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In this work, we study the performance of a quasistatic and quantum-adiabatic magnetic Otto cycles with a
working substance composed of a single graphene quantum dot modeled by the continuum approach with the
use of the zigzag boundary condition. Modulating an external or perpendicular magnetic field, in the quasistatic
approach, we found a constant behavior in the total work extracted that is not present in the quantum-adiabatic
formulation. We find that, in the quasistatic approach, the engine yielded a greater performance in terms of total
work extracted and efficiency as compared with its quantum-adiabatic counterpart. In the quasistatic case, this
is due to the working substance being in thermal equilibrium at each point of the cycle, maximizing the energy
extracted in the adiabatic strokes.

DOI: 10.1103/PhysRevE.101.012116

I. INTRODUCTION

The concept of quantum heat engines (QHEs) was intro-
duced by Scovil and Schultz-Dubois in Ref. [1], in which
they demonstrate that a three-level energy maser can be
described as a heat engine operating under a Carnot cycle.
This important research gave way to the study of quantum
systems implemented as the working substances of heat ma-
chines with the goal of realizing efficient nanoscale devices.
These devices are characterized by the structure of their
working substance, the thermodynamic cycle of operation,
and the dynamics that govern the cycle [2–34]. A QHE’s
cycle consists of a combination of quantum thermodynamics
processes such as the quantum-adiabatic process, the quantum
isothermal process, the quantum isobaric process, and the
quantum isochoric process [35]. Therefore, we always have a
quantum-adiabatic version of the most famous cycles, such as
those by Carnot, Ericsson, Brayton, and Otto. In particular, the
quantum Otto cycle has been considered for different working
substances such as spin-1/2 systems [36,37] and harmonic
oscillators [38], among others [39–46]. Furthermore, it has
been shown that thermal machines can be reduced to the limits
of single atoms [47], and recently, the effects of the wave
function symmetry on Otto’s engine performance have been
studied analytically [48], further increasing the interest of this
incipient area.

On the other hand, quantum dots today have a robust
architecture of devices based on them. There is always a
search in the control of its size, shape, and distribution to
characterize its optoelectronic properties in order to find
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future technological applications [49]. In this context, the
case of quantum dots of GaAs or (InAs) under a controllable
external magnetic field as a working substance operating
under an Otto cycle has been studied recently [50], where the
comparison has been made regarding the application of the
quasistatic and quantum-adiabatic performance of a multilevel
Otto cycle in a diagonal formulation of the density matrix
operator.

A possible extension of the work [50] focused on the
so-called two-dimensional (2D) materials [51]. To date, the
most characterized and studied one is graphene. Graphene is
a one-atom-thick covalently bonded carbon layer ordered in
a honeycomb lattice and has attracted considerable attention
[52]. One of the factors which makes graphene so attractive
for research is the ultrafast low-energy dynamics of its charge
carriers. Those carriers can be described by a 2D Dirac-Weyl
equation and linear dispersion relation. For graphene quantum
dots [53,54], the low-energy approach using the Dirac equa-
tion with boundary conditions is an excellent approximation.
We note two approaches, the zig-zag boundary conditions, and
infinite mass boundary conditions. The first one is related to
the vanishing of one component of the spinor at the dot edge,
and the second one requires that the region outside the dot is
forbidden for particles due to the relationship of the Fermi ve-
locity in the form of v f ∝ 1/m. These two approaches satisfy
the condition of zero current at the edge of the graphene dot
[55–58].

In this work, we study the performance of a quasistatic
and quantum-adiabatic Otto cycle in a diagonal formulation of
the density matrix operator, where the working substance in-
volves a graphene quantum dot under a perpendicular external
magnetic field. This system is described using the continuum
approach (Dirac equation with boundary conditions) fully

2470-0045/2020/101(1)/012116(12) 012116-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3265-9021
https://orcid.org/0000-0001-9235-9747
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.012116&domain=pdf&date_stamp=2020-01-13
https://doi.org/10.1103/PhysRevE.101.012116


FRANCISCO J. PEÑA et al. PHYSICAL REVIEW E 101, 012116 (2020)

addressed by Grujić et al. [57] and recently extended for rings
and antidots structures by Thomsen and Pedersen [58]. We
report that in the quasistatic approach the total work extracted
is greater than its quantum-adiabatic counterpart for high-
temperature behavior, whereas for low-temperaturesbehavior
both cases studied tend to converge. In addition, for the quasi-
static case, we find a region of parameters in which the total
work extracted becomes independent of the change in the
external parameter that governs the cycle, an effect which is
not perceptible under the quantum-adiabatic formulation.

II. MODEL

We consider the Dirac-Weyl Hamiltonian for low-energy
electron states in graphene under the presence of an external
perpendicular magnetic field and a mass-related potential
given by

H = vF (p + eA) · σ + V (r)σz, (1)

where vF ∼ 106 m/s, A is the vector potential, and σ =
(σx, σy) are Pauli’s spin matrices. Equation (1) is valid for the
K valley states in graphene [57]. For the study of K ′ valley
states it is necessary to replace σ by its complex conjugate
σ∗. We take the model treated in Refs. [57,58] where the
authors assume that the carriers are confined to a circular area
of radius R, which is modeled by a potential of the form

V (r) =
{

0 if r < R,
∞ if r � R, (2)

where r is the radial coordinate of the cylindrical coordinates.
There are two different boundary conditions that can be ap-
plied to treat the potential form of Eq. (2): the zigzag boundary
conditions (ZZBCs) and the infinite mass boundary conditions
(IMBCs). For the case of ZZBCs the two Dirac cones are
labeled with the quantum number k, which has the value +1 in
the K valley and −1 in the K ′ valley. For the IMBCs, however,
the so-called valley-isotropic form of the Hamiltonian is used,
and the valleys are differentiated by another quantum number
τ that appears in the IMBC formulation as a multiplicative
factor to the potential V (r) in Eq. (1). First, we will compare
these two approximations used in the continuum approach,
and we will discuss the reason for the selection of one over
the other in the thermodynamic study of this work.

In order to obtain the energy spectrum of the graphene
quantum dot previously reported [57,58], we introduce the
dimensionless variables ρ = r/R, β = R2/2l2

B = eBR2/2h̄,
and ε = E/E0 = ER/h̄v f , where E is the carrier energy and
lB = √

h̄/(eB) is the magnetic length. It is very well known
that the total angular momentum, Jz, containing the contri-
butions of orbital angular momentum (Lz ) and pseudospin
(h̄σz/2), commutes with the Hamiltonian of Eq. (1) and is
therefore a conserved quantity. Under these assumptions the
two-component wave function must have the form

�(ρ, φ) =
(

ψ1(ρ, φ)

ψ2(ρ, φ)

)
= eimφ

(
χ1(ρ)

eikφχ2(ρ)

)
, (3)

where m = 0,±1,±, . . . is the total angular momentum
quantum number and φ is the polar angle.

