, i = 1,2, ..., l (20)

where µ and σ are the center and width of the Gaussian function, respectively. The

representative schematic of a RBFNN is illustrated in Fig. 1. It is noted that the approx-

imation capability of the RBFNN depends on the the selection of the number of hidden170

nodes in the hidden layer. The higher number of the nodes, the better approximation

achieves, but higher computational burden needs, and vice versa. In this paper, the

selection of nodes are based on experience to guarantee both acceptable approximation

capability and computational burden.

4.2. Design of PFTC based on Adaptive Neural PI-Full Order Sliding Mode Control175

In the control laws (11)-(13), the design is based on the assumption that the system

dynamics f (X) is known and the bounded value Π in the Assumption 1 can be obtained

in advance. However, these parameters are difficult to obtain in advance in the practical

engineering applications. In this paper, a RBFNN is employed to approximate these

parameters.180
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Figure (1) Representative schematic of radial basis function neural network
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The unknown components in the system (6) can be represented as

Ω(X) = f (X)+M(X ,δu)+∆ (21)

Denote Ω̂(X) as the estimation function of the Ω(X). According to [54], the estimation,

Ω̂(X), can be represented by an integral neural network:

Ω̂(X) =
∫ t

0
θ̂

T
ψ(X)dt (22)

where θ̂ denotes the adjustable parameter vector.

Then, the optimal parameter θ ∗ can be defined as

θ
∗
f = argmin

{
sup
x∈Ux

|Ω(X)− Ω̂(X , θ̂)|

}
(23)

Consequently, Ω(X) is approximated to arbitrary accuracy by the RBFNN (22) as

stated in Lemma 1.

Lemma 1. [43, 44] For any given real continuous function Ω(X) on a compact set

Ux ∈ ℜn and an arbitrary ε > 0, there exists a neural approximator Ω̂ in the form of

(22) such that

sup
x∈Ux

|Ω(X)− Ω̂(X , θ̂)|< ε (24)

Due to the approximation capability of the RBFNN, system (6) can be rewritten as:

Ẋ1 = X2

Ẋ2 =
∫ t

0
θ(t)∗T ψ(X)dt +G(X)ud +ω

(25)

where ω = f (X)+M(X ,δu)+∆−
∫ t

0 θ(t)∗T ψ(X)dt denotes the lumped uncertainty. It

is assumed that the lumped uncertainty and its derivative are to be bounded by unknown185

constants, i.e., ω ≤ ω̄ and d
dt (ω) ≤ Ka. Due to the approximating capability of the

neural network, this assumption is usually satisfactory in the practical systems [43, 44].

An adaptive neural PI-FOSM control law can be designed as

uaPI−FOSM =− 1
Kp

G+(X)(uaeq +Kpuar) (26)
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where,

uaeq = Kp

∫ T

0
θ̂

T (t)ψ(X)dt +Kp (c2|X2|α2sign(X2)+ c1|X1|α1sign(X1))

+Ki

∫ t

0

(
Ẋ2 + c2|X2|α2sign(X2)+ c1|X1|α1sign(X1)

)
dt

(27)

and,

u̇ar = (K̂a +ζ )sign(sPI−FOSM) (28)

where the adaptive laws are designed as

˙̂Ka =
1
λ
|sPI−FOSM| (29)

˙̂
θ =

1
α

sPI−FOSMψ(X) (30)

where λ and α are the constant adaptive rates.

Theorem 2. Consider the dynamic system (6) and the selected sliding surface (7). If

the control laws in (26-28) with the tuning laws in (29)-(30) are used to control the190

system (6), then the stability of the system and the convergence of the tracking errors

are guaranteed.

Proof.

From (7) and (26), (27), the sliding surface (7) becomes

sPI−FOSM = Kp

(∫ t

0
θ̃

T (t)ψ(X)dt +ω +uar

)
(31)

where θ̃ = θ ∗− θ̂ are the approximation errors of the NN’s weights.

