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Adaptive Fuzzy Integral Sliding Mode Control for
Robust Fault Tolerant Control of Robot

Manipulators with Disturbance Observer
Mien Van, Shuzi Sam Ge, Fellow, IEEE

Abstract—This paper develops a new strategy for robust
fault tolerant control (FTC) of robot manipulators using
an adaptive fuzzy integral sliding mode control and a dis-
turbance observer (DO). First, an integral sliding mode
control (ISMC) is developed for the FTC system. The major
features of the approach are discussed. Then, to enhance
performance of the system, a fuzzy logic system (FLS)
approximation and a DO are introduced to approximate
the unknown nonlinear terms, which include the model
uncertainty and fault components, and estimates the com-
pounded disturbance, respectively, and then integrated into
the ISMC. Next, a switching term based on an adaptive two-
layer super-twisting algorithm is designed to compensate
the disturbance estimated error and guarantee stability and
convergence of the whole system. The nominal controller
of the ISMC is reconstructed using backstepping control
technique to achieve the stability for the nominal system
based on Lyapunov criteria. The computer simulation re-
sults demonstrate the effectiveness of the proposed ap-
proach.

Index Terms—Control of robots, backsepping control,
fault tolerant control, integral sliding mode control, adap-
tive neural network, disturbance observer

I. INTRODUCTION

ROBOT MANIPULATORS have been widely utilized
in industrial applications to increase the quality and

quantity of the products. In order to increase the effectiveness
of the robots for practical applications, beside increasing
the tracking performance of the robots, safety issue is also
significant, particularly when the robots work very close to
or interact with human during operation. The failed robot
could not only damage to the products but also generate
dangerous to the human. Therefore, it is needed to counteract
the failed operation of the robot. Due to this emergent need,
fault diagnosis (FD) and fault tolerant control (FTC) have been
developed for the robots [1]–[4]. The aim of the FD scheme is
to detect the presence of faults, while the aim of the FTC is to
tackle the effects of faults in the system so that the system can
maintain the desired tracking performance despite the presence
of the faults in the system [5].
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Generally, FTC operation can be performed by using either
active fault tolerant control (AFTC) or passive fault tolerant
control (PFTC) [6]. In the AFTC approach, the control system
is reconfigured according to the fault estimation, which is
obtained from a fault diagnosis observer [7]–[9]. However,
the design of the additional FD observer increases the com-
putational load of the system. In the PFTC approach, faults
are compensated by the robustness of a robust controller
without requiring fault estimation [10], [11]. One of the
most advantages of the PFTC is that it can compensate the
faults’ effects quicker that helps the system recovered from
the fault states quicker. However, since the PFTC needs to
counteract the highest faulty effects, the nominal controller
of the PFTC should have high robustness [12]. Due to its
inherent high robustness property, sliding mode control (SMC)
has been extensively studied for many FTC systems [13]–
[16]. However, there exists two major shortcomings in the
design of the conventional SMC: (i) it provides a reaching
phase, and (ii) it provides big oscillation, which is known as
chattering. In order to handle the first shortcoming of the SMC,
an investigation based on integral sliding mode control (ISMC)
has been made [17]–[20].

In general, the ISMC includes a nominal controller and
a switching term. The nominal controller is used to control
the nominal system, and the switching term is used to han-
dle the uncertainty and disturbance and stabilize the whole
system. The superior properties of the ISMC compared to its
counterpart, i.e., the conventional SMC, has been discussed in
[21]. Due to the impressive advantages, several FTC systems
have been developed for many practical applications based
on the ISMC [22]–[25]. Particularly, in [22], a FTC based
on ISMC has been developed for linear time invariant (LTI)
system. In [23], an analysis of ISMC for FTC of nonlinear
systems has been carried out. In [24] and [25], ISMCs have
been studied in the design of the FTC of attitude control of
spacecraft. However, the ISMC generates undesired chattering
like the drawback of the conventional SMC. The chattering
is extremely undesired since it generates a lot of undesired
mechanical oscillations in the system. To suppress the chat-
tering phenomenon, many attempts have been made. First,
the boundary method has been employed [22]. However,
due to the effects of the boundary, the errors of the system
in stable states are increased. An alternative method is to
employ higher-order sliding mode control (HOSMC) [26]–
[30]. Since the amount of chattering is proportional to the
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magnitude of the switching gain, which is chosen to be bigger
than the bounded value of the uncertainty and disturbance,
one way to reduce the chattering is to reduce the effects of
the uncertainty by using a continuous compensation term.
In this approach, an estimation/approximation technique is
designed to estimate/approximate the unknown function, i.e.,
uncertainty and disturbance, of the system. Then, the obtained
estimation/approximation is used as a compensation term to
compensate for the effects of the uncertainty in the system.
Consequently, the effects of the uncertainty can be reduced
and the sliding gain can be chosen as a smaller value, which
will provide less chattering. Therefore, developing effective
approximation/estimation techniques become necessary.

In the literature, the approximation capability of neural
network (NN) and fuzzy logic system (FLS) have been exten-
sively employed to approximate unknown nonlinear functions
[31]–[38]. In [31], a great effort on stable adaptive NN
framework has been spent. In [32], an advanced radial basis
function neural network has been developed and integrated
into the adaptive control of nonlinear system. In [33]–[35],
fuzzy approximations have been utilized in the design of
controller and observer of nonlinear systems. In [36], a
neural approximation has been developed to approximate the
unmodeled dynamics of nonlower triangular systems. Fuzzy
approximations have also been developed for approximating
the unknown dynamic model of robot manipulators [37], [38].
Basically, the learning technique provides good approximation
only when the unknown function being approximated is a
function with respect to the system states and/or control input.
Otherwise, it usually provides big approximation error for un-
known disturbances like external disturbance. To approximate
disturbance, an estimation technique based on disturbance
observer (DO) has been developed [39]. For example, in [40],
a DO has been developed to estimate the disturbance and
integrated into a SMC for a 3-DOF nanopositioning stage. In
[41], a DO has been employed to observe the uncertainties
of robot manipulators, and a SMC has been employed to
compensate the fast changing component. A framework of
DO-based controller has been developed for nonlinear systems
in [42].