For the case of IMBC, the charge carriers are confined in-
side the quantum dot. This leads to the infinite-mass boundary,

which yields the following condition between the components
of the spinor:

ψ1(ρ∗, φ)

ψ2(ρ∗, φ)
= iτeiφ , (4)

where ρ∗ correspond to the radial coordinate evaluate at the
boundary (r = R, i.e., ρ∗ = 1). The solution of the time-
independent Dirac equation given by H�(ρ, φ) = E�(ρ, φ)
is fully addressed by Grujić et al. [57], and for the case of
nonzero energy solutions and β �= 0 (nonzero external field),
the IMBC leads to the following eigenvalue equation:

τε

2
1F̃1

(
m + 1 − ε2

4β
, m + 2, β

)
−1F̃1

(
m + 1 − ε2

4β
, m + 1, β

)
= 0, (5)

where 1F̃1(a, b, z) is the regularized confluent hypergeometric
function.

On the other hand, the ZZBC requires one of the compo-
nents of the spinor to vanish at the boundary:

ψ (ρ∗, φ) = 0 → χ1(ρ∗) = 0. (6)

The treatment of the Dirac equation with the combination
of Eq. (6) leads to an equation of eigenvalues of the form

1F̃1

(
m + 1

2
+ k

2
− ε2

4β
, m + 1, β

)
= 0. (7)

The energy spectrum for a graphene quantum dot of R =
70 nm is presented in Fig. 1 for a range of energy between
−200 and 200 meV as a function of the perpendicular external
magnetic field for IMBCs [Fig. 1(a)] and ZZBCs [Fig. 1(b)].
A crucial difference between the two approaches is the pres-
ence of the zero-energy eigenstate for the ZZBCs, which is
missing for the IMBCs. For our model, the zero-energy state
will be considered due to its importance confirmed in recent
experiments [59] and to the fact that in the case of IMBCs it
does not appear due to mathematical reasons.

In Grujić et al. [57], the authors discuss the influence of
the boundary conditions on the energy spectra. In that work,
the tight-binding (TB) approximation is compared with the
continuum approach with ZZBCs (as we use here for our
QHE) and IMBCs. They propose a TB model of a circular
region of graphene surrounded by an infinite-mass media and
find that the continuum model with ZZBCs converges very
well for larger dots (i.e., R > 10 nm) and lower-energy states
between 0 to 0.20 eV approximately because some curves
in the energy spectrum as a function of the dot radius (R)
obtained using the TB approximation do not decay mono-
tonically as ∝1/R and exhibit some fluctuation behavior,
which is more pronounced for smaller radii. In particular,
they conclude that the microscopic details become important
as R decrease and cannot be described by the continuum
approach. Therefore, it is important to recall that our working
substance satisfies the conditions of large dot radius (i.e., we
work for R > 10 nm) and low-energy spectra (i.e., we work
between 0 and 200 meV) so that the edge imperfections are
less important.
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FIG. 1. Energy spectrum (in meV) of the graphene quantum dot
of R = 70 nm as a function of the external magnetic field B (in teslas)
for (a) the infinite mass boundary condition (IMBC) and (b) zigzag
boundary condition (ZZBC). Only the six lowest electron and hole
energy levels are shown for the azimuthal quantum number between
m = −4, . . . , 0, . . . , 4. The red lines represent the solutions for τ =
+1 (or k = +1) and the blue lines the energy for τ = −1 (or k =
−1). In panel (b) the black line represent the zero energy solution.

III. THERMODYNAMICS QUANTITIES

In order to obtain the thermodynamics of the system, we
calculate the canonical partition function given by

Z (T, B) =
∑
m,τ

e− Em,τ
kBT , (8)

where Em,τ correspond to the energy levels of the particle-
like solution of the Dirac equation (i.e., Em,τ � 0) calculated
for the same parameters of Fig. 1. As we can see from
Fig. 1, some energies decrease as the applied magnetic field
increases. Those energy levels correspond to the K ′ valley
for m < 0 (k = −1 in the formulation of ZZBCs). This is an
essential behavior that must be contemplated for the calcu-
lation of the partition function. That is why, in our numeri-
cal calculations, we have considered the azimuthal quantum
number m ranging from −50 to 50. To guarantee a good
convergence in the physical quantities, that will be calculated
in a range of magnetic field between 0 < B � 6 T. In addition,
the lowest nonzero electron energy level in the ZZBC case

(also in the IMBC case) initially decreases linearly with the
magnetic field but then decreases with a Gaussian decay
at high magnetic fields. We use this approximation in our
calculations, and therefore we fit the energy levels with the
function

ε(β ) = ae−( β−b
c )2

, (9)

where a, b, and c are fitting parameters that depend on the
different values of m < 0 in the K ′ valley.

The thermodynamic quantities of the system are defined
accordingly as

F = −kBT ln [Z (T, B)], S =
(

∂F (T, B)

∂T

)
B

, (10)

U (T, B) = kBT 2

(
∂ lnZ (T, B)

∂T

)
B

, (11)

CB =
(

∂U (T, B)

∂T

)
B

, (12)

and

M(T, B) = −
(

∂F
∂B

)
T

, (13)

where F , S,U,CB and M are the free energy, entropy, inter-
nal energy, specific heat at constant magnetic field, and the
magnetization of the system, respectively. In Fig. 2(a) we plot
the specific heat as a function of temperature and external
magnetic field applied. First, we observe that for a temperature
range lower than T ∼ 50 K and magnetic fields under than
2.5 T, the system has a specific heat smaller than those in the
range between 2.6 and 6 T. Near T ∼ 50 K there is a change
in the behavior of the specific heat for fields lower than 2.5 T,
where it is observed that the highest specific heat is obtained at
the lowest external magnetic field value applied. On the other
hand, the magnetization as a function of temperature and the
external magnetic field is presented in Fig. 2(b) and Fig. 2(c),
respectively. We observe positive values for M in the region
between 0 < T < 200 K. As we will see, the magnetization
plays a fundamental role in the interpretation of the total work
extracted in a cycle whose control parameter is the magnetic
field, because the quasistatic work for this case is given by
W = − ∫