Differentiating the sliding surface (31) with respect to time, we have

ṡPI−FOSM = Kp

(
θ̃

T (t)ψ(X)+
d
dt
(ω)+ u̇ar

)
(32)

Consider the following Lyapunov function candidate

V =
1

2Kp
sT

PI−FOSMsPI−FOSM +
1
2

λ K̃T
a K̃a +

1
2

αθ̃
T

θ̃ (33)

13



where K̃a = K̂a−Ka is the adaptation gain error.195

Differentiating the Lyapunov function (33) with respect to time and combining the

results with (31), we have:

V̇ =
1

Kp
sT

PI−FOSM ṡPI−FOSM +λ K̃T
a

˙̃Ka +αθ̃
T ˙̃

θ

= sT
PI−FOSM

(
θ̃

T (t)ψ(X)+
d
dt
(ω)+ u̇ar

)
+λ (K̂a−Ka)

˙̂Ka +αθ̃
T ˙̃

θ

(34)

Inserting (28)-(30) into (34), we have

V̇ =
1

Kp
sT

PI−FOSM ṡPI−FOSM +λ (K̂a−Ka)
˙̂Ka−αθ̃

T ˙̂
θ

= sPI−FOSM
d
dt
(ω)−Ka|sPI−FOSM|−ζ |sPI−FOSM|

<−ζ |sPI−FOSM|< 0

(35)

Therefore, based on the Lyapunov criterion, we can verify that the stability of the

tracking errors is guaranteed under the control law (26-28) despite the existing of the

uncertainties and faults. This completes the proof.

Remark 2. Although the proposed PI-FOSMC provides several advantages, its design

based on the Assumption 1, which is difficult to obtain in the practical applications,200

prevents its applicability for wide applications. In order to overcome this limitation, an

adaptive neural network is used in this paper. Although the use of NN is very popular

in the literature to approximate the unknown function, however, it is still important

to represent it here since it can help to facilitate the implementation of the proposed

approach. In addition, the design of the integral NN in this paper is considered as a205

novelty because, in this paper, the integral NN is used instead of the conventional NN,

as described in (27).

Remark 3. The design of the proposed PI-FOSMC requires the measurement of posi-

tion, velocity and acceleration of the state variables. In the case that the velocity and

acceleration cannot be measurable, the second-order exact differentiator method [32]210

can be applied to obtain the estimations of these parameters.

Remark 4. Some approaches in the literature used learning techniques, i.e., neural

network or fuzzy logic, to compensate for the unknown function in the system with-
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out using sliding mode control [55, 56]. These approaches might provide good per-

formance for compensating the uncertainty and disturbance, but might not provide215

good performance for tackling the effects of faults since the effects of faults are much

stronger. This paper integrates the SMC technique with the RBFNN to get the merits

of both. This is particularly important for FTC system since the SMC possesses high

robustness against the effects of faults.

5. Design of Optimal Adaptive PI-Full Order Sliding Mode Control220

Similar to the analysis of the PI controller [34], the selection of the proportional

and integral gains, i.e., KP and KI , of the PI sliding surface affects on the performance

of the whole system significantly. Therefore, in order to get the best performance, these

parameters need to be optimally selected. In this paper, we employ Bat algorithm (BA)

to select these parameters automatically.225

BA [49] is a heuristic method based on the echolocation behavior of bats. In BA,

the initial position χi , velocity vi and frequency fi are initialized for each bat bi. For

each time step t, the movement of the virtual bats is given by updating their velocity

and position using the following equations:

fi = fmin +( fmin− fmax)φ (36)

v j
i (t) = v j

i (t−1)+ [χ j
i (t−1)−best] fi (37)

χ
j

i (t) = χ
j

i (t−1)+ v j
i (t) (38)

where fi and v j
i (t) are the frequency and velocity of variable j for bat i at time step

t. The result of fi is used to control the pace and range of the movement of the bats.