It can be seen that each individual approach like SMC,
NN or DO has their own advantages and disadvantages, as
pointed out in the aforementioned discussion. Therefore, the
performance of the system might be reduced when applying
the techniques individually into the practical applications. In
order to enhance performance of the system, hybrid control
methods, which combine the advantages while trying to elim-
inate the disadvantages of the individual components, have
been developed. For example, due to the advantages of the
ISMC and DO, a hybrid ISMC and DO has been developed
in [43]–[45]. Hybrid approximation and estimation methods
based on NN/FLS and DO have also been developed in
[46]–[52]. On the other hand, due to the robustness property
of the SMC and the approximation capability of NN/fuzzy
logic, some hybrid controllers, which combine the merits of
both parties, have been developed [53]–[56]. However, as
aforementioned discussions, since the ISMC offers some major
advantages over the SMC, it is desired to develop a hybrid

controller, which can combine the merits of the ISMC and
the NN/FLS. Unfortunately, very few efforts in the literature
have been spent to realize this interesting control paradigm
[57]. The reason may come from the fact that it is difficult
to reconstruct the control input of the hybrid system such
that the stability and convergence of the whole system can
be guaranteed. In addition, in order to promote the system
performance, it is desired that the system should take the
advantages of the ISMC, learning technique and DO into
account. This demand is particularly needed for the FTC
system, where strong unknown nonlinear functions (uncer-
tainty, disturbance and fault) are present and high robustness
controller is required. This is one of the most motivations of
this paper.

Inspired by the aforementioned desired features, in this
paper, a new robust FTC strategy is suggested for robot
manipulators based on an integration between the ISMC,
FLS and DO. First, a FTC scheme based on a ISMC is
developed. The efficiency and effectiveness of the ISMC for
FTC system is analyzed thoroughly. Then, to compensate for
the limitations of the ISMC, an adaptive FLS and a DO are
developed and integrated into the ISMC. Since the effects of
the uncertainties and disturbances are mostly compensated by
the adaptive FLS and DO, the chattering generated by the
ISMC is significantly reduced, and thus the performance of
the system is massively increased. In addition, in order to
further reduce the chattering and at the same time improve
the tracking precision, an adaptive two-layer super-twisting
algorithm [29], [30] is developed as a switching term of the
ISMC. The nominal controller of the ISMC is reconstructed
using backstepping control technique so that the stability of
the nominal system can be guaranteed based on Lyapunov
criteria. Finally, computer simulation is carried out based on
a PUMA560 robot to test the merit features of the proposed
approach. The simulation results for this example verify the
superior performance of the proposed approach when com-
paring with other state-of-the-art controllers for FTC system.
In summary, the major expressive features of the proposed
approach can be marked as below:

• An adaptive FLS and a disturbance observer is integrated
to design a new integral sliding surface. Compared to
the sliding surfaces used in the conventional SMC [13]–
[16] and the conventional ISMC [17]–[20], the proposed
sliding surface enhances the robustness and reduces the
chattering of the system.

• Compared to the conventional chattering elimination
techniques based on boundary method [22] or HOSM
[26]–[28], the chattering elimination technique employed
in this paper is an integration between the fuzzy approxi-
mation, disturbance observer and the super-twisting high-
order sliding mode algorithm, so the chattering is almost
eliminated in the system.

• Compared to the conventional fuzzy approximation [37],
[38] or disturbance observer [39]–[41], a hybrid fuzzy
approximation and disturbance observer is developed to
fully estimating the effects of the uncertainties, distur-
bances and faults in the system.
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The rest of this paper is organized as follows. Section II
presents the problem formulation and some definitions. The
ISMC for FTC of robot manipulators are initially studied in
Section III. The design of the adaptive FLS, DO and the hyrbid
ISMC, FLS and DO are described in Section IV. Section V
presents simulation results for a PUMA560 robot. Conclusions
are given in Section VI.

II. PROBLEM STATEMENT AND DEFINITIONS

A. Problem statement

Without loss of generality, the following robot dynamics is
considered:

q̈ = M−1(q)(τ − C(q, q̇)q̇ − F (q̇)−G(q)− τd)
+ γ(t− Tf )φ(q, q̇, τ)

(1)

where q ∈ <n, q̇ ∈ <n and q̈ ∈ <n represents the position,
velocity and acceleration of the robot, respectively. τ ∈ <n
is the actuator inputs. The inertia matrix M(q) ∈ <nxn is
positive and definite. C(q, q̇) ∈ <n consists of the Coriolis
and centripetal forces. F (q̇) ∈ <n is the friction matrix. τd
stands for load disturbance matrix and G(q) ∈ <n indicates
the vector of gravity terms. φ(q, q̇, τ) ∈ <n represents the
possible fault components in the system. γ(t−Tf ) is the time
profile of the faults, in which Tf is the time of occurrence of
the faults.

The considered robot dynamics in (1) is assumed to satisfy
the following standard property:

0 < λm{M(q)} ≤ ‖M(q)‖ ≤ λM{M(q)} ≤ χ, χ > 0 (2)

In the above equation, λm{M} and λM{M} indicates the
minimum and maximum eigenvalues of matrix M , respec-
tively.

The matrix γ(·) is configured as

γ(t−Tf ) = diag{γ1(t−Tf ), γ2(t−Tf ), ..., γn(t−Tf )} (3)

where γi represents the fault component existing in the ith
state equation.

The time profile of each state equation is introduced by [8]:

γi(t− Tf ) =

{
0, if t < Tf

1− e−ιi(t− Tf ), if t ≥ Tf
(4)

where ιi > 0 indicates the developing of the fault. When the
value of ιi is small, the incipient fault is assumed. In contrast,
when the value of ιi is large, the abrupt fault exists.

The model (1) can be rearranged as follows:

q̈ = M−1(q)τ +M−1(q)(−C(q, q̇)q̇ −G(q))

+M−1(q)(−F (q̇)− τd) + γ(t− Tf )φ(q, q̇, τ)
(5)

In this paper, the actuator fault is considered because it is
the most serious failure and often occurs in the system [58]–
[60]. There are many types of faults that may occur in the
actuator, among them gain fault and bias fault are the most
often ones. To generally represent both the gain fault and bias
fault, the control input in (5) is described as

τc = Γτ + ∆τ (6)

where Γ ∈ <n and ∆τ ∈ <n represent the gain fault and
bias fault, respectively, τc and τ are the actual and the desired
control value, respectively. In this condition, the fault function
φ(q, q̇, τ) in (5) can be re-described as

φ(q, q̇, τ) = M−1(q)(Γ− I)τ +M−1(q)∆τ (7)

The following state space model can be obtained from (5)
by introducing x1 = q and x2 = q̇:

ẋ1 = x2

ẋ2 = Λu+ f(x1, x2) + δ(x1, x2, u) + Ξ
(8)

where Λ = M−1(q), f(x1, x2) = M−1(q)(−C(q, q̇)q̇−G(q))
denotes the lumped known component and δ(x1, x2, u) =
M−1(q)(−F (q̇))+γ(t−Tf )φ(q, q̇, τ) denotes the lumped un-
certainty and Ξ = M−1(q)τd denotes the lumped disturbance
component in the system. u = τ is the control input.