M dB. The standard definition of a diamagnetic
material is that of a material whose magnetization is negative
if the applied magnetic field is positive. Instead, a material
is paramagnetic when the magnetization has the same sign
as the applied field. To analyze our magnetization results, we
use a simple three-level energetic model composed of ε1 = 0,
ε2 = 1 + √

B/6, and ε3 = 2e−B/6 in order to mimic the main
feature of the spectrum shown in Fig. 1. The dimensionless
energy spectrum proposed is displayed in Fig. 3(a) where
the first energy level simulates the zero-energy state obtained
employing ZZBCs; the second imitates the Landau levels of
pristine graphene, and the last energy level ε3, deals with the
energy levels of the K ′ point for negative values of m. If
we examine the magnetization [calculated in the same way
as Eq. (13)] as a function of the magnetic field displayed in
Fig. 3(b) of this “toy model,” we observe that the system has
para- and diamagnetic behavior. The diamagnetic behavior
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FIG. 2. (a) Specific heat and (b) magnetization as a function of
temperature in the range of 0.1 to 200 K for different values of
the external magnetic field in the range 0.01 to 6 T (blue to red).
(c) Magnetization as a function of the external magnetic field for
different values of temperatures in the range 0.1 to 200 K (blue to
red, respectively).

arises because there are branches of the energy spectra that
increase with the magnetic field (being Landau levels of
graphene which are proportional to

√
B), and, therefore, they

will have a negative magnetization.
On the other hand, a branch of the spectrum whose energy

decreases with the magnetic field (the energy levels with

FIG. 3. (a) Energy levels (in arbitrary units) for the “toy model”
proposed to understand the full numerical results of the graphene
quantum dot. The energy states ε1, ε2, and ε3 represent the zero en-
ergy state, the Landau level of pristine graphene, and the solution for
m negatives states of the K ′ point, respectively. (b) Magnetization as a
function of the magnetic field for different values of the temperature
ranging from 2.2 up to 5.2 (in arbitrary units) for the “toy model”
proposed. As we can see for low external magnetic fields, we have
positives values of magnetization, while at higher magnetic fields,
we have negatives values for M.

negative m for the K ′ point) will have a positive magnetiza-
tion; consequently, that branch contributes to paramagnetism.
Therefore, when both branches are present, both components
(para- and diamagnetic) compete, and the one with the more
significant probability will prevail. This, of course, will de-
pend on the temperatures and the applied magnetic field.
In our real model, we work in a range of temperatures up
to 200 K. If we further increase the temperature the popu-
lations of higher energy levels start to become relevant in
the thermodynamic calculations, and we would thus need to
include higher energy levels (>200 meV) breaking the low-
energy approximation where the continuum approach is valid.
Consequently, we observe only a part of the magnetization
where the negative m states for the K ′ point are a strong
influence.

In Fig. 4(a) we plot the entropy as a function of tempera-
ture, where we see that the entropy is higher as the external
field grows. In Fig. 4(b) we can see the effects of the de-
generation of energy levels over S(T, B) for high-temperature
behavior and low magnetic field. From Fig. 1, the energy
states present many crossings along the range of 0 < E < 200
(in meV) for low magnetic field behavior. These crossings are
the reason why the entropy for higher temperatures and lower
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FIG. 4. (a) Entropy as a function of temperature for different
values of the external magnetic field from 0.1 to 6 T (blue to red)
and (b) entropy as function of external magnetic field for different
values of temperature from T = 0.1 to 200 K (blue to red).

fields tends to collapse to a constant value. On the one hand, as
we discussed before, the case of ZZBCs exhibits a zero energy
state. Therefore, the entropy for B → 0 and T → 0 tends also
to a constant value as we observe in Figs. 4(a) and 4(b) and is
proportional to ln(2) because of the double degeneracy of the
zero energy state due to K and K ′ valleys. Also, in Fig. 4(b)
we can appreciate a change in the behavior for the entropy
in the range 0 < B < 1 (in units of teslas). This is due to the
additional crosses that incorporate the states of the K ′ valley
for m < 0 in that region of the external field. This effect is
amplified with temperature because more states are populated
that exhibit the above-mentioned crossings.

IV. QUANTUM-ADIABATIC AND QUASISTATIC
OTTO CYCLE

To treat the Otto cycle in the quantum-adiabatic and
quasistatic formulation, we follow the treatment given in
Refs. [13,60,61], which identifies the heat transferred and
work performed during a thermodynamic process employing
the variation of the internal energy of the system. The qua-
sistatic version of these cycle is composed of four strokes:
two isochoric processes and two adiabatic processes. In the

FIG. 5. Pictorial description of the proposed Otto cycle.

quantum version of this cycle, the processes involved are
replaced by the respective quantum versions. The cycle pre-
sented in Fig. 5 proceeds in the form B → A → D → C →
B, where the processes A → D and C → B are isochoric
processes, while the processes B → A and D → C are the
adiabatic strokes, respectively. It is important to point out that
during the isochoric transformations the system is put in con-
tact with the thermal reservoirs, while during the adiabats, the
magnetic field is varied. The heat absorbed (Qq

in) and released
(Qq

out) along the quantum-adiabatic cycle is given by [60]

Qq
in =

∑
m

∑
τ

El
m,τ

[
Pm,τ (Th, Bl ) − PA

m,τ

]
, (14)

Qq
out =

∑
m

∑
τ

Eh
m,τ

[
Pm,τ (Tl , Bh) − PC

m,τ

]
, (15)

where Th(l ) corresponds to the hot (low) reservoir, Eh,l
m,τ are

the eigenergies of the systems in the quantum isochoric
process to an external magnetic field Bh(l ), PA,B,C,D

m,τ are the
corresponding occupation probabilities along the cycle, and
the superscript q denotes that is associated to the quantum
version of the Otto cycle. The net work done in a single cycle
can be obtained from Wq = Qq

in + Qq
out:

Wq =
∑

m

∑
τ

(
El

m,τ − Eh
m,τ

)
×[Pm,τ (Th, Bl ) − Pm,τ (Tl , Bh)]. (16)

The main difference between the quasistatic and quantum-
adiabatic Otto cycle is related to points A and C in the cycle. In
the quasistatic case, the working substance can be at thermal
equilibrium with a well-defined temperature at each point. On
the other hand, for the quantum adibatic case, the working
substance reaches thermal equilibrium only in the isochoric
stages at points B and D. After the adiabatic stages, the
quantum system is in a diagonal state, which is not a thermal
state. For the quasistatic engine, the heat absorbed can be
calculated by replacing PA

m,τ with P(TA, Bl ) in Eq. (14) and
the heat released replacing PC

m,τ with P(TC, Bh) in Eq. (15).
Therefore, the quasistatic definition of heats involved in the
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cycle is given by

