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ABSTRACT 26	

The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer 27	

membrane that plays a key role in host-pathogen interactions with the innate immune system. 28	

During infection, bacteria are exposed to a host environment that is typically dominated by 29	

inflammatory cells and soluble factors, including antibiotics, which provide cues about 30	

regulation of gene expression. Bacterial adaptive changes including modulation of LPS 31	

synthesis and structure are a conserved theme in infections, irrespective of the type or 32	

bacteria or the site of infection. In general, these changes result in immune system evasion, 33	

persisting inflammation, and increased antimicrobial resistance. Here, we review the 34	

modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model 35	

opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, 36	

Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and 37	

gastrointestinal sites. We also discuss the molecular mechanisms of these variations and 38	

their role in the host-pathogen interaction.  39	

 40	

INTRODUCTION 41	

The lipopolysaccharide (LPS) is a central component of the outer membrane in Gram-42	

negative bacteria and frequently plays a key role in pathogenesis (Figure 1) (Whitfield & 43	

Trent, 2014). LPS is the dominant glycolipid in the outer leaflet of the outer membrane, 44	

forming a layer that is stabilized by divalent cations and provides an effective permeability 45	

barrier against deleterious molecules such as antibiotics and cationic antimicrobial peptides 46	

(Nikaido, 2003). The classical LPS molecule has a tripartite structure comprising (i) lipid A, 47	

the hydrophobic moiety that anchors LPS to the outer leaflet of the outer membrane, (ii) core 48	

oligosaccharide (herein core), which together with lipid A, contributes to maintain the integrity 49	

of the outer membrane, and (iii) O antigen polysaccharide or O antigen, which is connected to 50	

the core and consists of a polymer made of repeating oligosaccharide units in direct contact 51	

with the external milieu (Figure 1) (Whitfield & Trent, 2014). LPS molecules only including lipid 52	

A and core are generally referred to as "rough" and often called lipooligosaccharides, while 53	

the complete LPS capped with O antigen is called "smooth".  54	

 The lipid A is embedded in the outer membrane and composed of acyl chains linked to 55	
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a backbone dimer of glucosamine by ester and/or amide linkages. The typically hexa-acylated 56	

lipid A elicits robust inflammatory responses upon recognition by the complex Toll-like 57	

receptor 4 and myeloid differentiation factor 2 (TLR4-MD2), which is predominantly found on 58	

macrophages, monocytes and dendritic cells (Park et al., 2009, Park & Lee, 2013). 59	

Modification of the lipid A acylation patterns, or addition of positively-charged substituents to 60	

the lipid A phosphate groups (Raetz et al., 2007), confer protection against host innate 61	

defenses by reducing even further the permeability of the outer membrane to antimicrobial 62	

peptides and dampening inflammatory responses by the host (Raetz et al., 2007, Needham & 63	

Trent, 2013, Di Lorenzo et al., 2015). 64	

Lipid A is glycosylated at the 6′-position with two residues of 3-deoxy-D-manno-oct-2-65	

ulosonic acid (Kdo); the inner Kdo serves as the point of attachment for the remaining core. 66	

Some bacterial species such as Burkholderia (Silipo et al., 2005, Silipo et al., 2007) produce a 67	

modified Kdo, which is converted into D-glycero-D-talo-oct-2-ulosonic acid (Ko) by a unique 68	

Kdo-3 hydroxylase (Chung & Raetz, 2011). The next sugars added to the Lipid A-Kdo2 are 69	

typically two or more residues of L-glycero-D-manno-heptose, although in some species LPS 70	

molecules are devoid of heptose (Valvano et al., 2002). The rest of the core consists of a set 71	

of sugars that differs among species and even among strains of the same species (Mamat et 72	

al., 2011). Phosphorylation of the core sugars in P. aeruginosa has been associated with 73	

increased membrane impermeability and resistance to antibiotics (Walsh et al., 2000), and is 74	

also required for the transport of LPS to the outer membrane (Delucia et al., 2011). The P. 75	

aeruginosa core may also be a ligand for the cystic fibrosis (CF) transmembrane conductance 76	

regulator protein displayed on the apical surface of epithelial cells (Schroeder et al., 2002). 77	

O antigens comprise repeating oligosaccharide units that may be linear or branched 78	

(Whitfield & Trent, 2014). The O-repeating unit is highly variable immunochemically giving rise 79	

to a vast number of different O-specific serotypes (Valvano et al., 2011, Whitfield & Trent, 80	

2014). The O antigen contributes to evasion of host immune defenses, particularly evasion of 81	

the complement cascade in Salmonella enterica serovar Typhimurium (Murray et al., 2006), 82	

delay of recognition and internalization in epithelial cells in Salmonella Typhimurium and 83	

Burkholderia cenocepacia (Duerr et al., 2009, Saldías et al., 2009), enhanced intracellular 84	

survival in Shigella flexneri (West et al., 2005) and Brucella melitensis (Paixão et al., 2009), 85	
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and protection against oxidative stress in Erwinia amylovora (Berry et al., 2009). O antigen 86	

also contributes to swimming and swarming motility in E. amylovora (Berry et al., 2009), B. 87	

cenocepacia (Coutinho et al., 2011), and	Pectobacterium atrosepticum (Bowden et al., 2013). 88	

The immunogenicity of the O antigen polysaccharide elicits a robust antibody response, which 89	

may cause selective pressure on bacteria to lose the ability to produce O antigen (King et al., 90	

2009); this is particularly common for chronic P. aeruginosa strains infecting the lungs of CF 91	

patients (Hancock et al., 1983). Conceivably, once the bacteria become mucoid (Govan & 92	

Deretic, 1996), the nutrient burden is so high producing alginate and that the bacteria are 93	

replicating in a “protected” niche in which O antigen becomes dispensable. However, this may 94	

not be a universal notion since other bacteria chronically infecting the CF lung, such as 95	

members of the B. cepacia complex, undergo different adaptive changes than those reported 96	

for P. aeruginosa (Zlosnik et al., 2014), including the observation of an inverse correlation 97	

between the quantity of mucoid exopolysaccharide production and the rate of decline in CF 98	

lung function (Zlosnik et al., 2011). 99	

Most P. aeruginosa strains produce two types of O antigen molecules ("A-band" and 100	

"B-band"), which are structurally and serologically distinct and have different mechanisms of 101	

biosynthesis (King et al., 2009, Lam et al., 2011). The "A-band" or "common polysaccharide 102	

antigen" is a homopolymer of D-rhamnose that elicits a relatively weak antibody response 103	