The objective of this paper is to design a FTC input u such
that the system can maintain its high tracking precision depsite
the existing of the uncertainties, disturbance and faults.

B. Definitions
For a vector of input, i.e., x = (x1, x2, ..., xn)T ∈ <n and

an output variable, i.e., y = f(x) ∈ <, the fuzzy logic system
(FLS) is developed based on a set of If-Then rules to generate
a map between the input and output [33]–[35]. The jth If-Then
rule can be designed as follows:

Rule j : If x1 isAj1 and ... and xn isAjn then y isBj (9)

where Aj1, Aj2,..., Ajn and Bj represent fuzzy sets. Then, fuzzy
output with a singleton fuzzifier can be provided as

y =

h∑
j=1

wj

(
n∏
i=1

µ
A
j
i
(xi)

)
/ h∑
j=1

(
n∏
i=1

µ
A
j
i
(xj)

) = wTΨ(x) (10)

where h is the number of If-Then rules, and µAji (xi) denotes
the membership function value of fuzzy variables xi. w =
[w1, w2, .., wh]

T stands for the adjustable weight matrix, and
ψ(x) = [ψ1(x), ψ2(x), .., ψh(x)]

T is a fuzzy basis vector, in
with ψj(x) is defined as

ψj(x) =

n∏
i=1

µ
A
j
i
(xi)

/ h∑
j=1

(
n∏
i=1

µ
A
j
i
(xi)

) (11)

Lemma 1 [33]–[35]: For any given real continuous function
f(x) on a compact set Ω ∈ <n and an arbitrary % > 0, there
exists a fuzzy logic system, i.e., wTΨ(x), such that

sup
x∈Ω

∣∣f(x)− wTΨ(x)
∣∣ ≤ % (12)

where Ψ(x) = [ψ1(x), ψ2(x), ..., ψh(x)]
T
/
h∑
j=1

ψj(x) is the

basis function vector, w = [w1, w2, ..., wh]
T is the weight

vector with h > 1 being the number of the fuzzy rules and
ψj(x) is chosen as the following form:

ψj(x) = exp

(
−(x− µj)T (x− µj)

ς2j

)
(13)
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where ςj is the width of the Gaussian function and µj =

[µj1, µj2, ..., µjn]
T is the center vector. And, based on the

property of the fuzzy logic described above, we have

‖Ψ(x)‖ ≤ υ (14)

where υ is an unknown positive constant.
Lemma 2 [50]–[52]: Consider a nonlinear system ẋ = f(x).

Suppose that there exists a smooth positive definite function
V (x) > 0 such that

V̇ (x) ≤ −aV (x) + b (15)

where, a > 0 and b > 0. Then, the solution x(t) is uniformly
bounded.

III. DESIGN OF FAULT TOLERANT CONTROL USING
INTEGRAL SLIDING MODE CONTROL

In (8), the nominal system can be defined as Ω =
M−1(q)u + f(x1, x2), and the unknown component can be
defined as Υ = δ(q, q̇, τ) + Ξ with ‖Υ‖ ≤ ρ. From (7), we
can see that the first fault component (Γ−I)τ is always smaller
than the control input τ , i.e., (Γ−I)τ < τ . It means the control
input u = τ can be increased freely up to its maximum value
without any bounds. The remain issue is to get the bound of
the bias fault ∆τ . The assumption on the bound of the bias
fault ∆τ is generic and has been widely utilized in the design
of FTC (see [58]-[60]). This condition states that the FTC is
designed for the situation where the system is not “exploding”.
It means the Lipschitz condition is practically satisfied in the
considered operational region (see [61]).

Let e = x1− xd be the tracking error of the system, where
xd the desired trajectory of the system. First, an accummulated
error signal is defined as

s = ė+ λe (16)

where λ is a design parameter. Integrating the derivative of
(16) and the result in (8) yields

ṡ = ë+ λė

= Λu+ f(x1, x2) + δ(q, q̇, τ) + Ξ + λė− ẍd
(17)

The proposed integral sliding surface has a form below

σ(t) = s(t)− s(0)−
∫ t

i=0

(Λu0 + f(x1, x2) + λė− ẍd)dt
(18)

where s(0) is the value of s(t) at t = 0. The term −s(0) is
employed here to get the desired feature that is σ(0) = 0. The
nominal controller, u0, is used to stabilize the nominal system
(the system without the lumped uncertainty and disturbance).

The derivative of (18) according to time domain is obtained
as

σ̇ = (Λu+ f(x1, x2) + δ(q, q̇, τ) + Ξ + λė− ẍd)
− (Λu0 + f(x1, x2) + λė− ẍd)

(19)

To stabilise the system (19), the following control input is
suggested:

u = u0 + us (20)

where us is used to compensate the effects of unknown
component, and is selected as

us = −Λ−1(ρ+ ν)sign(σ) (21)

where ν is a small positive constant and ρ was defined above.
Accumulating the composite controllers (20) and (21) into

(19), yields

σ̇ = −(ρ+ ν)sign(σ) + (δ(q, q̇, τ) + Ξ) (22)

Consider a Lyapunov function candidate V = (1/2)σTσ. The
following result can be achieved based on the derivative of the
Lyapunov function and (22):

V̇ = σT σ̇

= σT (−(ρ+ ν)sign(σ) + (δ(q, q̇, τ) + Ξ))

= −(ρ+ ν)|σ|+ (δ(q, q̇, τ) + Ξ)σ

< 0

(23)

The above inequality verifies the stability of the system
according to Lyapunov criteria.