Qqs
in = UD(Th, Bl ) − UA(TA, Bl ), (17)

Qqs
out = UB(Tl , Bh) − UC(TC, Bh), (18)

where TA and TC are determined by the condition imposed by
the quasistatic isentropic strokes, and the superscript c denotes
that it is associated to the quasistatic version of Otto cycle.
Therefore, the quasistatic work (W ) is given by the difference
of four internal energies in the form [62]

Wqs = UD(Th, Bl ) − UA(TA, Bl )

+UB(Tl , Bh) − UC(TC, Bh). (19)

Furthermore, the efficiencies are given by

ηqs = Wqs

Qqs
in

, (20)

ηq = Wq

Qq
in

. (21)

In the case of quasistatic isentropic strokes, we can obtain
the intermediate temperatures (TA, TC) using the entropy func-
tion obtaining from Eq. (10) and requiring that

S(Tl , Bh) = S(TA, Bl ),

S(Th, Bl ) = S(TC, Bh).
(22)

For the presentation of efficiency and work results, we
define the parameter r given by

r =
√

Bh

Bl
, (23)

which represents the “compression ratio” of the problem (in
analogy with the case of Otto cycle operating with an ideal
gas). Finally, we define the Carnot efficiency as

ηCarnot = �T

Th
= Th − Tl

Th
, (24)

which serves as a reference value for the efficiency values
obtained for this case study.

V. RESULTS AND DISCUSSIONS

For a correct interpretation of the results for W and η that
will be shown below, it should be taken into account that
given a fixed parameter configuration (the values of Tl , Th, Bl ,
and Bh), a single value of W and η is obtained. A black
dot will show this particular value in the graphs, and in the
left panels of the figures, the corresponding cycle over the
thermodynamics quantities is presented. To obtain W and
η as a function of the r parameter, we fix the values of
the isotherms at points D and B (the values of Th and Tl ,
respectively) and the value of the magnetic field at point B
(the value of Bh). The parameter Bl is varied from Bh up to an
arbitrary minimum value (different from zero and positive),
and therefore the parameter r defined in Eq. (23) varies from
one onwards. For the case of the quantum adiabatic, we plot
only the positive work obtained in our calculation.

FIG. 6. The behavior of temperature (vertical axis) versus exter-
nal magnetic field (horizontal axis) for a quasistatic isentropic stroke.
The contour plot shows the different levels’ curves (constant entropy
values) exhibiting a constant temperature behavior for low magnetic
fields. As the field increases, the temperature diminishes to keep the
entropy constant.

A. Quasistatic results

If we analyze the condition of constant entropy for the
adiabatic stroke, we can obtain the behavior of temperatures
and magnetic field along the process as we can appreciate in
Fig. 6, where we observe a decrease in the temperature for an
increase in the external magnetic field. This is reflected too in
the way we design the cycle proposed in Fig. 5, where in our
case, lower temperatures are always associated with higher
fields and vice versa.

First, we start with an analysis of a cycle in the central
area of the entropy versus an external magnetic field dia-
gram. In Fig. 7 we plot the cycle proposed for the parame-
ters Tl = TB = 29.9 K, Bh = 2.65 T, and TD = Th = 119.5 K.
However, to maximize the performance keeping Bh constant,
we allow Bl to move from 2.65 to 0.85 T (the compression
ratio r moves from 1 to 1.76 approximately). We observe
that the maximum value of the total work extracted for this
case is given by 1.6 meV at r ∼ 1.3 [see Fig. 7(e)], which
means an optimal value of the maximum external magnetic of
Bh = 1.75 T, with an efficiency close to 52% [see Fig. 7(d)].
However, this is only the maximum value of total work
extracted, and it also matters to see the combination of η and
W , as we can see from Fig. 7(f), which indicates that the best
configuration is obtained close to r ∼ 1.4.

On the other hand, a very interesting result in the analysis
of W is obtained due to the form of magnetization discussed
in Sec. III. There is the possibility of bringing points A and D
closer in the cycle (over the magnetization diagram) in such a
way that a constant work extraction is obtained independent
of the change in the external magnetic field (in the range
displayed, that means 0 < B < 6 T). This behavior is observed
in Fig. 8(e), where the maximum value obtained for W is close
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FIG. 7. Proposed magnetic Otto cycle showing three different
thermodynamic quantities: Entropy (S, in units of kB), magnetization
(M), and internal energy (U ) [(a)–(c), respectively] as a function of
the external magnetic field and different temperatures from 0.1 K
(blue) to 200 K (red). (d) Efficiency (ηqs ), (e) the total work extracted
(Wqs ), and (f) the efficiency multiplied by total work extracted
(ηqs × Wqs ) for the quasistatic cycle. The black points in panels
(d)–(f) represent exactly the cycle B → A → D → C → B,
presented in panels (a)–(c). The fixed temperatures are Tl = 29.9 K
and Th = 119.5 K, and the maximum and minimum values of the
external magnetic field are given by Bh = 2.65 T and Bl = 0.85 T,
respectively. Consequently, r moves from 1 to 1.76 approximately.

to 3.4 meV with an efficiency of 50% for a set of parameters
given by Tl = TB = 30.15 K, Bh = 5.15 T, and TD = Th =
200 K, and varying Bl from 5.15 to 1.05 T. Consequently, the
compression ratio moves from 1 to 2.21 approximately. The
explanation for this particular behavior is simply that, qua-
sistatically, the total work extracted corresponds to the area
under the curve of magnetization versus the external magnetic
field. Therefore, in Fig. 8(b), when approaching points A and
D, the contribution of the left-side area begins to be negligible
compared to that of the right-hand side, independent of the
final Bl value over the sample. Therefore, this will cause the
work to tend to a constant value, as can be seen in Fig. 8(e).
It is important to note that this behavior is generated if we
make a combination in the parameters in such a way that the
temperature of points A and D lies between 150 and 200 K,
where the magnetization has a behavior increasingly close to
each other. Also, the maximum value for the efficiency is 51%
and is obtained close to r ∼ 1.7 and tends to saturate to a value
of 50%, whose value is below the limit of Carnot efficiency,
whose value for this case is ηCarnot ∼ 85%.