(King et al., 2009). "B-band" or "O-specific antigens" are highly immunogenic heteropolymers 104	

composed repetitive units of different sugars and form the basis for the AITS P. aeruginosa-105	

serotyping scheme that includes 20 serotypes (Knirel et al., 2006). Structural data in several 106	

Pseudomonas serotype strains (Sadovskaya et al., 2000, Bystrova et al., 2006) and genetic 107	

experiments (Abeyrathne et al., 2005) demonstrate that both common and O-specific 108	

antigens are linked to the lipid A-core.  109	

In this article, we review the literature on LPS variations occurring upon bacterial 110	

adaptation to chronic infection, with special emphasis on chronic respiratory infections in 111	

patients with CF and gastric infections. CF is a genetic disease that leads to ineffective 112	

mucociliary clearance of the airways, resulting in chronic airways infection by several Gram-113	

negative bacterial opportunistic pathogens, such as P. aeruginosa, the Burkholderia cepacia 114	

complex (Bcc), and Achromobacter xylosoxidans (Ciofu et al., 2015, Cullen & McClean, 2015, 115	
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Parkins & Floto, 2015). Chronic gastric infection by H. pylori leads to a pre-cancerous state 116	

associated with loss of acid-producing parietal cells, which results in increased gastric pH, 117	

and pepsinogen-producing zymogenic cells. The gastric environment changes during disease 118	

progression and as a result, infecting H. pylori strains must adapt to persist in a gastric habitat 119	

with increased pH and different cell composition (Skoglund et al., 2009, Rubin & Trent, 2013, 120	

Malnick et al., 2014). Because both respiratory infections in CF patients and gastric infections 121	

by H. pylori remain during the lifetime of the patient, they provide natural human models of 122	

disease progression and microbial adaptation to the host environment.  123	

 124	

LPS BIOSYNTHESIS 125	

  126	

Lipid A-core biosynthesis 127	

The biosynthesis of LPS has been reviewed in detail elsewhere (Raetz et al., 2007) (King et 128	

al., 2009, Lam et al., 2011, Greenfield & Whitfield, 2012, Whitfield & Trent, 2014, Valvano, 129	

2015). Briefly, the lipid A is synthesized on the cytoplasmic side of the inner membrane by a 130	

conserved pathway of nine enzymes catalyzing the sequential conversion of the precursor 131	

UDP-N-acetyl-glucosamine into lipid A-Kdo2, which is the acceptor for the rest of the core 132	

sugars that are added from nucleotide sugar precursors via sequential glycosyl transfer 133	

reactions (Figure 2) (Mamat et al., 2011, Whitfield & Trent, 2014). The complete lipid A-core is 134	

transported to the periplasmic face of the inner membrane by the ABC transporter MsbA 135	

(Whitfield & Trent, 2014). Diverse covalent modifications of lipid A may occur during its transit 136	

from the periplasmic side of the inner membrane to the outer leaflet of the outer membrane 137	

(Raetz et al., 2007), which are important for niche adaptation and can influence the virulence 138	

of the pathogen (Needham & Trent, 2013). In bacteria that produce O antigen, the O 139	

polysaccharide is assembled by a separate biosynthesis pathway (see next section) and 140	

attached to the core at the periplasmic side of the inner membrane (Figure 2). 141	

 142	

O antigen biosynthesis 143	

The O antigen is synthesized by cytoplasmic membrane-associated enzyme complexes and 144	

requires C55-undecaprenyl phosphate (Und-P), which serves as an acceptor for O antigen 145	
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chain assembly (Valvano, 2011). Chain assembly occurs by the action of diverse 146	

glycosyltransferases that synthesize the specific O antigen of each strain. Genes at the wb* 147	

(formerly rfb) locus encode most of the enzymes involved in O antigen assembly (Reeves et 148	

al., 1996). Because of the great diversity of O antigen structures, the wb* loci are highly 149	

polymorphic (Raetz & Whitfield, 2002, Lam et al., 2011). The O antigen is initially assembled 150	

on the cytoplasmic side of the membrane and then translocated to the periplasmic side and 151	

ligated to lipid A-core (Valvano, 2015) (Figure 2). There are three pathways for O antigen 152	

biosynthesis and export: (1) Wzy-dependent, (2) ABC-transporter-dependent, and (3) 153	

synthase-dependent (Keenleyside & Whitfield, 1996, Lam et al., 2011, Greenfield & Whitfield, 154	

2012, Valvano, 2015). The mature LPS molecule is then transported across the periplasm 155	

and inserted into the outer leaflet of the outer membrane by the conserved Lpt (LPS 156	

transport) pathway (May et al., 2015, Simpson et al., 2015). Lpt proteins form a complex that 157	

traverses the Gram-negative cell envelope to deliver LPS to the outer membrane and include 158	

an ABC protein complex (LptBFG) that uses energy from ATP hydrolysis to extract LPS from 159	

the periplasmic face of the inner membrane, several proteins that dock and promote the 160	

transfer of LPS across the periplasm (LptCA and YhjD) and a complex of proteins on the 161	

outer membrane (LptDE, YtfN, YfgH and YceK), responsible for the correct insertion of LPS in 162	

the outer leaflet (Babu et al., 2011, Sperandeo et al., 2011, Sperandeo et al., 2011, May et 163	

al., 2015, Simpson et al., 2015). The Lpt system has not been investigated in Gram-negative 164	

pathogens other than E. coli and sequence homology between E. coli and P. aeruginosa 165	

genes is low, with the exception of LptB (66% sequence identity). Recently, it was shown that 166	

P. aeruginosa LptA has a dimeric structure, unlike the oligomeric structure of E. coli LptA 167	

(Shapiro et al., 2014). 168	

 In P. aeruginosa, the common polysaccharide and the O-specific antigens are 169	

synthesized via the ABC-transporter-dependent pathway and the Wzy-dependent pathway, 170	

respectively (King et al., 2009, Lam et al., 2011). In both the synthesis is initiated by the same 171	

glycosyltransferase, WbpL (homologous to the E. coli WecA), resulting the formation of an 172	

Und-P-P-sugar intermediate (King et al., 2009, Lam et al., 2011). Four enzymes are required 173	

for the biosynthesis of GDP-D-rhamnose, the nucleotide sugar precursor for the common 174	

polysaccharide antigen: WbpW, AlgC, Gmd and Rmd (King et al., 2009, Lam et al., 2011). 175	



	 7	

The glycosyltransferases WbpX, WbpY and WbpZ are involved in the synthesis of the 176	

common polysaccharide antigen (King et al., 2009, Lam et al., 2011), while genes pa54-177	

55pa5459 have been suggested to encode proteins that play a role in controlling chain length 178	