IV. DESIGN OF ADAPTIVE FUZZY INTEGRAL SLIDING
MODE CONTROL FOR FAULT TOLERANT CONTROL

SYSTEM BASED ON DISTURBANCE OBSERVER

The design of the ISMC in the previous section needs a
big sliding gain to cope with the effects of the unknown
component. Unfortunately, this leads to big chattering in the
system. In order to circumvent this shortcoming, an ISMC
based on a FLS approximation and a disturbance observer is
developed in this section.

A. Design of Fuzzy Integral Sliding Mode Control
First, according to Lemma 1, the lumped uncertainty can be

introduced by the output of an fuzzy logic system:

δ(x1, x2, u) = WTΨ(Z) + ζ (24)

where W , Φ(Z), Z = [x1, x2, uf ]T are the weight vector, the
basis function and the input vector of the FLS, respectively.
ζ is the approximation error. uf ≈ u is the filtered signal and
defined as

uf = HL(s)u (25)

where HL(s) is the Butterworth low-pass filter (LPF). The
parameters of this LPF are selected from [62]. The goal of
the filtered signal is to circumvent algebraic loop problems.

Using the result in (24), (17) can be rewritten as

ṡ = Λu+ f(x1, x2) +WTΨ(Z) + λė− ẍd + ζ + Ξ (26)

From (26), the nominal component includes Σ =
f(x1, x2) +WTΦ(Z) + λė− ẍd. Based on (26), a new form
of sliding surface is suggested as

σ(t) = s(t)− s(0)−
∫ t

i=0

(Λu0 + Σ)dt (27)

From (27):

σ̇ = (Λu+ Σ + ζ + Ξ)

− (Λu0 + f(x1, x2) +WTΨ(Z) + λė− ẍd)
(28)
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To stabilize the system (28), the following control law is
suggested

u = u0 + us (29)

where u0 is the nominal controller, and us is given by:

us = −Λ−1(ϑ+ ν)sign(σ) (30)

where ϑ is chosen such that ‖ζ + Ξ‖ ≤ ϑ.
From the results in (29), (30) and (28), we have

σ̇ = −(ϑ+ ν)sign(σ) + (ζ + Ξ) (31)

Define a Lyapunov function candidate as V = (1/2)σTσ.
The following result can be obtained based on the derivative
of the Lyapunov function and the result in (31):

V̇ = σT σ̇

= σT (−(ϑ+ ν)sign(σ) + (ζ + Ξ))

= −(ϑ+ ν)|σ|+ (ζ + Ξ)σ

< 0

(32)

The inequality (32) demonstrates the stability and conver-
gence of the system via Lyapunov criteria.

Due to approximation capability of the FLS, the FLS’s
approximation error, i.e., ζ, is much smaller than the function
being approximated, i.e., δ(q, q̇, τ). Therefore, the bounded
value ϑ is much smaller than the bounded value ρ. Conse-
quently, the controller (30) provides much lower chattering
compared to the controller (21). Hence, we can conclude that
the employment of the FLS can improve the performance of
the system.

Remark 1: As stated in Lemma 1, the FLS can provide
good approximation for continuous function. In this paper, the
FLS is used to estimate the unknown function δ(x1, x2, u),
which aggregates the friction force and fault. To get a good
estimation output of the FLS, the function δ(x1, x2, u) should
be a continuous function. In practical applications, friction
forces may become highly nonlinear and discontinuous func-
tions. Moreover, abrupt change and intermittent faults may
have discontinuous time behaviour. For these conditions, the
FLS will provide big estimation error. However, these errors
will be compensated by the disturbance observer and the
integral sliding mode term to always maintain the high tracking
precision of the system. This is the main advantage of the
proposed approach.

B. Design of disturbance observer

For the sake of presenting the DO, let Γ(x1, x2, u, ė, ẍd) =
Λu+f(x1, x2)+WTΨ(Z)+λė− ẍd , which denotes the new
lumped known function. The system (26) can be rewritten as

ṡ = Γ(x1, x2, u, ė, ẍd) + ∆(t) (33)

where ∆ = ζ + Ξ denotes a new lumped disturbance in the
system. The derivative of the lumped disturbance in the system
is assumed to be bounded by ‖∆̇‖ ≤ ξ, where ξ is an unknown
positive constant.

The disturbance observer for estimating the unknown time-
varying disturbances ∆(t) in (33) is designed as follows

∆̂(t) = p(t) +Kos

ṗ(t) = −Ko

(
Γ̂(x1, x2, u, ė, ẍd) + ∆̂(t)

) (34)

where Ko = KT
0 ∈ <n×n is a positive definite design matrix.

Γ̂(x1, x2, u, ė, ẍd) = Λu + f(x1, x2) + ŴTΨ(Z) + λė − ẍd,
where Ŵ is the estimate of the weight W , which will be
defined later.

Define the disturbance estimation error ∆̃ of the obserer as

∆̃ = ∆̂−∆ (35)

From (34) and (35), we have

˙̂
∆ = −Ko

(
Γ̂(x1, x2, u, ė, ẍd) + ∆̂

)
+Koṡ

= −Ko(∆̂−∆ + (Ŵ −W )TΨ(Z))

= −Ko(∆̃ + W̃TΨ(Z))

(36)

To facilitate the stability analysis of the DO, we assume
that the estimate weight Ŵ of FLS converges to the optimal
weight W , i.e., W̃ = 0. The time derivative of (35) along (36)
is

˙̃∆ = −Ko∆̃− ∆̇ (37)

Consider a Lyapunov function candidate as

V∆ =
1

2
∆̃T ∆̃ (38)

From (37) and (38) and using Young’s inequality, we have

V∆ = ∆̃T ˙̃∆

= −∆̃TKo∆− ∆̃T ∆̇

≤ −[λmin(K0)−
1

2
]∆̃T ∆̃ +

1

2
∆̇T ∆̇

≤ −[λmin(K0)−
1

2
]∆̃T ∆̃ +

1

2
ξ2

= −a1V∆ + b1

(39)

where a1 = λmin(K0) − 1
2 with λmin(·) denoting the

minimum eigenvalue of a matrix, b1 = 1
2ξ

2, and K0 satisfies

λmin(K0) >
1

2
(40)

Since V∆ is ultimately bounded as t → ∞ as can be seen
from the inequality above. Thus, ∆̃ is bounded according to
Lemma 2.