Finally, we consider work for the same range of the r
parameter and maintaining the temperature difference �T

FIG. 8. Proposed magnetic Otto cycle showing three different
thermodynamic quantities: Entropy (S, in units of kB), magnetization
(M), and internal energy (U ) [(a)–(c), respectively] as a function of
the external magnetic field and different temperatures from 0.1 K
(blue) to 200 K (red), where we observe the effect in the total
work extraction due to the collapse of points A and D on the
magnetization versus field diagram. (d) Efficiency (ηqs ), (e) the
total work extracted (Wqs), and (f) the efficiency multiplied by
total work extracted (ηqs × Wqs ) for the quasistatic cycle. The black
points in panels (d)–(f) represent exactly the cycle B → A → D
→ C → B, presented in panels (a)–(c). The fixed temperatures
are Tl = 39.15 and Th = 200 K, and the maximum and minimum
values of the external magnetic field are given by Bh = 5.15 T and
Bl = 1.05 T, respectively. Consequently, r moves from 1 to 2.21
approximately.

in different regions of the entropy versus field diagram con-
sidering the cases of low, medium, and high temperature to
find the best configuration that maximizes the total work
extracted. To do that, we fix the value of the external field in
Bh = 2.80 T, and we move Bl from 2.80 to 1.15 T. Therefore
the r parameter moves from 1 to 1.56. We explore three
different regions of temperatures given by the first zone,
Tl = 5.90 K, Th = 54.75 K; second zone, Tl = 96.50 K, Th =
145.35 K; and third zone, Tl = 143.85 K, Th = 192.70 K. Our
results indicate that we have a better performance for W for
low-temperature behavior, as we can appreciate from Fig. 9
(circle-dotted line). As we know, the efficiency associated to
a quasistatic engine is always upper bounded by the Carnot
efficiency, and therefore for the same variation of temperature
(i.e., same �T ), if the temperature of the hot reservoir is
growing (Th), the corresponding engine efficiency will be
smaller. Consequently, a good strategy will be to get a high
value of total work for low temperatures, which is observed
for our case.
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FIG. 9. Quasistatically total work extracted (Wc ) in units of meV
as a function of compression ratio for the same values of �T for
different regions of temperature. The value of magnetic field are
fixed in Bh = 2.80 T and Bl moves from 2.80 to 1.15 T. Therefore
the compression ratio r moves from 1 to 1.56.

B. Quantum-adiabatic results

Here we show the results of the evaluation of the quantum-
adiabatic version of the magnetic Otto cycle for the same
cases shown in Sec. V A. First, we start from the calculations
made with the same parameters of Fig. 7. From Fig. 10(a)
and 10(b), we note that the quasistatic and quantum-adiabatic
efficiency and work are equal up to the value of r ∼ 1.07.
This means, for values close to the starting external magnetic
field to point B, we do not notice a difference between the
quasistatic and quantum-adiabatic formulation of the Otto
cycle. As shown in Fig. 10(b), we find a transition from
positive work to negative work not reflected in the quasistatic
scenario close to r ∼ 1.42. Additionally, we observe that the
maximum value obtained for the quantum-adiabatic version
of W is noticeably reduced around 0.6 meV compared to its
quasistatic counterpart.

On the other hand, the behavior of constant work extraction
and efficiency obtained when we approach points A and D
in the cycle are broken for the quantum formulation of the
Otto cycle, as we can observe from Figs. 11(a) and 11(b).
Moreover, we observe only a faster transition from positive
to negative work (close to r ∼ 1.23), indicating that the ma-
chine will operate as a refrigerator rather than as a thermal
machine throughout the complete variation of the proposed r
parameter. In addition, the maximum value of quantum work
for this case dramatically decreases to an amount of the order
of 2.5 meV. It is important to remember that we are plotting
only positive values of the work, and therefore, the efficiency
defined by the Eq. (21) is well defined, and it is bounded to
the same range of r where the work obtained is positive.

Finally, our results indicate that in a low-temperature
regime in the range between 0.1 and 60 K (the blue zone over
the thermodynamics quantities as a function of the external
magnetic field for different temperatures; see Fig. 12) the
quantum-adiabatic and quasistatic work are similar to each
other in behavior and magnitude, as we observe from the left
panels of Fig. 12, and we note only some difference (smaller)
between these quantities close to r ∼ 1.3.

FIG. 10. (a) Quasistatic (ηqs, solid line) and quantum-adiabatic
(ηq, dotted line) efficiencies and (b) quasistatic (Wqs, solid line) and
quantum (Wq, dotted line) total work extracted and the product of
the efficiency by total work extracted for the quasistatic (ηqs × Wqs,
solid line) and quantum (ηq × Wq, dotted line) cases as a function
of the compression ratio r for the same set of parameters of Fig. 7.
The black point represents exactly the value obtained when we go
through the cycle in the form presented in panels (a)–(c) of Fig. 7.

C. Discussion

Our first result indicates that the quasistatic Otto cycle has
a larger total work extracted and efficiency than its quantum-
adiabatic counterpart. To understand this result, we need to
remember than in the quasistatic formulation of the Otto
cycle the working substance can be in thermal equilibrium
at each point in the cycle. Therefore, it is possible to define
the temperatures at points A and C in the cycle proposed,
and consequently, the internal energy of the systems at these
two points can be evaluated. In the quantum-adiabatic case,
the working substance is a single system that can be in
a thermal state only after thermalizing with the reservoirs,
which happens only in the isochoric strokes. Therefore, points
A and C for the quantum case, are diagonal states but not
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FIG. 11. (a) Quasistatic (ηqs, solid line) and quantum-adiabatic
(ηq, dotted line) efficiencies and (b) quasistatic (Wqs, solid line) and
quantum-adiabatic (Wq, dotted line) total work extracted and the
product of the efficiency by total work extracted for the quasistatic
(ηqs × Wqs, solid line) and quantum (ηq × Wq, dotted line) cases as
a function of the compression ratio r for the same set of parameters
of Fig. 8. The black point represents exactly the value obtained when
we go through the cycle in the form presented in panels (a)–(c) of
Fig. 8.

thermal states, thus restricting defining a temperature for said
points. Let us rewrite the quantum work given by Eq. (16) in
the form

Wq = UD(Th, Bl ) + UB(Tl , Bh)

−
∑
m,τ

[
El

m,τ Pm,τ (Tl , Bh) + Eh
m,τ Pm,τ (Th, Bl )

]
, (25)

where the two first terms appear for the standard definition of
the internal energy of the system given for this case by

U =
∑
m,τ

El (h)
m,τ Pm,τ (Th(l ), Bl (h) ). (26)

The other two terms in the Eq. (25) are a type of energy
too, but not specifically a thermodynamics definition of U ,
due to the fact that they mix the eigenenergies for the low