(Hao et al., 2013). Once the common polysaccharide antigen is linked to the Und-P carrier, 179	

the complex is exported across the membrane by the ABC-transport system Wzm-Wzt (King 180	

et al., 2009, Lam et al., 2011). While the genes for the synthesis and assembly of the 181	

common polysaccharide are conserved, different set of genes are responsible for the 182	

biosynthesis of the O-specific antigen in each serotype strain. These genes are in a cluster 183	

flanked by the highly conserved genes himD/ihfB and wbpM (King et al., 2009, Lam et al., 184	

2011). While the P. aeruginosa O5, O6 and O11 O antigen clusters were studied to some 185	

extent very little experimental work was conducted into the functions of genes in the 186	

remaining O antigen loci (Lam et al., 2011). The synthesized the Und-PP-linked O-repeat 187	

units are translocated to the periplasmic side of the membrane and polymerized. The proteins 188	

Wzy, Wzz and Wzx are required for this process, acting as polymerase, chain-length 189	

regulator, and flippase, respectively (Lam et al., 2011). Once on the periplasmic side, both the 190	

common polysaccharide antigen and the O-specific antigen are independently linked to the 191	

lipid A-core complex by the WaaL ligase (Figure 2) (Abeyrathne et al., 2005, Valvano, 2011, 192	

Ruan et al., 2012). 193	

 194	

LPS VARIATION DURING CHRONIC RESPIRATORY INFECTIONS IN CF PATIENTS 195	

 196	

Pseudomonas aeruginosa infection 197	

P. aeruginosa is the most common pathogen isolated from the respiratory tract of adult 198	

patients with CF (Lipuma, 2010, Hauser et al., 2011). Chronic airway infections caused by P. 199	

aeruginosa are found in up to 80% of adult patients with CF (Aaron et al., 2010, Lipuma, 200	

2010) and are associated with increased morbidity and mortality (Hauser et al., 2011). 201	

Phenotypic changes suggesting P. aeruginosa adaptation to the CF lung have been reported 202	

in several studies (Hogardt & Heesemann, 2010). They include loss of motility associated with 203	

growth in microcolony (Sriramulu et al., 2005), reduced expression of virulence factors, which 204	

is presumably an adaptive strategy to escape detection by the host immune system (Smith et 205	
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al., 2006), increased activity of efflux pumps associated with antibiotic resistance, especially 206	

against those antibiotics used clinically (Poole, 2005), and a switch from non mucoid to 207	

mucoid phenotypes (Ciofu et al., 2010, Hogardt & Heesemann, 2010). The phenotypic 208	

changes reflect point mutations accumulating in P. aeruginosa lineages that persist in CF 209	

airways (Lorè et al., 2012), and include mutations in alginate biosynthesis regulator genes 210	

(Bragonzi et al., 2006) and genes involved in the LPS modification (Cigana et al., 2009), 211	

motility (Mahenthiralingam et al., 1994), quorum-sensing regulation (D'Argenio et al., 2007, 212	

Hoffman et al., 2009), type 3 secretion system biosynthesis (Jain et al., 2004), multidrug-213	

efflux pumps, and mutator genes (Oliver et al., 2000).  214	

 The longitudinal course of chronic airway infection with P. aeruginosa in CF has been 215	

followed in various studies (Smith et al., 2006, Cigana et al., 2009, Cramer et al., 2011, 216	

Mowat et al., 2011, Warren et al., 2011, Yang et al., 2011, Lorè et al., 2012, Dettman et al., 217	

2013). A study investigating over 1700 serial isolates obtained from 10 patients infected with 218	

the same strain showed that within-patient diversity made the largest contribution to the 219	

overall variation in the population and also that population compositions fluctuated over time 220	

(Mowat et al., 2011). The authors suggested that extensive diversity within the P. aeruginosa 221	

population during chronic infection has the potential to provide a reservoir for antibiotic 222	

resistant mutations and mutations in other virulence traits (Mowat et al., 2011). Despite these 223	

differences, certain traits were overrepresented in all isolates, most of which include 224	

properties regulated by quorum sensing (Mowat et al., 2011). In silico simulations reveal 225	

virulence factor expression decline towards the end of chronic infections and adaptive 226	

mutations that tend to improve metabolic fitness, which would optimize growth over the more 227	

energetically expensive virulence factor production (Oberhardt et al., 2010). P. aeruginosa 228	

LPS modifications appear to be an important factor in the adaptation of this pathogen to 229	

chronic infection (Cigana et al., 2009). Indeed, chronic P. aeruginosa CF isolates have rough 230	

colony phenotypes and contain few, short, or no O side chains, becoming non-typeable 231	

(Hancock et al., 1983). O antigen deficient isolates are sensitive to in vitro killing by serum 232	

complement and become more tolerant to the antibiotic gentamicin (Kadurugamuwa et al., 233	

1993). Analysis of sequential variants of P. aeruginosa show O antigen loss (Lee et al., 2005) 234	

and lipid A modifications (Cigana et al., 2009). Whole-genome analysis of two clinical P. 235	
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aeruginosa variants recovered from a chronic CF patient after 6 and 96 months of infection 236	

also revealed non-synonymous mutations in the O antigen biosynthetic genes wbpA and 237	

pa5238 in the latter variant (Smith et al., 2006). Another study of genes responsible for 238	

modifying lipid A revealed one mutation in pagL in late variants, which abolish PagL 239	

expression and leads to reduced TLR4-MD2-signalling (Cigana et al., 2009). Thus, initial lipid 240	

A modifications by addition of palmitate to the lipid A of P. aeruginosa make the LPS more 241	

proinflammatory, but the subsequent modification through the loss of PagL activity decreases 242	

its proinflammatory activity. Together, the results of these studies suggest that reduced LPS 243	

immunostimulatory potential contributes to immune system evasion and survival over the 244	

course of the chronic P. aeruginosa infection. Experimental data support this hypothesis since 245	

a comparison of the pathogenicity of nine P. aeruginosa sequential clonal variants in the 246	

infection models Caenorhabditis elegans, Galleria mellonella, Drosophila melanogaster and 247	

two different mice backgrounds (C57Bl/6NCrl and BALB/cAnNCrl), show that early P. 248	

aeruginosa variants were lethal in all infection models tested, while late strains exhibited 249	

reduced or no virulence (Lorè et al., 2012). 250	

 A microevolution analysis based on whole-genome sequencing of sequential P. 251	

aeruginosa variants recovered from CF patients for more than 20 years (Cramer et al., 2011) 252	

identified codon changes in genes for lipid A biosynthesis (lpxC, lpxO2 and yciK), core 253	

biosynthesis (rfaD and wapP), and common polysaccharide antigen biosynthesis (wbpZ) 254	