Remark 2: According to (39), the designed disturbance ob-
server provides higher estimation accuracy when the bounded
value ξ is small. It means the designed disturbance observer
is suitable for constant or slow time varying disturbances.
For fast time varying disturbances, the disturbance estimation
error is bigger. The disturbance estimation error will be
compensated by the switching term of the integral sliding
mode control, which will be presented in the following section.
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C. Design of Adaptive Fuzzy Integral Sliding Mode Con-
trol using Disturbance Observer

Based on the approximated FLS and estimated disturbance,
the sliding surface (26) can be rewritten as

ṡ = Λu+ f(x1, x2) + ŴTΨ(Z) + λė− ẍd + ∆̂ + ε (41)

In (41), the new compounded nominal component is Π =
f(x1, x2) + ŴTΨ(Z) + λė − ẍd + ∆̂, and ε = ∆ − ∆̂ is
the disturbance estimation error, and |ε| ≤ ε, where ε is an
unknown constant. This value is supposed very small due to
the approximation capability of the FLS and the effectiveness
of the disturbance observer.

Based on (41), a new form of integral sliding surface is
suggested as:

σ(t) = s(t)− s(0)−
∫ n

i=0

(Λu0 + Π)dt (42)

Combining the derivative of (42) with the result in (41), we
obtain

σ̇(t) = ṡ(t)− (Λu0 + Π)

= Λ(u− u0) + ε
(43)

Based on (43), the proposed controller can be designed as

uFDO = u = u0 + us (44)

where,
us = −Λ−1(ε+ ν)sign(σ) (45)

From (44), (45) and (43), we have

σ̇(t) = −(ε+ ν)sign(σ) + ε (46)

Consider a Lyapunov function candidate V = (1/2)σTσ.
Adding the result in (46) to the derivative of the Lyapunov
function, we achieve

V̇ = σT σ̇

= σT (−(ε+ ν)sign(σ) + ε)

= −(ε+ ν)|σ|+ εσ

< 0

(47)

Therefore, the stability of the system is established based
on Lyapunov criteria.

Due to the effectiveness of the disturbance observer, the
disturbance estimation error, i.e., ε, is much smaller than the
compounded disturbance, i.e., ∆. Therefore, the chattering
generated by the controller (45) will be smaller than that of
the controller (30). Hence, we can conclude that, theoretically,
the hybrid ISMC, FLS and DO is better than the hybrid ISMC
and FLS, and much better than the ISMC alone.

In the controller (46), the switching term was designed
based on the conventional SMC, which provides big chatter-
ing. In addition, the sliding gain was selected based on the
bounded value ε, which might not be obtained in advance
in practical applications. To eliminate the chattering and to
relax the assumption, an adaptive dual-layer supper-twisting
algorithm [29], [30] is employed in this paper. Therefore, the
switching term in (45) can be re-designed as

us = −Λ−1(µ1|σ|
1
2 sign(σ) + ξ)

ξ̇ = ks(t)sign(σ)
(48)

where µ1 is a positive constant, and the dual layer adaptive
scheme is given by:

δs(t) = ks(t)−
1

υ1
|weq(t)| − υ0, υ0, υ1 > 0

k̇s(t) = − (%0 + %s(t)) sign (δs(t)) , %0 > 0

%̇s = βs|δs(t)|, βs > 0

(49)

where weq(t) obtained by low-pass filtering (LPF) of
ks(t)sign(s), and the gain µ1 > 0 is to be selected large
enough, and υ0, υ1, %0, βs > 0 are control parameters.

Integrating the composite controller (44) and (48) into (43):

σ̇(t) = −µ1|σ|
1
2 sign(σ)− ξ + ε

ξ̇ = ks(t)sign(σ)
(50)

As a similar analysis as in [29], [30] for the system (50),
it is quite straightforward to verify that the sliding surface,
i.e., σ, is stable and convergent to zero in a finite time under
the input of the composite controller (44) and (48) and the
adaptive law (49).

Remark 3: The interested readers are encouraged to refer to
[29], [30] for the stability proof of the system (50).

Remark 4: In this paper, the adaptive fuzzy approximation
integrated with the disturbance observer is employed to reduce
the magnitude of the gain ks(t). Therefore, the sliding gain
ks(t) can be selected based on the bounded value ε rather than
the original unknown component (δ(q, q̇, τ)+Ξ), as shown in
(22). Therefore, suppose that the estimated error ε is small,
the chattering in this paper is almost eliminated since the
adaptation gain ks(t) can be selected as a smaller value.

D. Design of nominal controller for the nominal system
In the previous subsections, the obtained FLS approximation

and disturbance estimation were added into the dynamic model
of the system as a nominal component. In this section, a step-
by-step design of backstepping control method is derived to
stabilize the nominal system.

According to the aforementioned analysis, the nominal
system in (8) can be rewritten as below:

ẋ1 = x2

ẋ2 = Λu+ f(x1, x2) +WTΨ(Z) + ∆̂
(51)

The following error signals are defined for the system (51):

e1 = x1 − xd
e2 = x2 − α1

(52)

where α1 is a virtual control input to be designed later.
Step 1: From (52), we have

ė1 = ẋ1 − ẋd
= e2 + α1 − ẋd

(53)

Select the virtual control input as

α1 = −K1e1 + ẋd (54)
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where K1 is a positive definite matrix.
Step 2: From e2 = x2 − α1, it can be deduced that

ė2 = ẋ2 − α̇1

= Λu+ f(x1, x2) +WTΨ(Z) + ∆̂− α̇1

(55)

Step 3: In this step, the following Lyapunov function
candidate is selected:

V =
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2

n∑
i=1

W̃T
i Γ−1

i W̃i +
1

2
∆̃T ∆̃ (56)

where Γi (i = 1, 2, ..., n) is a symmetric positive definite
constant matrix. ∆̃ = ∆ − ∆̂ is the disturbance estimation
error.

