
DL-Droid: Deep learning based android malware detection using real
devices

Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2019). DL-Droid: Deep learning based android malware detection
using real devices. Computers and Security, 89, Article 101663. https://doi.org/10.1016/j.cose.2019.101663

Published in:
Computers and Security

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2019 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:27. Apr. 2024

https://doi.org/10.1016/j.cose.2019.101663
https://pure.qub.ac.uk/en/publications/80a46e23-32f0-4e46-b692-a54b43b324b9

Computers & Security 89 (2020) 101663

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

DL-Droid: Deep learning based android malware detection using real

devices

Mohammed K. Alzaylaee

a , ∗, Suleiman Y. Yerima

b , Sakir Sezer c

a College of Computing in Al-Qunfudah, Umm Al-Qura University, Saudi Arabia
b De Montfort University, Leicester, England, LE1 9BH, United Kingdom

c Centre for Secure Information Technologies (CSIT), Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

a r t i c l e i n f o

Article history:

Received 16 January 2019

Revised 17 October 2019

Accepted 7 November 2019

Available online 12 November 2019

Keywords:

Android

Code coverage

Deep learning

Dynamic analysis

Machine learning

Malware detection

Mobile security

Static analysis

a b s t r a c t

The Android operating system has been the most popular for smartphones and tablets since 2012. This

popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android

malware obfuscation and detection avoidance methods have significantly improved, making many tradi-

tional malware detection methods obsolete. In this paper, we propose DL-Droid, a deep learning system

to detect malicious Android applications through dynamic analysis using stateful input generation. Ex-

periments performed with over 30,0 0 0 applications (benign and malware) on real devices are presented.

Furthermore, experiments were also conducted to compare the detection performance and code cover-

age of the stateful input generation method with the commonly used stateless approach using the deep

learning system. Our study reveals that DL-Droid can achieve up to 97.8% detection rate (with dynamic

features only) and 99.6% detection rate (with dynamic + static features) respectively which outperforms

traditional machine learning techniques. Furthermore, the results highlight the significance of enhanced

input generation for dynamic analysis as DL-Droid with the state-based input generation is shown to

outperform the existing state-of-the-art approaches.

© 2019 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

d

a

s

m

b

P

v

m

m

(

g

e

d

t

(

s

g

a

w

e

p

r

a

b

(

d

B

u

b

d

s

2

h

0

. Introduction

Android operating system, which is provided by Google, is pre-

icted to continue have a dramatic increase in the market with

round 1.5 billion Android-based devices to be shipped by 2021

ta . It is currently leading the mobile OS market with over 80%

arket share compared to iOS, Windows, Blackberry, and Sym-

ian OS. The availability of diverse Android markets such as Google

lay, the official store, and third-party markets makes Android de-

ices a popular target to not only legitimate developers, but also

alware developers. Over one billion devices have been sold and

ore than 65 billion downloads have been made from Google Play

 Smartphone, 0 0 0 0). Android apps can be found in different cate-

ories, such as educational apps, gaming apps, social media apps,

ntertainment apps, banking apps, etc.

As a technology that is open source and widely adopted, An-

roid is facing many challenges especially with malicious applica-

ions. The malware infected apps have the ability to send text mes-
∗ Corresponding author.

E-mail addresses: mkzaylaee@uqu.edu.sa (M.K. Alzaylaee), syerima@dmu.ac.uk

S.Y. Yerima), s.sezer@qub.ac.uk (S. Sezer).

s

l

2

a

ttps://doi.org/10.1016/j.cose.2019.101663

167-4048/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article u
ages to premium rate numbers without the user acknowledgment,

ain access to private data, or even install code that can download

nd execute additional malware on the victim’s device. The mal-

are can also be used to create mobile botnets (Anagnostopoulos

t al., 2016). Over the last few years, the number of malware sam-

les attacking Android has significantly increased. According to a

ecent report from McAfee, over 2.5 million new Android malware

pps were discovered in 2017, thus increasing the number of mo-

ile malware samples in the wild to almost 25 million in 2017

 McA, 0 0 0 0).

In order to mitigate the spread of malware, Google introduced a

etection mechanism to its app market in Feb 2012 called Bouncer.

ouncer tests submitted applications in a sandbox for five min-

tes in order to detect any harmful behaviours; however, it has

een shown that bouncer can be evaded by means of some simple

etection avoidance methods (Oberheide and Miller, 2012). Along-

ide Bouncer, Google introduced Google Play protect in the Google

017 event (Google Play, 2018). Google Play Protect is an always-on

ervice that scans the applications automatically even after instal-

ation to ensure that the installed applications remains harmless

4/7. It has been reported that over 50 billion apps are scanned

nd verified every day regardless of where they were download
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2019.101663
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2019.101663&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mkzaylaee@uqu.edu.sa
mailto:syerima@dmu.ac.uk
mailto:s.sezer@qub.ac.uk
https://doi.org/10.1016/j.cose.2019.101663
http://creativecommons.org/licenses/by/4.0/

2 M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663

t

t

2

t

w

i

w

c

v

m

e

2

t

p

e

o

c

w

r

t

n

a

G

A

i

m

w

v

o

t

r

t

(

A

p

P

c

e

p

s

t

p

d

b

r

s

P

(

r

d

l

c

o

A

t

a

a

t

c

(
from. However, according to McAfee, Google Play Protect also failed

when tested against malware discovered in the previous 90 days

in 2017 (McA, 0 0 0 0). Furthermore, most third-party stores do not

have the capability to scan and detect submitted harmful applica-

tions. Clearly, there is still a need for additional research into effi-

cient methods to detect zero-day Android malware in the wild in

order to overcome the aforementioned challenges.