(Cramer et al., 2011). Another genomic analysis taken over 200,000 bacterial generations of 255	

12 selected P. aeruginosa DK2 variants recovered from six CF patients identified a total of 256	

234 non-synonymous single nucleotide polymorphisms among the genomes in relation to 257	

their common ancestor strain, suggesting that an initial period of rapid adaptation is followed 258	

by a period of genetic drift in this lineage (Yang et al., 2011). Three of the non-synonymous 259	

single nucleotide polymorphisms occurred in genes needed for lipid A biosynthesis and 260	

modification (pagL and lpxO2) and O-specific antigen synthesis (wzz) (Yang et al., 2011). A 261	

recent study analyzing whole-genome sequence data from P. aeruginosa clinical isolates 262	

sampled from the sputum of 32 different patients reported that the O antigen ligase waaL is 263	

one of the few hotspots of gene polymorphisms (Dettman et al., 2013). To gain insight into the 264	

role of mutator genes for generating adaptive variation, Warren et al. (2011) analysed the 265	
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genomes of two series of isolates recovered from two patients, similar in duration but different 266	

in mutator incidence, and identified 15 LPS genes that lacked in multiple members both in 267	

mutator and non-mutator series. All the identified genes are involved in the synthesis of 268	

serogroup O2/O5/O26/O18/O20 O antigen (wbpA, wbpB, wbpC, wbpD, wbpE, wbpG, wbpH, 269	

wbpI, wbpJ, wbpK, wbpL, wzx, wzy, wzz and pa1385) (Warren et al., 2011).  270	

 In addition to changes in O antigen, adaption of P. aeruginosa to chronic lung 271	

infection in CF patients involves the synthesis of various lipid A structures (Figure 3) (Ernst et 272	

al., 2007), which result in alteration of host innate immune responses and promote bacterial 273	

persistence (Moskowitz & Ernst, 2010). These modifications involve deacylation of the lipid A 274	

resulting in the loss of an acyl chain from the 3-position, which is catalyzed by PagL (Figure 3) 275	

(Trent et al., 2001, Geurtsen et al., 2005, Ernst et al., 2006). Under acylation of lipid A has 276	

been associated with low inflammatory activity (Moskowitz & Ernst, 2010, Di Lorenzo et al., 277	

2015) and modulation of TLR4-MD2 receptor recognition (Ernst et al., 2003). Also, P. 278	

aeruginosa lipid A can acquire a secondary acyl chain into the 3'-position, which is catalyzed 279	

by a divergent palmitoyltransferase functionally analogous to the Salmonella and E. coli PagP 280	

enzyme (Figure 3) (Thaipisuttikul et al., 2014). Further modifications involve the addition of 281	

secondary acyl chains to the chains present at the 2- and 2'-positions, which is catalyzed by 282	

HtrB and LpxO, respectively (Figure 3), as well as the incorporation of 4-amino-4-deoxy-L-283	

arabinopyranose (Arap4N) to phosphate groups at the 1- and 4'-positions by the two-284	

component regulatory system PmrAB (Figure 3) (Moskowitz et al., 2004). These lipid A 285	

modifications contribute to P. aeruginosa adaptation to the CF airway (Moskowitz & Ernst, 286	

2010). The addition of phosphoethanolamine to the P. aeruginosa lipid A via the ColRS two-287	

component system (Figure 3) in a Zn2+-dependent manner was recently reported (Nowicki et 288	

al., 2015), but the role of this modification in vivo is not clear.  289	

  Collectively, the studies described above support the notion that chronically infecting 290	

bacteria adapt to host immune responses by producing LPS lacking O antigen and by 291	

introducing lipid A modifications in isolates recovered in late stages of CF chronic infection 292	

(Table 1) (Lyczak et al., 2002, Lee et al., 2005, Smith et al., 2006, Cigana et al., 2009, 293	

Moskowitz & Ernst, 2010, Cramer et al., 2011, Yang et al., 2011, Dettman et al., 2013). This 294	

conclusion is also supported from comparative studies using various host models 295	
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demonstrating that adaptation of different P. aeruginosa lineages within CF lungs selects 296	

populations with reduced pathogenic potential in acute infections (Lorè et al., 2012).  297	

 298	

Chronic Infections by other Gram-negative CF pathogens 299	

Bacteria from the Burkholderia cepacia complex (Bcc) emerged as significant CF pathogens 300	

in the early 1980s, when a minority of infected patients exhibited rapid clinical deterioration, 301	

resulting in early death (Mahenthiralingam et al., 2005, Loutet & Valvano, 2010). Respiratory 302	

infections with Bcc bacteria in CF patients generally lead to faster decline in lung function 303	

and, in some cases to cepacia syndrome, a fatal necrotizing pneumonia frequently 304	

accompanied by septicemia (Mahenthiralingam et al., 2005, Coutinho et al., 2011). Further, 305	

Bcc bacteria are transmissible through social contacts and are intrinsically resistant to most 306	

clinically used antibiotics, which renders their eradication from the CF lung very difficult, if not 307	

virtually impossible (Mahenthiralingam et al., 2005, Drevinek & Mahenthiralingam, 2010, 308	

Coutinho et al., 2011). Although transient infection of the respiratory tract may occur in some 309	

patients, acquisition of Bcc most typically results in chronic infection (Mahenthiralingam et al., 310	

2005, Coutinho et al., 2011). The same level of adaptation is not so clear cut in B. 311	

cenocepacia infections, as studies using the various infection models (C. elegans, G. 312	

mellonella, alfalfa, mice and rats) reported that most virulence factors are specific for one 313	

infection model only and rarely essential for pathogenicity in multiple hosts (Uehlinger et al., 314	

2009, Lorè et al., 2012). Furthermore, less is known about Burkholderia adaptation during CF 315	

chronic infection; however, there has been an effort to characterize the evolution of 316	

Burkholderia populations in the lung, including phenotyping (Coutinho et al., 2011, Moreira et 317	

al., 2014) and genotyping of serial isolates (Lieberman et al., 2011, Traverse et al., 2013), 318	

and comparative expression profiling of the transcriptome (Mira et al., 2011) and the 319	

proteome (Madeira et al., 2011, Madeira et al., 2013). 320	

 Lieberman et al. (2011) sequenced the genomes of 112 clinical Burkholderia dolosa 321	

isolates that resulted from the evolution of a single strain in 14 CF patients over 16 years of 322	

epidemic spread and discovered that genes involved in oxygen regulation, antibiotic 323	

resistance, outer-membrane synthesis and secretion have recurrent mutation patterns 324	