Taking the derivative of the Lyapunov function with respect
to time, one obtains

V̇ = eT1 ė1 + eT2 ė2 +

n∑
i=1

W̃T
i Γ−1

i
˙̃Wi + ∆̃T ˙̃

∆

= eT1 (e2 + α1 − ẋd)
+ eT2 (Λu+ f(x1, x2) +WTΨ(Z) + ∆̂− α̇1)

+

n∑
i=1

W̃T
i Γ−1

i
˙̃Wi + ∆̃T (∆̇− ˙̂

∆)

(57)

Adding the results in (36) into (57), we obtain

V̇ = eT1 (e2 −K1e1)

+ eT2 (Λu0 + f(x1, x2) + ŴTΨ(Z) + W̃TΨ(Z) + ∆̂− α̇1)

−
n∑
i=1

W̃T
i Γ−1

i
˙̂
W i + ∆̃T (∆̇− ˙̂

∆)

= eT1 (e2 −K1e1)

+ eT2 (Λu0 + f(x1, x2) + ŴTΨ(Z) + W̃TΨ(Z) + ∆̂− α̇1)

−
n∑
i=1

W̃T
i Γ−1

i
˙̂
W i − ∆̃TK0∆̃ + ∆̃T ∆̇

− ∆̃TK0W̃
TΨ(Z) +

1

2
(58)

The nominal control input is selected as

u0 = Λ−1(− f(x1, x2)− ŴTΨ(Z)

− ∆̂ + α̇1 − e1 −K2e2)
(59)

The adaptive law of FLS is selected as

˙̂
Wi = Γi[e2iΨi(Z)− 2γŴi] (60)

Inserting the control input (59) and the adaptive law (60)
into (58), one obtains

V̇ ≤− eT1 K1e1 − eT2 K2e2 − ∆̃TK0∆̃

+

n∑
i=1

2γW̃i

T
Ŵi + ∆̃T ∆̇− ∆̃TK0W̃

TΨ(Z) +
1

2

(61)

Using Young’s inequality, we obtain

2γW̃i

T
Ŵi ≤ −γW̃i

T
W̃i + γWi

TWi (62)

∆̃T ∆̇ ≤
1

2
∆̃T ∆̃ +

1

2
∆̇T ∆̇ (63)

Fig. 1. Overall structure of the proposed fault tolerant controller

∆̃TK0W̃
TΨ(Z) ≤ ∆̃T ∆̃

2ς
+
ς‖K0‖2‖Ψ(Z)‖2‖W̃‖2

2
(64)

‖Ψ(Z)‖2 ≤ υ2 (65)

Inserting the results in (62), (63), (64) and (65) into (61),
we have

V̇ ≤− eT1 K1e1 − eT2 K2e2 − (K0 +
1

2ς
−

1

2
)∆̃T ∆̃

− (γ +
ς‖K0‖2υ2

2
)

n∑
i=1

W̃i

T
W̃i +

1

2
+ γ

n∑
i=1

Wi
TWi

+
∆̇T ∆̇

2

≤ −a2V + b2
(66)

where a2 = min(2λmin(K1), 2λmin(K2), 2λmin(K0 + 1
2ς −

1
2
), 2λmin(

γ+
ς‖K0‖

2υ2

2

λmax(
n∑
i=1

Γ−1
i )

)), b2 = 1
2

+ γ
n∑
i=1

Wi
TWi + ∆̇T ∆̇

2
.

λmin(·) represents the minimum eigenvalues of a matrix.
Solve the inequality (66), we get:

V ≤ (V (0)−
b2

a2
)e−a2t +

b2

a2
(67)

Since V is ultimately bounded as t→∞ as can be seen from
the inequality above. Thus, e1, e2, θ̃, ∆̃ are also bounded
according to Lemma 2. This completes the proof.

The overall structure of the proposed fault tolerant controller
is illustrated in Fig. 1.

Remark 5: The proposed method presumes full measure-
ment of the system states, i.e., q and q̇. This is one of the
limitations of the proposed method. However, in the case that
the velocity measurement is not available, the robust exact
differentiator method proposed in [63] can be employed to
eliminate this limitation.

V. RESULTS AND DISCUSSIONS

In order to verify the effectiveness of the propsosed control
method, we employ it for the fault tolerant control of a
PUMA560 robot. The PUMA560 is a well-known robot in
industrial applications, and it has been widely utilized as
a benchmark robot platform in research [7], [8], [12]. The
PUMA560 robot has 6-DOF(degree-of-freedom). In this paper,
we use the first three joints of the robot only for the sake of
presentation of the results.

The dynamic model of the PUMA robot can be described
as in (1), where the nominal parameters of the robot are
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taken from [64]. Because it is difficult to obtain the exact
mathematical model of the system in practical applications,
we assumed that the following friction and disturbance are
present.

F (q, q̇) =

 0.5q̇1 + sin(3q1) + 0.5 sin(q̇1)
1.3q̇2 − 1.8 sin(2q1) + 1.1 sin(q̇2)
−1.8q̇3 − 2 sin(q3) + 0.15 sin(q̇3)

 (68)

τd =

 2 cos(t) + 2 sin(t)
1.5 cos(t)2 + 2 cos(t)

3 sin(t)− 2 sin(t) cos(t)

 (69)

Remark 6: There are no particular reason to assume the
values of the disturbance τd used in (69). They are hypothetical
and can be replaced by other reasonable function. In a robot
system, τd represents the unknown load disturbance matrix,
so it can be represented by a time varying function with a
reasonable magnitude.

The robot is commanded to track the following trajectory

xd = [cos(t/5π)− 1, cos(t/5π +
π

2
), sin(t/5π +

π

2
)− 1]T

(70)
In order to verify the performance of the proposed

controller, i.e, AFISMC-DO, we compare it with other state-
of-the-art controllers such as PID, computed torque control
(CTC), nonsingular fast terminal sliding mode controller
(NFTSMC), which has been recently proposed for FTC
systems [8], [24]. The design of the NFTSMC is described
in Appendix A. The design of the CTC and PID are omitted
in this paper since they are well-known methods and can be
easily found in the literature. TABLE I depicts the selection
of parameters of the controllers. It is notice that most of the
gains of the proposed AFISMC-DO, i.e., Ko,K1,K2, λ,Γ, γ,
are proportional gains, so the effects of these parameters are
quite obvious. For instance, if bigger values of the gains are
selected, the convergence rate of the system is quicker, but the
oscillatory is bigger, and vice versa. The parameters used in
this simulation are selected based on trial and error procedure
or based on experience to obtain a compromise between the
convergence speed and oscillatory. The set of membership
functions of the fuzzy logic used in the AFISMC-DO are
selected as follows:
µA1

i
= exp

(
−(xi + 7)

2
/4
)
, µA2

i
=

exp
(
−(xi + 5)

2
/4
)
, µA3

i
= exp

(
−(xi + 3)

2
/4
)
, µA4

i
=

exp
(
−(xi + 1)

2
/4
)
, µA5

i
= exp

(
−(xi + 0)

2
/4
)
, µA6

i
=

exp
(
−(xi − 1)

2
/4
)
, µA7

i
= exp

(
−(xi − 3)

2
/4
)
, µA8

i
=

exp
(
−(xi − 5)

2
/4
)
, µA9

i
= exp

(
−(xi − 7)

2
/4
)
.