χ i
j(t− 1) is the position vector of variable j for bat i at time step t− 1, and j denotes

a randomly generated number within the interval [0;1]. The variable best represents

the current global best location (solution) for decision variable j, which is achieved by230

comparing all the solutions provided by the M bats.
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Figure (2) Structure of the proposed optimal adaptive neural PI-full order sliding mode controller

In order to improve local search capability of the algorithm, once a solution is

selected among the current best solutions, a new solution for each bat is generated

locally using a random walk

χnew = χold +ρAt (39)

where ρ ∈ [−1,1] is a random number, while At is the average loudness of all bats at

this time step. The loudness A and pulse emission rate r are updated as a bat gets closer

to its target. Loudness A is decreased while pulse emission rate r is increased as the

following two equations:

At+1 = ϑAt (40)

rt+1 = r0
i (1− eχt) (41)

where χ and ϑ are constants, r0
i is the initial pulse emission rate value of the ith bat.

The basic steps of the selection of the parameters Kp and Ki are described as in Ap-

pendix A. The structure of the proposed optimal adaptive neural PI-FOSM control is

depicted in Fig.2.235

Remark 5. Other heuristic optimization methods such as genetic algorithm (GA), par-

ticle swarm optimization (PSO), etc., can be used to get optimal parameters as a similar

way as BA. However, this paper employs BA because it provides faster convergence and
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closely optimal value. Due to the inherent property of a heuristic optimization method,

the use of BA to optimize parameters may not give a global optimal performance for240

the system. However, this approach at least provides a local optimal value so that the

performance of the system is usually better than the system with the parameters cho-

sen randomly or chosen based on experiences. Since the optimization process is the

time consuming process, it is done offline to get the nearly optimal parameters. The

obtained parameters are then used for online process.245

6. Results and Discussions

While the proposed method can be applied for a class of second-order nonlinear

system such as spacecraft, robot manipulator, its performance is tested for a spacecraft

as a case study. The considered nonlinear dynamic model of a spacecraft used in this

paper is taken as the same model as in Liang Y et al [57]. The dynamic model of250

a spacecraft can be described as the same form as the system (1)-(2) with n = 3 and

the system dynamic functions are [57]: f (X) = [ f1(X), f2(X), f3(X)]T , where X1 =

(x1,x2,x3)
T = (φa,θa,ψa)

T , X2 = (x4,x5,x6)
T = φ̇a, θ̇a, ψ̇a , and X = (X1,X2)

T , =

(u1,u2,u3,u4)
T , and ∆ = [∆1,∆2,∆3]

T . The three parameters φa,θa, and ψa indicate

the three Eulers angles with respect to x,y,z axes of the spacecraft, respectively. u255

denotes actuators, and the components f (X) and G(X) are defined as in Appendix

B. The initial condition is given as X(0) = [−0.7,−0.07,1.5,0.3,1.3,−0.2]T and the

disturbance is generated as ∆ = 0.5[sin(t),cos(2t),sin(3t)]T .

In this paper, the performance of the system is simulated in three different work-

ing scenarios. First, from the starting time (0s) to 10s, we assume that the system260

works in normal condition. Second, from the time 10s to 30s, we assume that a

bias fault ∆u1 = 5+ 15cos(t) occurs in the first actuator. Third, from the time 20s

to 30s, the partial lost ∆u2 = −0.8u2 is assumed in the second actuator (the second

actuator lost 80% of its effectiveness). It means that we assumed an actuator fault

∆u = [5+ 15cos(t)(10s),−0 : 8u2(20s),0,0]T occurs in the system. In this simula-265

tion, only abrupt faults are simulated since the effects of the abrupt faults are much

heavier than that of the incipient faults. In addition, in order to verify the superior
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performances of the proposed PI-FOSM controller and optimal PI-FOSM controller,

we compare these methods with the recent advanced sliding mode control techniques

such as the nonsingular fast terminal sliding mode control (NFTSMC) [25, 26] and the270