(Lieberman et al., 2011). Interestingly, recurrent mutations in the same amino acid of the 325	
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glycosyltransferase WbaD were observed in nine patients, which resulted in production of O-326	

unit repeats that were absent in the ancestral phenotype (Lieberman et al., 2011). The 327	

ancestral B. dolosa genotype encodes a stop codon at this locus that prevents O antigen 328	

synthesis. In some variants, two different mutations affecting the same amino acid were 329	

detected, both of them restoring the full-length WbaD protein and leading to O antigen 330	

production (Table 2) (Lieberman et al., 2011). Although this gain-of-function mutation does 331	

not follow the loss of O antigen tendency described in P. aeruginosa, these results underpin 332	

the importance of the O antigen switch mechanism during chronic infection. Another 333	

metagenomic analysis of six lineages evolved in biofilm mode of growth revealed an 334	

extraordinary mutational parallelism, including genes known to affect LPS biosynthesis, 335	

transcription, galactose metabolism, tricarboxylic acid cycle enzymes and altered metabolism 336	

of cyclic diguanosine monophosphate (Traverse et al., 2013). One commonly mutated locus, 337	

showing twenty independent mutations in both B. dolosa and Burkholderia cenocepacia, was 338	

manC, encoding a nucleotide mannose biosynthesis protein presumably involved in surface 339	

polysaccharide biosynthesis that could be either an exopolysaccharide or LPS (Traverse et 340	

al., 2013). Interestingly, these authors showed that complementation of one of the manC 341	

mutations dramatically reduced biofilm formation, and they speculated that the loss of 342	

polysaccharide may be required for efficient biofilm formation rather than immune evasion 343	

(Traverse et al., 2013).  344	

	 A comparison of the transcriptome and the proteome of three B. cenocepacia isolates 345	

recovered at the beginning of the infection and later during the progress of the disease 346	

suggests that the expression from genes involved in LPS biosynthesis is altered during 347	

chronic infection (Madeira et al., 2011, Mira et al., 2011, Madeira et al., 2013), in particular of 348	

those required for O antigen biosynthesis. Indeed, recent analysis of the LPS structure of 349	

these isolates revealed that, although the early-stage isolate has a complete LPS with the O-350	

chain moiety, the late-stage variants have a rough-type LPS, lacking O antigen (Maldonado et 351	

al., unpublished data).  352	

 Several studies at genome, transcriptome and proteome levels have contributed to a 353	

better understanding of Bcc bacteria genome-wide adaptive mechanisms during chronic 354	

infections. Together, they suggest that there is a high selective pressure on the O antigen 355	
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locus leading to alterations both at the structural, sequence and regulatory levels. Given the 356	

exceptional parallelism found among the relatively few studies dedicated to Bcc bacteria and 357	

P. aeruginosa, the LPS seems to play an important role during chronic infection, both in 358	

immune system evasion and biofilm adaptation. Moreover, lack of O antigen in B. 359	

cenocepacia leads to increased internalization into macrophages upon phagocytosis (Saldías 360	

et al., 2009), which may explain the higher invasiveness of epidemic strains, such as J2315, 361	

which do not produce O antigen. O antigen loss could therefore facilitate access of Bcc 362	

bacteria to macrophages, where intracellular bacteria could find a niche to persist, in 363	

agreement with a recent study showing that in human lungs, Bcc bacteria but not P. 364	

aeruginosa are found mainly inside macrophages (Schwab et al., 2014).  Other Gram-365	

negative opportunistic pathogens that cause CF chronic infections include Stenotrophomonas 366	

maltophilia, Achromobacter xylosoxidans and Haemophilus influenza. Recently, some studies 367	

characterizing the adaptive traits of sequential isolates of S. maltophilia (Vidigal et al., 2014), 368	

A. xylosoxidans (Trancassini et al., 2014) and H. influenza (Watson et al., 2004) recovered 369	

from CF patients have been published, however the LPS characterization of these clinical 370	

isolates is still lacking. 371	

 372	

LPS VARIATION DURING CHRONIC GASTRIC INFECTION 373	

The human gastric pathogen Helicobacter pylori is usually acquired during childhood by 374	

colonizing the human gastric mucosa and producing a superficial gastritis, which may remain 375	

asymptomatic during the lifetime of colonized individuals or eventually lead to gastric ulcer 376	

and atrophic gastritis (Linz et al., 2013, Otero et al., 2014). This geographically wide-spread 377	

bacteria infects more than half of the human population and is one of the most genetically 378	

diverse bacterial species, being also one of the most ubiquitous infectious organisms (Linz et 379	

al., 2013). The genetic diversity of H. pylori is caused by a high mutation rate, presumably 380	

due to the lack of several mutation repair genes (Kang & Blaser, 2006). Chronic infection with 381	

H. pylori is recognized as the most common cause of gastric and duodenal ulcers (Brown, 382	

2000). H. pylori chronic infection is also associated with the development of gastric 383	

adenocarcinoma and lymphoma of mucosa-associated lymphoid tissue (Otero et al., 2014, 384	
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Mégraud et al., 2015), for which this bacterium is considered to be a class 1 carcinogen 385	

(WHO, 1994). 386	

 H. pylori produces several virulence factors of which the vacuolating toxin A (VacA), 387	

the cytotoxin-associated gene A (CagA), and LPS play major roles in immunomodulation and 388	

contribute to maintain chronic infection (Posselt et al., 2013, Rubin & Trent, 2013, Chmiela et 389	

al., 2014, de Bernard & Josenhans, 2014, Hatakeyama, 2014). These factors contribute to 390	

maintain the infection by preventing the clearance of H. pylori from the gastric mucosa and 391	

interfering with innate and adaptive immune responses. Structural modifications of the lipid A 392	

result in reduced endotoxicity, while expression and variation of Lewis determinants exposed 393	

on the bacterial cell surface as a terminal O-specific oligosaccharide (Aspinall et al., 1996, 394	

Monteiro et al., 1998) mimic host components expressed on the human gastric epithelium 395	

(Moran et al., 1996, Moran, 2008) and reduce detection by the immune system. H. pylori lipid 396	

A presents a unique structure and shows remarkably lower biological activity compared with 397	

lipid A from other bacteria (Muotiala et al., 1992, Moran & Aspinall, 1998). Structural analysis 398	

revealed that the lipid A acyl chains are longer (16 to 18 carbons) than those present in 399	

enterobacterial lipid A (Moran et al., 1997). The predominant form is tetra-acylated lipid A, 400	

which is also underphosphorylated (Moran et al., 1997, Cullen et al., 2011). 401	

Underphosphorylation and underacylation of H. pylori lipid A are responsible for reduced 402	

endotoxicity (Ljungh et al., 1996), as determined by its low reactivity against anti-lipid A 403	

antibodies (Mattsby-Baltzer et al., 1992), reduced ability to induce the production of cytokines, 404	

nitric oxide and prostaglandin E2 (Pérez-Pérez et al., 1995), and E-selectin expression 405	