The above membership functions was selected based on
heuristic trial-and-error procedure.

To show the performance of the controllers, we consider the
robot in two working scenarios.

First, we consider the robot working in normal operation.
The effectiveness of the designed disturbance observer in (37)
is analyzed at first. To facilitate in verifying the performance
of the disturbance observer, we assume that the fuzzy logic
system provides good estimation of the unknown function δ,

Fig. 2. Time history of real disturbances and estimated disturbances

and thus, the effects of δ can be removed. The target of the dis-
turbance observer in this condition is to precisely approximate
the disturbance component τd. The time history of the real
disturbances τd and the outputs of the disturbance observer
are illustrated in Fig. 2. From Fig. 2, it can be seen that
the disturbance observer provides high estimation precision.
The trajectory tracking performances and the tracking errors
of these controllers are shown in Figs. 3 and 4, respectively.
TABLE II reports the root-mean-square-error (RMSE) of the
controllers. From Figs. 3 and 4, it can be observed that the
CTC does not provide good tracking performance for the
system when the high uncertainty and disturbance are present.
The PID provides better tracking performance than the CTC.
Due to the robustness against the uncertainty and disturbance
of the SMC, the NFTSMC and the AFISMC-DO provide much
lower tracking error than the CTC and the PID controller. On
the other hand, the proposed AFISMC-DO has better tracking
performance than the NFTSMC. Particularly, as shown in
TABLE II, the tracking errors of the CTC on three joints are
0.0395, 0.0237 and 0.1259, respectively. The corresponding
tracking errors of the PID are 0.0139, 0.0174 and 0.0116,
respectively. The high tracking performance of the NFTSMC
and the AFISMC-DO are clearly shown in TABLE II, where
the tracking errors of the NFTSMC are 0.0043, 0.0053 and
0.0051, respectively, while the tracking errors of the proposed
method, i.e., AFISMC-DO, are 0.0023, 0.0019 and 0.0019,
respectively.

In the next, we consider the tracking performance of these
controllers when faults occur in the system. To do this, the
following fault function is assumed:

φ(q, q̇, τ) =


(20 sin(q1q2) + 14 cos(q̇1q2)

+12 cos(q̇1q̇2)), t ≥ 20
−0.85τ2, t ≥ 30
−0.3τ3, t ≥ 30


(71)

It means that the fault φ1 = 20 sin(q1q2) + 14 cos(q̇1q2 +
12 cos(q̇1q̇2) occurs in the first actuator from the time t = 20s,
and the faults φ2 = −0.85τ2 and φ3 = −0.3τ3 occur in the
second and third actuator (the second and third actuator loss
85% and 30% their effectiveness, respectively), respectively,
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Fig. 3. Trajectory of the system in normal operation under the con-
trollers. (a) CTC, (b) PID, (c) NFTSMC and (d) AFISMC-DO.

from the time t = 30s.
The tracking errors of the system in the presence of the

faults under the inputs of the controllers are shown in Fig.
5, while TABLE III illustrates the corresponding RMSE of
the controllers. From Fig. 5, we can see that the CTC has
very low robustness against the effects of fault; the stability of
the system are almost broken down when the faults occurred
at the time t = 20s and t = 30s. The NFTSMC and the
PID controllers provide much better robustness and transient
response against the effects of faults than the CTC. As our
expectation, the proposed AFISMC-DO provides very good
transient response and robustness for the system despite the
effects of fault. Consequently, the performance of the proposed
AFISMC-DO is much better than the CTC, the PID and the
NFTSMC in terms of tracking error and convergence speed, as
shown in Fig. 3. Particularly, according to Table II, the RMSEs
of the proposed AFISMC-DO for three joints are 0.0024,
0.0020 and 0.0020, respectively. In contrast, the corresponding
RMSEs of the CTC, the PID and the NFTSMC are (0.3088,
0.2003 and 0.1944), (0.0297, 0.0560 and 0.0139) and (0.0053,
0.0086 and 0.0055), respectively. One more interesting point
that can be picked out from Fig. 4, Fig. 5, TABLE II and
TABLE III is that no big difference between the system in
normal operation and fault operation in the performance of the
proposed AFISMC-DO received. This means that the proposed
method tackles the effects of the faults very well.

To further verify the fast transient response and convergence
of the proposed AFISMC-DO, we compare the variations of
the adaptive sliding gains of the NFTSMC (in (78)) and the
proposed AFISMC-DO (ks(t) in (49)). The variations of the
adaptive gains of the NFTSMC are shown in Fig. 6, while
those for the AFISMC-DO are shown in Fig. 7. As the results
shown in Figs. 6 and 7, we can see that, generally, the sliding
gains are increased when the faults occur in the system to
compensate for the effects of faults. However, the proposed
AFISMC-DO uses much smaller gain values to compensate
for the assumed uncertainty, disturbance and faults than that
of the NFTSMC.

The control inputs of the controllers, i.e., CTC, PID,

Fig. 4. Tracking errors of the controllers when the system in normal
operation.