FIG. 12. Proposed magnetic Otto cycle showing three different
thermodynamic quantities: entropy (S, in units of kB), magnetization
(M), and internal energy (U ) [(a)–(c), respectively] as a function of
the external magnetic field and different temperatures from 0.1 K
(blue) to 200 K (red). (f) Efficiencies ηqs and ηq (solid and dotted line,
respectively), (e) the total works extracted Wqs and Wq (solid and
dotted line, respectively), and (f) the efficiency multiplied by their
respective total work extracted ηqs × Wqs and ηq × Wq (solid and
dotted line, respectively). The black points in panels (d)–(f) represent
exactly the cycle B → A → D → C → B, presented in panels
(a)–(c), The fixed temperatures are Tl = 1.10 K and Th = 57.20 K,
and the maximum and minimum values of the external magnetic
field are given by Bh = 3.41 T and Bl = 1.28 T, respectively. Con-
sequently, the value of the compression ratio r moves from 1 to 1.63
approximately.

external magnetic field with a probability for the high external
magnetic field. If we subtract Eq. (25) from Eq. (19), we
obtain the following equation:

Wqs − Wq =
∑
m,τ

El
m,τ Pm,τ (Tl , Bh) − UA(TA, Bl )

+
∑
m,τ

Eh
m,τ Pm,τ (Th, Bl ) − UC(TC, Bh). (27)

The first terms of the last equation correspond to the
average of the energy at a high magnetic field with thermal
probabilities that satisfy the adiabatic condition over the von
Neumann entropy in the form

S = −kB

∑
m,τ

Pm,τ (Tl , Bh) ln[Pm,τ (Tl , Bh)] (28)

and correspond to the entropy at point A in the cycle. The
internal energy UA(TA, Bl ) corresponds to the average value
of the energy at a low magnetic field at temperature TA with
the same value of the entropy present in Eq. (28). Therefore,
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according to principles of thermodynamics [62], UA(TA, Bl )
is a minimum due to the fact that the entropy given in
Eq. (28) corresponds to an equilibrium entropy, so it must be
maximum. Consequently, the quantity

∑
m,τ El

m,τ Pm,τ (Tl , Bh)
is always greater than or equal to the internal energy UA. The
same analysis can be performed for the two final terms of
Eq. (27), and consequently we obtain

Wqs − Wq � 0. (29)

The previous result is general and can be applied to any
system where the working substance remains in a diagonal
state and does not use quantum resources.

At the same time, if we compare the results of the total
work extraction in the magnetic Otto cycle for quantum dot
modeled by the Fock-Darwin approach and this 2D system
employing the Dirac equation with a boundary condition,
we note a considerable increase in the total work extraction
[50]. This is because the theoretical model of Fock-Darwin
considers a parabolic trap that can be controlled geometri-
cally and is approximately upper bounded by ∼3.0 meV for
GaAs quantum dots [63]. In particular, in the calculation of
Ref. [50] only the value of 1.7 meV is considered due to the
fact that the optical transition for cylindrical GaAs quantum
dots is approximately around ∼1 meV for a electrons with
effective mass of 0.067me with me corresponding to the free
electron mass [64,65]. Consequently, the total work extraction
for that case is around 10−2 meV. For the case treated in
this work, the confinement is imposed by the form of the
potential given in Eq. (2), and therefore the energy restriction
can be associated only to the validity of the application of
the Dirac equation, allowing us to work in an energy range
of up to 0.2 eV and large dot radii. Accordingly, the total
work extraction of this model is greater than the one reported
in Ref. [50].

Our second general result indicates that for very low-
temperature behavior the quantum-adiabatic work and qua-
sistatic work have similar performance. This effect is observed
too for a quantum dot of GaAs in Ref. [50]; we think that it
is a more general concept that can be explained due to the
behavior of thermal populations and the form of the energy
spectrum as a function of magnetic field for these two cases.
As we know, at low temperature there is an exponentially
decreasing occupation of the higher energy levels. In other
words, only the first low-lying energy levels define the entropy
and energies. On the other hand, by rewriting Eq. (27) in the
following form:

Wqs − Wq =
∑
m,τ

El
m,τ

⎡⎣ e− Eh
m,τ

kBTl

Z (Tl , Bh)
− e− El

m,τ
kBTA

Z (TA, Bl )

⎤⎦
+

∑
m,τ

Eh
m,τ

⎡⎣ e− El
m,τ

kBTh

Z (Th, Bl )
− e− Eh

m,τ
kBTC

Z (TC, Bh)

⎤⎦, (30)

we note that Wqs − Wq → 0 when the energy states for
the high magnetic field are close in behavior compared to
those of a low magnetic field and that these states are the
predominant ones in the cycle. This is exactly what happens
for the structure of the energy spectrum of graphene quantum
dots in Fig. 1(b) due to the solution obtained for the K ′

states and the zero-energy state in the ZZBC approximation
where these states tend to collapse. Similarly, in the case of
quantum dots of GaAs from Ref. [50], this behavior in the
energy spectrum is obtained due to inclusion of the spin in the
model. Additionally, the explanation of why quasistatic work
and quantum-adiabatic work obtained for small amounts of
the r parameter are equal (as we can see from Fig. 12), is
due to the fact that for r close to one, the difference between
the temperatures Tl with TA and Th with TC is tiny, and if we
additionally add the aforementioned behavior in the energy
spectrum, we obtain that the difference between these two
values of works is close to zero.

We strongly believe that our approach for this proposal
can be further improved. First, concerning the limitation of
the size of the material, the use of the tight-binding approach
would allow seeing the effects of size and edge in this system.
In addition, the density of states can be calculated, and all the
thermodynamics can be recalculated, considering the effects
of valence and conduction electrons. Last, this work can be
extended by employing quantum optimal control or shortcuts
to adiabaticity techniques [66–68] in order to realize experi-
mentally a high-performing Otto cycle.

VI. CONCLUSIONS

In this work, we explored the quasistatic and quantum
Otto cycle for the case of a working substance correspond-
ing to a quantum dot of graphene modeled by the Dirac
equation with the use of a zigzag boundary condition. We
analyzed all the relevant thermodynamics quantities of the
system and found that the entropy for low magnetic field
tends to a constant value. Also, due to the strong degeneracy
of the energy spectrum, the entropy grows along with the
external magnetic field for all temperatures considered. In
the quasistatic approach, we obtained a region of parameters
where the efficiency and total work extracted become con-
stant and are not present in the quantum-adiabatic approach.
Moreover, in the quantum case, we observe a sudden tran-
sition from positive to negative work extraction, indicating
that the cycle proposed corresponds to a refrigeration cycle
rather than a heat engine. Also, we reported smaller work
extraction for the quantum-adiabatic case compared to the
quasistatic approach because in the former case the system
thermalizes only in the isochoric stages, while for the latter
case the system goes through four equilibrium states. Hence,
because of the principle of minimum energy, the system is
allowed to extract more energy when the adiabatic strokes
can lead to states that are in thermal equilibrium, which is
possible only in the quasistatic case. We recall that in our
formulation the working substance remains in a diagonal state,
and we do not use quantum resources (for example, quantum
coherence), which in some cases could lead to an enhanced
performance.
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F. M. Peeters, Phys. Rev. B 84, 205441 (2011).