(Darveau et al., 1995), as well as reduced activation of leukocytes (Baker et al., 1994, 406	

Semeraro et al., 1996). Lipid A remodelling in H. pylori occurs mainly on the periplasmic side 407	

of the inner membrane. A first set of modifications involves removal of the 1-phosphate group 408	

by LpxE and the addition of a phosphorylethanolamine in its place by EptA (Tran et al., 2004, 409	

Tran et al., 2006). These modifications increase bacterial resistance to antimicrobial peptides 410	

(Tran et al., 2006). Second, a two-protein Kdo-hydrolase complex removes the terminal Kdo 411	

sugar, a modification that is critical to allow the ligation of the O-specific oligosaccharides to 412	

the lipid A core (Stead et al., 2010). Third, LpxF catalyses the removal of the 4'-phosphate 413	

group (Cullen et al., 2011). After ligation of the O-specific oligosaccharide (see below) the 414	
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complete LPS molecule is transported and displayed on the surface of the bacterial outer 415	

membrane. Once in the outer membrane the lipid A undergoes a final modification that 416	

consist on the removal of the 3'-linked acyl chains by LpxR, producing the characteristic tetra-417	

acylated lipid A structure (Stead et al., 2008). 418	

 The H. pylori O-specific oligosaccharide is initially formed as a lipid-linked 419	

oligosaccharide resulting from the addition of monosaccharides, but does not form a 420	

repeating oligosaccharide unit (Berg et al., 1997, Rubin & Trent, 2013). The O-specific 421	

oligosaccharide has a common backbone that is further modified by fucosyltransferases 422	

generating structures that mimic human Lewis antigen molecules and other related blood-423	

group antigens such as LeX; LeY, Lea, Leb, sialyl-LeX, H-1 antigen, and blood groups A and B 424	

antigens (Rubin & Trent, 2013) (Figure 4) This lipid-linked fucosylated oligosaccharide is 425	

translocated across the inner membrane by Wzk, an ABC-transporter protein homologous to 426	

PglK from Campylobacter jejuni, and subsequently ligated to the lipid A-core by the WaaL 427	

ligase (Hug et al., 2010).  428	

 The presence of terminal fucosylated sugars on the outer surface of the bacterium, in 429	

particular the most common LeX and LeY structures, is critical for colonization in mice models 430	

(Logan et al., 2000, Moran et al., 2000). However, the diversity of Lewis antigen expression in 431	

H. pylori hampers efforts to clearly define the role of these molecules in infection and disease 432	

progression. In humans, LeX H. pylori O-specific oligosaccharide is recognized by galectin-3, 433	

a β-galactoside-binding lectin that serves as a gastric receptor (Fowler et al., 2006). However, 434	

the main role attributed to the Lewis antigens is that of molecular mimicry, which could be 435	

manifested is several ways. For example, H. pylori can change its Lewis antigens in response 436	

to those present in the host, as demonstrated with Leb-transgenic mice infected with LeX-437	

expressing H. pylori, which over time switched on Leb expression (Pohl et al., 2009). This 438	

change allowed better bacterial colonization than in the transgenic mice lacking Leb 439	

expression, suggesting that Leb H. pylori could survive better in a self-tolerant Leb host (Pohl 440	

et al., 2009). Alternatively, H. pylori expressing different Lewis antigens than those in the host 441	

can induce production of autoantibodies that recognize gastric parietal cells leading to 442	

disease (Negrini et al., 1996, Faller et al., 1997). Further, Lewis antigens can also dampen 443	

host immune responses to H. pylori through interactions with the C-type lectin DC-SIGN on 444	
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the surface of gastric dendritic cells, which lead to a block in maturation of T-helper 1 cells 445	

and reduced production of pro-inflammatory cytokines (Bergman et al., 2004). 446	

The first evidence that a single strain of H. pylori alters its LPS antigenic phenotype 447	

during the course of infection was demonstrated by investigating the expression of Lewis 448	

antigens in 127 isolates recovered from serial biopsies of 26 asymptomatic subjects (Rasko et 449	

al., 2000). This alteration of LPS biosynthesis in H. pylori occurs during host colonization in 450	

response to several stimuli (Salaün et al., 2005, Nilsson et al., 2008) such as interaction with 451	

T helper cells Bergman, 2004 #5473} and gastric pH (Skoglund et al., 2009). More recently, 452	

several studies have focused on the genomic changes occurring in H. pylori isolates that have 453	

been recovered several years apart from patients with chronic infection (Falush et al., 2001, 454	

Israel et al., 2001, Kraft et al., 2006, Alvi et al., 2007, Morelli et al., 2010, Kennemann et al., 455	

2011).  456	

A whole-genome analysis of 10 H. pylori sequential isolates recovered from 4 patients 457	

over 16 years of chronic gastritis revealed 5 SNPs affecting LPS genes, including genes 458	

involved in the biosynthesis of lipid A (phosphoethanolamine transferase), core (kdsA and 459	

waaF) and O-specific oligosaccharide (wecA) synthesis, as well as in a putative 460	

lipopolysaccharide biosynthetic protein (Kennemann et al., 2011). A cluster of nucleotide 461	

polymorphisms in the fucT (fucosyltransferase) gene, presumably facilitating its expression, 462	

was identified in whole-genome analyses of two H. pylori strains isolated from spouses (Linz 463	

et al., 2013). Hyperexpression of fucT promotes posttranslational fucosylation of the O-464	

specific oligosaccharide, generating Lewis antigens (Ge et al., 1997, Martin et al., 1997, 465	

Moran, 2008, Linz et al., 2013). The alteration of H. pylori LPS during chronic gastric infection, 466	

either by altering LPS biosynthesis or by adding fucosyl residues to O-specific 467	

oligosaccharides, generates Lewis structures that mimic host antigens and contribute to 468	

immune system evasion. 469	

 470	

MOLECULAR MECHANISMS OF LPS VARIATION 471	

Antigenic variation of surface structures is a powerful mechanism for pathogen evasion of 472	

adaptive immune responses (Lerouge & Vanderleyden, 2002, van der Woude & Bäumler, 473	

2004, Lukácová et al., 2008). One of these adaptions involves phase variation, which is a 474	
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reversible, yet heritable form, of gene regulation that results in heterogeneous clonal 475	

populations and can be mediated by various molecular mechanisms (van der Woude & 476	