NFTSMC and AFISMC-DO, are shown in Fig. 8. Obviously,
the control inputs of the PID and the CTC controllers provide
smooth control efforts. Otherwise, by using the effective
chattering elimination method, the chattering of the NFTSMC
and the AFISMC-DO are almost eliminated. In addition,
considering the efforts of the controllers when the fault occurs
(at the time t = 30s), as shown in Fig. 8, the CTC uses less
control efforts than other controllers. Although the PID uses
higher control efforts than the NFTSMC and the AFISMC-DO,
however, as aforementioned discussions, the tracking error
of the PID was significantly higher. The control efforts of
the AFISMC-DO and the NFTSMC are quite comparable.
However, as analyzed above, the tracking performance of the
AFISMC-DO was higher than the NFTSMC. Therefore, when
considering the performance of the FTC system in terms of
tracking error, transient response, fast convergence and control
efforts, the proposed method, i.e., AFISMC-DO, is superior.
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TABLE I
PARAMETERS USED IN THE SIMULATION OF THE CONTROLLERS

Controller Parameters V alue

CTC Kp,Kd 200, 10
PID Kp,Ki,Kd 200, 100, 10
NFTSMC k1, k2, λ, p, q, 10, 5, 1.4, 9, 7

k, a (in (78)), % 1/3, 0.01, 0.1
AFISMC-DO λ (in the sliding surface(16)) 5

µ1, υ0, υ1, %0, βsin(48)and(49) 10, 3, 1.99, 3, 5
Ko (the gain of DO in(34)) diag(5, 5, 5)
K1(in the nominal controller(59)) diag(3, 3, 3)
K2(in the nominal controller(59)) diag(3, 3, 3)
Γ, γ (in adaptive law of FLS(60)) 2, 1

TABLE II
TRACKING ERROR OF THE SYSTEM IN NORMAL OPERATION

Error E1 E2 E3

CTC 0.0395 0.0237 0.1259
PID 0.0139 0.0174 0.0116
NFTSMC 0.0043 0.0052 0.0051
AFISMC-DO 0.0023 0.0019 0.0019

Remark 7: The values of antecedent-vertex of FLS used in
this simulation are selected based on experiments and human
knowledge about the system. To analyze the generality of the
proposed method, different pairs of antecedent-vertex have
been checked in this simulation. The experimental results
shown that the tracking accuracies for different pairs of
antecedent-vertex were not much different. This was because
the FLS approximation errors would have been eventually
compensated by the disturbance observer, as discussed in
section VI-B. In the literature, some papers have discussed the
use of tensor product (TP) to obtain the generality of the use
of FLS, for example [65]. Employing the TP to get generality
of the use of FLS will be investigated in our future works.

Remark 8: In this simulation study, to reduce the length of
the paper, we consider the effects of abrupt faults only since
the effects of abrupt faults is much heavier than the incipient
faults. Since the proposed method tackles the effects of the
abrupt faults well, it is believed to tackle the incipient faults
very well.

Remark 9: In this paper, the effects of faults are treated
as the effects of an additional disturbance, and the robust
fault tolerant control is developed to tackle the effects of the
additional disturbance. Therefore, the proposed method can
be considered as a strong robustness controller, which can be
applied for wide practical applications to robust against the
effects of uncertainties and disturbances.

VI. CONCLUSION

A new robust FTC is developed for robot manipulators using
an adaptive fuzzy integral sliding mode control (AFISMC)
and a disturbance observer (DO) (AFISMC-DO). The design
procedure is started by analyzing the features of the ISMC for
FTC system. Then, in order to enhance the performance of the

TABLE III
TRACKING ERROR OF THE SYSTEM IN FAULT OPERATION

Error E1 E2 E3

CTC 0.3088 0.2003 0.1944
PID 0.0297 0.0560 0.0139
NFTSMC 0.0053 0.0086 0.0055
AFISMC-DO 0.0024 0.0020 0.0020

Fig. 5. Tracking errors of the controllers when the system in fault
operation.

system, an adaptive fuzzy logic system and a disturbance ob-
server are developed and integrated into the nominal controller
of the ISMC. In addition, an adaptive two-layer super-twisting
algorithm is employed into the hybrid system to eliminate the
chattering and enhance the tracking precision of the system.
The nominal controller of the proposed method is built based
on the backstepping control technique so that the adaptive
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Fig. 6. Variation of the adaptive gains of the NFTSMC controller.

Fig. 7. Variation of the adaptive gains ks(t) of the AFISMC-DO con-
troller.

Fig. 8. Control efforts of the controllers when the system in fault
operation. (a) CTC, (b) PID, (c) NFTSMC and (d) AFISMC-DO.

law of the fuzzy logic system can be reconstructed properly
based on Lyapunov criteria. The effectiveness of the proposed
method is verified on the PUMA560 robot and compared with

other advanced control methods. The comparison results verify
the effectiveness of the proposed strategy.

In this paper, the parameters of the proposed control method
were chosen based on experiences or trial and error procedure.
Therefore, the selected parameters were not the optimal values.
In addition, the constraints of the control inputs were not
considered (the output constraints of the system could be
guaranteed already due to the property of the ISMC, as afore-
mentioned discussion). In the future work, we will investigate
algorithms/methods to obtaining the optimal parameters of the
system and study the effectiveness of the proposed controller
for the system under the input constraints.

APPENDIX A
In this appendix, the design of the NFTSMC is presented.

Define e = x1 − xd as the trajectory tracking error. To obtain
a finite time convergence, the sliding surface of NFTSMC can
be chosen as follows [8], [24]:

σ = e+ k1e
[λ] + k2ė

[p/q] (72)

where σ is the sliding variable, k1 = diag(k11, k12, ..., k1n) ∈
<nxn and k2 = diag(k21, k22, ..., k2n) ∈ <nxn are positive
definite matrices, respectively, p and q are positive odd num-
bers satisfying the relation 1 < p/q < 2 and λ > p/q.

Differentiating (72) with respect to time, we have

σ̇ = ė+ k1λ|e|λ−1
ė

+ k2
p

q
|ė|(p/q)−1(Λu+ f(x1, x2) + δ(q, q̇, τ) + Ξ)

(73)

According to [8], [24] and based on (73), the NFTSMC can
be designed as follows:

u = ueq − us (74)

where ueq is designed as:

ueq = Λ−1(− 1

k2

q

p
(ė[2−p/q] + k1λ|e|λ−1ė[2−p/q])

− f(x1, x2) + ẍd)
(75)

And, us is as below

us = Λ−1(ρ+ ν)sign(σ) (76)

The controller (76) is designed based on the assumption that
the bounded value ρ can be obtained in advance. In order to
relax the assumption, the adaptive law can also be applied.
The reaching law (76) can be modified as

us = Λ−1(ρ̂+ ν)sign(σ) (77)

where ρ̂ is the estimation of ρ, and this value is adapted as
follows:

˙̂ρ =

{
0, if‖σ‖ < a
1
k
‖σ‖, if‖σ‖ ≥ a

(78)

In order to eliminate the chattering, the boundary method
below is applied to replace the sign function in (77).

us = −Λ−1(ρ̂+ ν)
σ

|σ|+ %
(79)

where % is the small positive constant.
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