[58] M. R. Thomsen and T. G. Pedersen, Phys. Rev. B 95, 235427
(2017).

[59] G. Z. Magda et al., Nature (London) 514, 608 (2014).

012116-11

https://doi.org/10.1103/PhysRevLett.2.262
https://doi.org/10.1103/PhysRevLett.2.262
https://doi.org/10.1103/PhysRevLett.2.262
https://doi.org/10.1103/PhysRevLett.2.262
https://doi.org/10.1098/rspa.2001.0928
https://doi.org/10.1098/rspa.2001.0928
https://doi.org/10.1098/rspa.2001.0928
https://doi.org/10.1098/rspa.2001.0928
https://doi.org/10.1119/1.18197
https://doi.org/10.1119/1.18197
https://doi.org/10.1119/1.18197
https://doi.org/10.1119/1.18197
https://doi.org/10.1103/PhysRevE.70.046110
https://doi.org/10.1103/PhysRevE.70.046110
https://doi.org/10.1103/PhysRevE.70.046110
https://doi.org/10.1103/PhysRevE.70.046110
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1140/epjst/e2007-00371-8
https://doi.org/10.1140/epjst/e2007-00371-8
https://doi.org/10.1140/epjst/e2007-00371-8
https://doi.org/10.1140/epjst/e2007-00371-8
https://doi.org/10.1088/0031-8949/88/06/065008
https://doi.org/10.1088/0031-8949/88/06/065008
https://doi.org/10.1088/0031-8949/88/06/065008
https://doi.org/10.1088/0031-8949/88/06/065008
https://doi.org/10.1103/PhysRevLett.112.030602
https://doi.org/10.1103/PhysRevLett.112.030602
https://doi.org/10.1103/PhysRevLett.112.030602
https://doi.org/10.1103/PhysRevLett.112.030602
https://doi.org/10.1126/science.1078955
https://doi.org/10.1126/science.1078955
https://doi.org/10.1126/science.1078955
https://doi.org/10.1126/science.1078955
https://doi.org/10.1103/PhysRevE.85.041148
https://doi.org/10.1103/PhysRevE.85.041148
https://doi.org/10.1103/PhysRevE.85.041148
https://doi.org/10.1103/PhysRevE.85.041148
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1103/PhysRevE.91.052152
https://doi.org/10.1103/PhysRevE.91.052152
https://doi.org/10.1103/PhysRevE.91.052152
https://doi.org/10.1103/PhysRevE.91.052152
https://doi.org/10.1103/PhysRevE.84.041127
https://doi.org/10.1103/PhysRevE.84.041127
https://doi.org/10.1103/PhysRevE.84.041127
https://doi.org/10.1103/PhysRevE.84.041127
https://doi.org/10.1103/PhysRevE.83.041117
https://doi.org/10.1103/PhysRevE.83.041117
https://doi.org/10.1103/PhysRevE.83.041117
https://doi.org/10.1103/PhysRevE.83.041117
https://doi.org/10.1063/1.3681295
https://doi.org/10.1063/1.3681295
https://doi.org/10.1063/1.3681295
https://doi.org/10.1063/1.3681295
https://doi.org/10.1103/PhysRevE.86.021133
https://doi.org/10.1103/PhysRevE.86.021133
https://doi.org/10.1103/PhysRevE.86.021133
https://doi.org/10.1103/PhysRevE.86.021133
https://doi.org/10.1088/0031-8949/87/05/055009
https://doi.org/10.1088/0031-8949/87/05/055009
https://doi.org/10.1088/0031-8949/87/05/055009
https://doi.org/10.1088/0031-8949/87/05/055009
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevA.98.042102
https://doi.org/10.1103/PhysRevA.98.042102
https://doi.org/10.1103/PhysRevA.98.042102
https://doi.org/10.1103/PhysRevA.98.042102
https://doi.org/10.1088/1674-1056/24/11/110506
https://doi.org/10.1088/1674-1056/24/11/110506
https://doi.org/10.1088/1674-1056/24/11/110506
https://doi.org/10.1088/1674-1056/24/11/110506
https://doi.org/10.1103/PhysRevE.86.061108
https://doi.org/10.1103/PhysRevE.86.061108
https://doi.org/10.1103/PhysRevE.86.061108
https://doi.org/10.1103/PhysRevE.86.061108
https://doi.org/10.1103/PhysRevE.83.021121
https://doi.org/10.1103/PhysRevE.83.021121
https://doi.org/10.1103/PhysRevE.83.021121
https://doi.org/10.1103/PhysRevE.83.021121
https://doi.org/10.3390/e15041408
https://doi.org/10.3390/e15041408
https://doi.org/10.3390/e15041408
https://doi.org/10.3390/e15041408
https://doi.org/10.1209/0295-5075/111/20006
https://doi.org/10.1209/0295-5075/111/20006
https://doi.org/10.1209/0295-5075/111/20006
https://doi.org/10.1209/0295-5075/111/20006
https://doi.org/10.1103/PhysRevLett.112.150602
https://doi.org/10.1103/PhysRevLett.112.150602
https://doi.org/10.1103/PhysRevLett.112.150602
https://doi.org/10.1103/PhysRevLett.112.150602
https://doi.org/10.1038/srep06208
https://doi.org/10.1038/srep06208
https://doi.org/10.1038/srep06208
https://doi.org/10.1038/srep06208
https://doi.org/10.1103/PhysRevLett.108.085303
https://doi.org/10.1103/PhysRevLett.108.085303
https://doi.org/10.1103/PhysRevLett.108.085303
https://doi.org/10.1103/PhysRevLett.108.085303
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1209/0295-5075/120/60006
https://doi.org/10.1209/0295-5075/120/60006
https://doi.org/10.1209/0295-5075/120/60006
https://doi.org/10.1209/0295-5075/120/60006
https://doi.org/10.3390/e20110875
https://doi.org/10.3390/e20110875
https://doi.org/10.3390/e20110875
https://doi.org/10.3390/e20110875
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1038/s41598-019-40202-8
https://doi.org/10.1038/s41598-019-40202-8
https://doi.org/10.1038/s41598-019-40202-8
https://doi.org/10.1038/s41598-019-40202-8
https://doi.org/10.3390/e21101005
https://doi.org/10.3390/e21101005
https://doi.org/10.3390/e21101005
https://doi.org/10.3390/e21101005
https://doi.org/10.1140/epjd/e2013-40536-0
https://doi.org/10.1140/epjd/e2013-40536-0
https://doi.org/10.1140/epjd/e2013-40536-0
https://doi.org/10.1140/epjd/e2013-40536-0
https://doi.org/10.1209/0295-5075/115/30002
https://doi.org/10.1209/0295-5075/115/30002
https://doi.org/10.1209/0295-5075/115/30002
https://doi.org/10.1209/0295-5075/115/30002
https://doi.org/10.3390/e19040136
https://doi.org/10.3390/e19040136
https://doi.org/10.3390/e19040136
https://doi.org/10.3390/e19040136
https://doi.org/10.1103/PhysRevB.90.024401
https://doi.org/10.1103/PhysRevB.90.024401
https://doi.org/10.1103/PhysRevB.90.024401
https://doi.org/10.1103/PhysRevB.90.024401
https://doi.org/10.1103/PhysRevE.96.032110
https://doi.org/10.1103/PhysRevE.96.032110
https://doi.org/10.1103/PhysRevE.96.032110
https://doi.org/10.1103/PhysRevE.96.032110
https://doi.org/10.1103/PhysRevE.89.052107
https://doi.org/10.1103/PhysRevE.89.052107
https://doi.org/10.1103/PhysRevE.89.052107
https://doi.org/10.1103/PhysRevE.89.052107
https://doi.org/10.1103/PhysRevB.94.184503
https://doi.org/10.1103/PhysRevB.94.184503
https://doi.org/10.1103/PhysRevB.94.184503
https://doi.org/10.1103/PhysRevB.94.184503
https://doi.org/10.1103/PhysRevE.90.012145
https://doi.org/10.1103/PhysRevE.90.012145
https://doi.org/10.1103/PhysRevE.90.012145
https://doi.org/10.1103/PhysRevE.90.012145
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1103/PhysRevE.94.012137
https://doi.org/10.1103/PhysRevE.94.012137
https://doi.org/10.1103/PhysRevE.94.012137
https://doi.org/10.1103/PhysRevE.94.012137
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1103/PhysRevE.101.012110
https://doi.org/10.1103/PhysRevE.101.012110
https://doi.org/10.1103/PhysRevE.101.012110
https://doi.org/10.1103/PhysRevE.101.012110
https://doi.org/10.3390/e21050512
https://doi.org/10.3390/e21050512
https://doi.org/10.3390/e21050512
https://doi.org/10.3390/e21050512
https://doi.org/10.1088/2053-1583/ab04fb
https://doi.org/10.1088/2053-1583/ab04fb
https://doi.org/10.1088/2053-1583/ab04fb
https://doi.org/10.1088/2053-1583/ab04fb
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1126/science.1154663
https://doi.org/10.1126/science.1154663
https://doi.org/10.1126/science.1154663
https://doi.org/10.1126/science.1154663
https://doi.org/10.1063/1.3064128
https://doi.org/10.1063/1.3064128
https://doi.org/10.1063/1.3064128
https://doi.org/10.1063/1.3064128
https://doi.org/10.1103/PhysRevB.78.195427
https://doi.org/10.1103/PhysRevB.78.195427
https://doi.org/10.1103/PhysRevB.78.195427
https://doi.org/10.1103/PhysRevB.78.195427
https://doi.org/10.1103/PhysRevB.95.039901
https://doi.org/10.1103/PhysRevB.95.039901
https://doi.org/10.1103/PhysRevB.95.039901
https://doi.org/10.1103/PhysRevB.95.039901
https://doi.org/10.1103/PhysRevB.84.205441
https://doi.org/10.1103/PhysRevB.84.205441
https://doi.org/10.1103/PhysRevB.84.205441
https://doi.org/10.1103/PhysRevB.84.205441
https://doi.org/10.1103/PhysRevB.95.235427
https://doi.org/10.1103/PhysRevB.95.235427
https://doi.org/10.1103/PhysRevB.95.235427
https://doi.org/10.1103/PhysRevB.95.235427
https://doi.org/10.1038/nature13831
https://doi.org/10.1038/nature13831
https://doi.org/10.1038/nature13831
https://doi.org/10.1038/nature13831