Bäumler, 2004). LPS phase variation can occur by addition of carbohydrates through the 477	

activity of glycosyltransferases or sialyltransferases, or addition of phosphorylcholine (ChoP) 478	

resulting in changes that affect antigenicity, serum sensitivity and adhesion (van der Woude & 479	

Bäumler, 2004). Phase variation has been described for human pathogens such as S. 480	

enterica serovar Typhimurium, Campylobacter jejuni, Neisseria spp. and H. pylori but 481	

because variable LPS modification is not easily identified, it is possible that phase variation is 482	

more widespread than currently known. Genetic and epigenetic mechanisms behind LPS 483	

variation are discussed below. 484	

 485	

Adaptive mutagenesis and altered gene expression 486	

Acquisition of adaptive mutations is a common theme in microbial persistence. In CF patients 487	

with chronic lung infection, P. aeruginosa strains accumulate a large proportion of mutator 488	

strains (Oliver et al., 2000) that contribute to selection of mucoid variants (Oliver et al., 2000, 489	

Mathee et al., 2008, Ciofu et al., 2010, Hogardt & Heesemann, 2010). The proinflammatory 490	

microenvironment in the airways including polymorphonuclear cells, hydrogen peroxide 491	

production, and antibiotics (Blázquez et al., 2006) has been associated with mutagenesis and 492	

mucoid conversion in vitro (Mathee et al., 1999, Sanders et al., 2006, Moyano et al., 2007). 493	

Cationic antimicrobial peptides can also exert a mutagenic inducing effect, as recently 494	

demonstrated for human cathelicidin LL-37 (Limoli et al., 2014). Mutagenesis depended on 495	

LL-37 entering the bacterial cytosol and binding to DNA, which in turns promotes abnormal 496	

DNA synthesis by the error-prone polymerase DinB (Sanders et al., 2006, Limoli et al., 2014).  497	

 Environmental cues, such as ionic concentration, can lead to O antigen structural 498	

variations resulting from altered gene expression regulated by two-component signal 499	

transduction systems. One of the best examples of this type of regulation is the PhoP/PhoQ 500	

system in Salmonella (Prost & Miller, 2008, Needham & Trent, 2013). PhoQ is a membrane 501	

sensor histidine kinase and PhoP is its cognate response regulator. Activation of the 502	

PhoP/PhoQ system by acidic pH, specific antimicrobial peptides, and depletion of Mg2+ and 503	

Ca2+ stimulates transcription of pagP and pagL (among other genes) and subsequent 504	
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upregulation of the encoded proteins, which acylate and deacylate lipid A, respectively (Prost 505	

& Miller, 2008, Needham & Trent, 2013). Further, CF clinical isolates of P. aeruginosa 506	

obtained from patients treated with inhaled colistin (polymyxin E) can develop resistance by 507	

loss-of-function mutations in the phoQ gene (Miller et al., 2011). Disruption of phoQ in the 508	

presence of an intact phoP stimulated Arap4N addition to lipid A by upregulated expression of 509	

the Arap4N synthesis operon. Therefore, this adaptive mutagenesis strategy results in high-510	

level polymyxin resistance clinical strains of P. aeruginosa.  511	

 512	

Slipped-strand mispairing 513	

One of the molecular mechanisms of phase variation involves slipping of one of the DNA 514	

strands, which causes mispairing between daughter and parent strands during DNA 515	

replication (slipped-strand mispairing) (Lukácová et al., 2008). Short DNA repeats, 516	

microsatellites and tandem repeats are particularly prone to slipped-strand mispairing (van 517	

Belkum et al., 1997, Torres-Cruz & van der Woude, 2003). In H. pylori, phase variation is 518	

related to an increase in the number of poly-C tract repeats in the β-(1,3)-galactosyl 519	

transferase (GalT), which  leads to a switching on Leb expression (Pohl et al., 2009). Also, 520	

repetitive poly-A and poly-C sequences in the fucosyltransferase fucT mediate slipped-strand 521	

mispairing, which in turn results in production of Lewis antigens with different fucosylated 522	

oligosaccharides (Wang et al., 2000, Nilsson et al., 2008). Further, the α-(1,2)-523	

fucosyltransferase gene futC contains an heptameric sequence (AAAAAAG) next to the 524	

ribosome binding site, which may cause a phase shift in the reading frame during translation 525	

(Wang et al., 2000). 526	

   527	

Lateral gene transfer, recombination, and genetic rearrangements 528	

The heterogeneity of O antigens is mostly due to variation within the O antigen gene cluster, 529	

but it is unclear how such variation was generated (Reeves et al., 2013). Genes involved in O 530	

antigen biosynthesis are generally arranged in large operons with low G+C content relative to 531	

the average G+C characteristic of each species, which suggests that these clusters were 532	

acquired by horizontal gene transfer from a species with low G+C content (Lerouge & 533	

Vanderleyden, 2002). The G+C content within the O antigen clusters also greatly differs from 534	
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gene to gene, indicating that the gene clusters might have been assembled from multiple 535	

horizontal transmission events and from several sources over a much longer time (Lerouge & 536	

Vanderleyden, 2002). The role of lateral gene transfer in the evolution of O antigen clusters 537	

and O antigen diversification has been well described in Salmonella (Perepelov et al., 2011, 538	

Reeves et al., 2013), Escherichia (D'Souza et al., 2005, Hu et al., 2010, Azmuda et al., 2012), 539	

Vibrio (González-Fraga et al., 2008, Wildschutte et al., 2010), Yersinia (Cunneen & Reeves, 540	

2007) and Brucella (Wattam et al., 2014). Another mechanism of variation involves large 541	

chromosomal rearrangements. For example, more than half of the P. aeruginosa clone C 542	

isolates from CF lung infection exhibit large chromosomal inversions mediated an IS6100-543	

induced coupled insertion-inversion mechanism. This creates also a selective advantage by 544	

insertion of IS6100 into wbpM, pilB and mutS, which leads to common CF phenotypes such 545	

as O-antigen and type IV pili deficiency and hyper mutability (Kresse et al., 2003).  546	