FOSMC [33]. The design of the NFTSMC and FOSMC are represented in Appendix

C and Appendix D, respectively. The selected parameters of the NFTSMC and the

FOSMC are shown in Table 1. The parameters of the NFTSMC were chosen as the

same values as the ones used in [25, 26], while the parameters of the FOSMC were

chosen as the same values as the ones used in [33]. For fairer in comparison, the pa-275

rameters of the PI-FOSMC are selected as the same as the parameters of the FOSMC

with Kp = 20 and Ki = 5, as shown in Table 1. The values of the Kp and Ki are selected

based on trial and error experiments. The parameters of the Optimal PI-FOSMC are

selected as the same as the PI-FOSMC, but the parameters of Kp and Ki are automat-

ically selected based on the BA. The parameters of the BA are selected as in Table 1.280

Under the effects of the assumed faults, the system performance under the inputs of the

four controllers, i.e., the NFTSMC, FOSMC, PI- FOSM and the optimal PI-FOSM,

are shown in Figs. 3, 4, 5 and 6. Particularly, the position tracking performances of

the four controllers are shown in Fig. 3, whilst Fig. 4 shows the velocity tracking

performance. From Figs. 3 and 4, some important results are discussed as follows.285

First, the conventional NFTSMC provides good performance when the system works

in normal operation. However, when a fault occurs, the system tends to be out of con-

trol; the tracking errors are very big. It means that the NFTSMC has weak robustness

against the effects of faults. Second, the FOSMC provides better performance than the

NFTSMC in terms of tackelling the effects of the faults. Third, the PI-FOSMC and the290

Optimal PI-FOSMC provide much better performance compared to the NFTSMC and

the FOSMC. This results proved that the integration of the PI sliding surface into the

FOSMC provides higher robustness and faster transient response against the effects of

faults. This feature is very important in the design of FTC system because it helps sta-

bilize the system quicker. Fourth, the comparison results between the PI-FOSMC and295

the Optimal PI-FOSMC show that the selection of the proportional and integral gains

affects on the performance of the system significantly. Since the Optimal PI-FOSMC

selects the proportional and derivative gains optimally, its performance is always better
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than the PI-FOSMC, where the gains are selected randomly or based on experiences.

The convergence of the fitness function of the BA of the Optimal PI-FOSMC is shown300

in Fig. 5. Figure 6 shows the control inputs of the four controllers. It can be seen from

Fig. 6 that the Optimal PI-FOSMC provides continuous control input. In summary,

from the results discussed above, two important conclusions can be made. First, the

integration of the PI and the FOSM sliding surfaces increases robustness and transient

response against the faults effects in the system. Second, the employment of the BA to305

automatically select the parameters help to improve the performance of the system.

Remark 6. There is no particular reason to assume the values of disturbance and

fault components, i.e., ∆ and δu, used in this paper. However, these parameters are

selected to model a scenario of uncertainty and fault effects, which can be occurred in

the practical applications.310

Remark 7. In this paper, a robust FTC is designed to compensate for the effects of

actuator or component faults only, in which the actuator faults are particularly con-

cerned. The proposed method might not be able to compensate for the effects of sensor

faults. Solving the effects of sensor faults will be investigated in our future work. In the

literature, fault diagnosis for sensor faults has been investigated, for example in [58].315

Remark 8. From the design structure of the NFTSMC, FOSMC and the proposed PI-

FOSMC, it is obvious to see that the computational burden of the proposed PI-FOSMC

is higher than that of the NFTSMC and the FOSMC (the FOSMC is higher than the

NFTSMC). However, with the recent advance on hardware development for computing,

it is believed that all three controllers, i.e., NFTSMC, FOSMC and PI-FOSMC, are320

implementable real time in the practical applications.