FRANCISCO J. PEÑA et al. PHYSICAL REVIEW E 101, 012116 (2020)

[60] H. T. Quan, P. Zhang, and C. P. Sun, Phys. Rev. E 72, 056110(E)
(2005).

[61] E. Muñoz, F. J. Peña, and A. González, Entropy 18, 173 (2016).
[62] H. B. Callen, Thermodynamics and an Introduction to Thermo-

statistics, 2nd ed. (John Wiley and Sons, New York, 1985).
[63] L. P Kouwenhoven, D. G Austing, and S. Tarucha, Rep. Prog.

Phys. 64, 701 (2001).
[64] L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots (Springer-

Verlag, Berlin, 1998).

[65] E. Muñoz, Z. Barticevic, and M. Pacheco, Phys. Rev. B 71,
165301 (2005).

[66] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S.
Martínez-Garaot, and J. G. Muga, Rev. Mod. Phys. 91, 045001
(2019).

[67] J. Werschnik and E. K. U. Gross, J. Phys. B: At. Mol. Opt. Phys.
40, R175 (2007).

[68] S. Glaser, U. Boscain, T. Calarco et al., Eur. Phys. J. D 69, 279
(2015).

012116-12

https://doi.org/10.1103/PhysRevE.72.056110
https://doi.org/10.1103/PhysRevE.72.056110
https://doi.org/10.1103/PhysRevE.72.056110
https://doi.org/10.1103/PhysRevE.72.056110
https://doi.org/10.3390/e18050173
https://doi.org/10.3390/e18050173
https://doi.org/10.3390/e18050173
https://doi.org/10.3390/e18050173
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1103/PhysRevB.71.165301
https://doi.org/10.1103/PhysRevB.71.165301
https://doi.org/10.1103/PhysRevB.71.165301
https://doi.org/10.1103/PhysRevB.71.165301
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1088/0953-4075/40/18/R01
https://doi.org/10.1088/0953-4075/40/18/R01
https://doi.org/10.1088/0953-4075/40/18/R01
https://doi.org/10.1088/0953-4075/40/18/R01
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1