  547	

CONCLUDING REMARKS 548	

The LPS is an abundant molecule of the outer membrane of most Gram-negative bacteria 549	

and plays a key role during host-pathogen interaction and the establishment of chronic 550	

infection. LPS-mediated virulence resides both in the endotoxic activity of lipid A and in the 551	

ability of the core and O antigen to provide the bacterium with resistance to host defence 552	

mechanisms. O antigen modification in general contributes to enhance the bacteria’s ability to 553	

establish infection. For example, P. aeruginosa O antigen modification directed by the D3 554	

prophage promotes adhesion to epithelial cells (Vaca-Pacheco et al., 1999), while in H. pylori, 555	

expression of the Lewis antigen LeX promotes bacterial adhesion to the gastric epithelia by 556	

interacting with host lectins. Further, O antigen modification can contribute to host immune 557	

evasion either by mimicry of host molecules (e.g., Lewis antigens in H. pylori) or by inhibiting 558	

activation of the host complement system (Raetz & Whitfield, 2002). It is also well established 559	

that during chronic infection there is an increase of mutator phenotypes (Oliver et al., 2000), 560	

which leads to a higher mutation rate and will consequently contribute to the accumulation of 561	

modifications in LPS structure during colonization.  562	

Several studies have shown alterations in the LPS molecule during chronic infection, 563	

which are thought to contribute to adhesion, host colonization, immune defenses evasion and 564	
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adaptation to the infection niche. Different mechanisms, both at the genetic and epigenetic 565	

levels have been implied in LPS variation, creating LPS diversity and thus contributing to the 566	

success of the infection. 567	

 Future progress in LPS research will require interdisciplinary experimental 568	

approaches, combining the application of genome-wide approaches (such as genomics, 569	

transcriptomics, proteomics and metabolomics), structural biology, animal knockout models, 570	

enzymology, carbohydrate chemistry and membrane biochemistry. LPS phase variation has 571	

been described for some human pathogens (S. enterica serovar Typhimurium, C. jejuni, 572	

Neisseria spp. and H. pylori) and future research should address the investigation of these 573	

mechanisms in other species as well. An in-depth understanding of LPS variation and its 574	

effects on pathogenicity and virulence is of paramount importance in the understanding of 575	

infection establishment and progression.  576	
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 Table 1. LPS genes altered in P. aeruginosa during chronic infections.   1081	
LPS metabolism Genes Reference 
Lipid A biosynthesis and 
modification lpxO2 

Cramer et al., 2011; Yang et 
al., 2011 

 lpxC, yciK Cramer et al., 2011 

 pagL Cigana et al., 2009; Yang et 
al., 2011 

Core biosynthesis and 
modification rfaD, wapP Cramer et al., 2011 

Common polysaccharide 
antigen biosynthesis wbpZ Cramer et al., 2011 

O-specific antigen biosynthesis wbpA, pa5238 Smith et al., 2006 
 wzz Yang et al., 2011 

 

wbpA, wbpB, wbpC, wbpD, 
wbpE, wbpG, wbpH, wbpI, 
wbpJ, wbpK, wbpL, wzx, 
wzy, wzz, pa1385 

Warren et al., 2011 

O antigen ligase waaL Dettman et al., 2013 
   1082	

1083	
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 1084	

Table 2. LPS genes altered in B. dolosa and B. cenocepacia during chronic infections. 1085	
The homologous gene in P. aeruginosa is also indicated. 1086	
 1087	

Gene or locus 
Homologous gene in  
P. aeruginosa PAO1 Reference 

wbaD - 
Lieberman et al., 
2011 

YP_834517 rmlB Traverse et al., 2013 
YP_834518 rmlA Traverse et al., 2013 
YP_834524 migA Traverse et al., 2013 
YP_834525 wbpW Traverse et al., 2013 
YP_834526 gmd Traverse et al., 2013 
YP_834528 - Traverse et al., 2013 
YP_834530 wapR Traverse et al., 2013 
YP_834532 wbpL Traverse et al., 2013 
YP_834533 wbpM Traverse et al., 2013 
   1088	

 1089	
 1090	
 1091	
 1092	

1093	
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Legend to Figures 1094	

 1095	

Figure 1.  Cell envelope organization of Gram-negative bacteria. The cell envelope of 1096	

Gram-negative bacteria is characterized by the presence of two lipid bilayers: the outer 1097	

membrane (OM) and the cytoplasmic membrane (CM), which are separated by the periplasm, 1098	

containing hydrolytic enzymes, binding proteins, chemoreceptors and the peptidoglycan cell 1099	

wall. The OM is an asymmetric lipid bilayer. The outer leaflet of the OM contains mainly LPS 1100	

molecules, which form contacts with integral outer membrane proteins (OMPs). The inner 1101	

layer of the OM and the lipid layers of the cytoplasmic membrane contain phospholipids and 1102	

membrane proteins. 1103	

 1104	

Figure 2. Simplified overview of the LPS biosynthesis. Lipid A-Kdo2 is synthesized on the 1105	

cytoplasmic surface of the cytoplasmic membrane. The rest of the core is assembled to the 1106	

lipid A-Kdo2 and MsbA flips the whole complex to the periplasmic side of the cytoplasmic 1107	

membrane. The O antigen is synthesized by cytoplasmic membrane-associated enzyme 1108	

complexes using C55-undecaprenol phosphate (Und-P) as an acceptor for chain assembly 1109	

and is then flipped to the periplasmic face of the membrane by one of the three pathways: (1) 1110	

Wzy-dependent, (2) ABC-transporter-dependent, or (3) synthase-dependent. For simplicity, 1111	

only the ABC-transporter pathway is represented. Once on the periplasmic side, the O 1112	

antigen is linked to the lipid A-core by the WaaL ligase and the mature LPS molecule is then 1113	

transported across the periplasm and inserted into the outer leaflet of the outer membrane by 1114	

the Lpt (LPS transport) system, a complex that spans the Gram-negative cell envelope to 1115	

deliver LPS to the outer membrane (E). OM, Outer membrane; CM, Cytoplasmic membrane.  1116	

 1117	

Figure 3. Lipid A modifications occurring in P. aeruginosa during adaptation to long-1118	

term chronic infection. The basic tetra-acylated lipid A structure can be modified by: 1119	

deacylation by PagL; palmitoylation by PagP; acylation by HtrB; acylation by LpxO; addition of 1120	

Arap4N by PmrAB on position 1 or 4'; and addition of phosphoethanolamine by ColRS on 1121	

position 1 or 4'. 1122	

 1123	
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Figure 4. Lewis antigen structures. H. pylori can produce type 1 (based on a β-(1,3)-linked 1124	

galactose-GlcNAc sugar backbone) and type 2 (based on a β-(1,4)-linked galactose-GlcNAc 1125	

sugar backbone) Lewis antigens. Lea and Lex are built by addition of a fucose residue to the 1126	

GlcNAc sugar of the type 1 and type 2 backbone, through α-(1,4) or α-(1,3) 1127	

linkages, respectively. Leb and LeY are built by addition of a fucose residue through α-(1,2) 1128	

linkage to Lea and Lex structures, respectively. Sialyl-Lex (SLex) is built by addition of a sialyl 1129	

group to the Lex antigen by a α-(2,3) linkage. 1130	