7. Conclusions

This paper presented a robust fault tolerant control based on the passive approach

for a class of second-order nonlinear system using an optimal adaptive neural PI-

FOSMC. The PI-FOSMC was designed to integrate the benefits of the FOSM and PI325
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Table (1) Selected parameters of the controllers

Controller Parameters Value

NFTSNC σ1 diag{10,10,10}

σ1 diag{5,5,5}

α, p,q,Π+ζ ,Θ 1.4,9,7,20,1000

FOSMC c1,c2,α1,α2 10,9,9/23,9/16

Π+ζ ,Θ 20,1000

PI-FOSMC Kp,Ki 20,5

c1,c2,α1,α2 10,9,9/23,9/16

Optimal PI-FOSMC c1,c2,α1,α2 10,9,9/23,9/16

Number of particle of BA 10

Number of iteration of BA 10

fmin, fmax,c1,c2 0,2,2,2

Emission rate r(0), loudness A(0) 0.9,0.95
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(a)

(b)

(c)

Figure (3) Time history of system states x1, x2, x3 under the effect of fault δu

21



(a)

(b)

(c)

Figure (4) Time history of system states x4, x5, x6 under the effect of fault δu
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Figure (5) Time history of the BAs fitness function

sliding surfaces. The unknown components in the system dynamics were approximated

using an adaptive RBFNN so that the proposed controller can be implementable with-

out the prior knowledge of the exact dynamic model and fault information. In addition,

the crucial parameters such as the proportional and integral gains of the proposed con-

troller were optimized using Bat algorithm so that the nearly optimal performance of330

the system can be achieved. While the proposed method can be utilized for a class

of second-order nonlinear system, a computer simulation was performed for attitude

control of a spacecraft as an example. The simulation results verified that the proposed

approach, i.e., adaptive neural PI-FOSMC, provided superior fault tolerant capability

compared to other advanced robust fault tolerant controllers.335

Appendix A.

The selection of Kp and Ki based on BA are as follows:

Step 1: Sets an initial bat population P, by randomly generating a certain number

of position vectors. Initializes the two dimensions of the position for the ith bat, as

xi(t) = (xi
1,x

i
2) (xi

1 represents for Kp and xi
2 represents for Ki) and the two dimensions340

of velocity, vi(t) = (vi
1,v

i
2), is initialized in [0,1]. Defines frequency fi and initializes

pulse emission rate r and loudness A.

Step 2: Evaluates the fitness value of each initialized bat. In this paper, the fitness
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(a)

(b)

(c)

(d)

Figure (6) Time histories of four control inputs
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function is calculated as

J(x) =
1∫

∞

0 X2
1 (x, t)dt

(A.1)

Since the objective is to minimize the error X1, the higher the value J the better fitness

will receive. After this step is finished, the best solution is stored.

Step 3: For each bat, updates bat velocity with (37) and bat position with (38) to345

generate a new population.

Step 4: If rand > ri, then: selects a solution among best solutions and generates

new local solution around the selected best solution.

Step 5: Generates new solution by flying randomly.

Step 6: If rand < Ai and J(xi) > J(best), then: accepts the new solution, and350

decreases Ai, increases ri according to (40) and (41).

Step 7: Evaluates the fitness value of each initialized bat as a similar procedure to

Step 2 and finds the best solution best.

Step 8: If the maximum number of iterations is not yet reached, increases the

number of iteration and returns to Step 3. Otherwise, proceeds to Step 9.355

Step 9: Selects the global best position, best, in the population as the ultimate

solution. The values encoded from the global best position, best, are assigned as the

optimal values for Kp and Ki.

Appendix B.

The components f (X) and G(X) are computed as follows [57]:

f1(X) = ω0x6cx3cx2−ω0x5sx3sx2 +
Iy− Iz

Ix
[x5x6

+ω0x5cx1sx3sx2 +ω0x5cx3sx1 +ω0x6cx3cx1

+
1
2

ω
2
0 s(2x3)c2x1sx2 +

1
2

ω
2
0 c2x3s(2x1)

−ω0x6sx3sx2sx1−
1
2

ω
2
0 s2x2s2x3s(2x1)

−ω0s(2x2)sx2s2(x1)−
3
2

ω
2
0 c2(x2)s(2x1)]

(B.1)
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f2(X) = ω0x6sx3cx1 +ω0x4cx3sx1 +ω0x6cx3sx2sx1

+ω0x5sx3cx2sx1 +ω0x4sx3sx2cx1

+
Iz− Ix

Iy
[x4x6 +ω0x4cx1sx3sx2 +ω0x4cx3sx2sx1

−ω0x6sx3cx2−
1
2

ω
2
0 s(2x2)s2(x3)cx1

− 1
2

ω
2
0 cx2sx1s(2x3)+

3
2

ω
2
0 s(2x2)cx1]

(B.2)

f3(X) = ω0x4sx1sx3sx2−ω0x6cx1cx3sx2

−ω0x5cx1sx3cx2 +ω0x6sx3sx1−ω0x4cx3cx1

+
Ix− Iy

Iz
[x4x5 +ω0x4cx3cx1−ω0x4sx3sx2sx1

−ω0x5sx3cx2−
1
2

ω
2
0 s(2x3)cx2cx1

− 1
2

ω
2
0 s2x3sx1s(2x2)−

3
2

ω
2
0 s(2x2)sx1]

(B.3)

G(X) =


0.67 0.67 0.67 0.67

0.69 −0.69 −0.69 0.69

0.28 0.28 −0.28 −0.28

 (B.4)

In the above equations, c and s denote the cos and sin functions, respectively. Ix, Iy and360

Iz are the moment of inertia with respect to the three body coordinate axes, ω0 denotes

the constant orbital rate.

Appendix C.

The PFTC based on NFTSMC for system (3) can be designed as follows [25, 26]:

First, the nonsingular fast terminal sliding mode surface is selected as:

sNFT SM = X1 +σ1X [α]
1 +σ2X [p/q]

2 (C.1)

where sNFT SM is the sliding variable, σ1 = diag(σ11,σ12, ...,σ1n) ∈ ℜnxn and σ2 =365

diag(σ21,σ22, ...,σ2n) ∈ ℜnxn are positive definite matrices, p and q are positive odd
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numbers and satisfying the relation 1< p/q< 2 and α > p/q, X [α]
1 :=(|X1|α sign(X1), ..., |Xn|α sign(Xn)∈

ℜn, and X [p/q]
2 := (|Ẋ1|p/qsign(Ẋ1), ..., |Ẋn|p/qsign(Ẋn) ∈ℜn.

Under assumption 1, a PFTC based on NFTSMC can be designed as

u =−G+(X)(ueq−NFT SM +ure−NFT SM) (C.2)

where,

ueq−NFT SM =
1

σ2

q
p
|X2|2−(p/q)+σ1γ|X1|α−1 1

σ2

q
p
|X2|2−(p/q)+ f (X) (C.3)

and,

ure−NFT SM = (Ξ+ζ )sign(sNFT SM) (C.4)

where Ξ is a constant defined in the Assumption 1. In order to alleviate the chatter-

ing phenomenon, a sigmoid function eΘsNFT SM−1
eΘsNFT SM+1

is used to replace the sign(sNFT SM)370

function, where Θ is a constant.

Appendix D.

The PFTC based on FOSMC for system (5) can be designed as follows [33]:

First, the sliding surface is designed as:

sFOSM = Ẋ2 + c2|X2|α2sign(X2)+ c1|X1|α1sign(X1) (D.1)

where sFOSM ∈ ℜn is the sliding variable, c1, c2, α1 and α2 are constants. Based on

[33], the PFTC control law can be designed as follows:

uFOSM =−G+(X)(ueq−FOSM +ure−FOSM) (D.2)

where,

ueq−FOSM− f (X)+ c2|X2|α2sign(X2)+ c1|X1|α1sign(X1) (D.3)

and,

u̇re−FOSM =−(Π+ζ )sign(sFOSM) (D.4)

For the stability and convergence, the interested readers can refer to [33] for more

detail.375
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