Various approaches have been proposed in previous works with

the intention of detecting Android malware. These approaches are

categorized into static analysis, dynamic analysis or hybrid anal-

ysis (where static and dynamic are used together). The methods

based on static analysis reverse engineers the application for ma-

licious code analysis. Arp et al. (2014) , Aafer et al. (2013) , Yerima

et al. (2015a) , Fan et al. (2017) , Yerima et al. (2015b) , Kang et al.

(2016b) , Cen et al. (2015) , Westyarian et al. (2015) and Kang et al.

(2016a) are few examples of detection methods using static analy-

sis. By contrast, dynamic analysis executes the application in a con-

trolled environment such as an emulator, or a real device with the

purpose of tracing its behaviour. Several dynamic approaches, such

as Enck et al. (2010) ; Alzaylaee, M.K., Yerima, S. Y., and Sezer S.

(2016) DroidBox ; Rastogi et al. (2013) ; Tam et al. (2015) tra, NVISO

have been proposed. However, the efficiency of these approaches

rely on the ability to detect the malicious behaviour during the

runtime while providing the perfect environment to kick-start the

malicious code.

Deep learning (DL) has gained increasing attention in the ma-

chine learning community and is re-emerging as a popular method

of AI being applied in many fields (Hou et al., 2016; 2017; Karbab

et al., 2017; LeCun et al., 2015; McLaughlin et al., 2017; Yuan et al.,

2014; 2016). DL classifiers have inspired a great number of effec-

tive approaches in image classification, natural language process-

ing, and speech recognition. Recently, Android malware researchers

have also been exploring DL classifiers for malware analysis in or-

der to increase detection accuracy.

Contrary to previous deep learning based dynamic detection

works, this paper proposes and investigates a new system that ex-

ploits the advantages of deep learning coupled with dynamic state-

ful input generation, with the objective of achieving higher accu-

racy detection of zero-day Android malware. Furthermore, several

experiments are conducted using real devices to compare the per-

formance of the proposed DL based approach with those of pop-

ular machine learning classifiers. In summary, the main contribu-

tions of this paper are as follows:

• We present DL-Droid, a deep learning-based dynamic analysis

system for Android malware detection. Unlike existing dynamic

analysis systems, DL-Droid utilizes a state-based input gener-

ation approach for enhanced code coverage thus enabling im-

proved performance.

• Using DL-Droid, we investigate the performance of the stateful

input generation approach by utilizing the state-of-the-practice

stateless (random-based) input generation as a comparative

baseline. Higher accuracies were obtained with the stateful ap-

proach, thus highlighting the significance of enhanced input

generation for Android malware detection systems that utilize

dynamic analysis.

• We present an extensive comparative study of DL-Droid with

seven popular machine learning classifiers. Unlike most exist-

ing studies that are based on emulators, our experiments are

conducted in a more realistic environment using real devices.

Experimental results show that DL-Droid outperforms the ac-

curacy of traditional classifiers.

The rest of the paper is structured as follows. Section 2 dis-

cusses the related work. Followed by the methodology and ex-

periments undertaken to evaluate DL-Droid in Section 3 Sec-
ion 4 presents detailed experimental results and discussions of

hese results. Followed by the conclusion in Section 5

. Related work

This section discusses the related work on Android malware de-

ection, automated test input generation for Android, and recent

orks on deep learning approaches. As mentioned earlier, detect-

ng Android malware with static analysis, where the application

ill be disassembled to be examined for presence of any mali-

ious code is a popular approach. Several solutions have been de-

eloped using the static approach, utilizing features such as per-

issions, API calls, commands, and Intents. (Aafer et al., 2013; Arp

t al., 2014; Cen et al., 2015; Fan et al., 2017; Yerima and Sezer,

019; Yerima et al., 2016a; 2015a; 2015b), are examples of detec-

ion solutions based on static analysis. Although static analysis ap-

roaches enable more extensive code coverage, malware develop-

rs can use obfuscation techniques to hide the malicious code in

rder to evade static analysis. For example, data encryption, obfus-

ation, update attacks or polymorphic techniques. Therefore, in this

ork we only extract Android permissions statically prior to each

un, and then extract the API calls and Intents dynamically at run

ime.

Dynamic analysis approach on the other hand, consist of run-

ing Android applications in a controlled environment such as

n Android Virtual Device (AVD) emulator emu , or Genymotion

en or in a real device in order to monitor the apps’ behaviour.

lzaylaee et al. (2017) showed that analysing Android application

n real phones is more effective in terms of stability and detecting

ore features compared to the emulator environment. Therefore,

e chose to run our analysis on features extracted from real de-

ices instead of emulators.

Automated dynamic analysis of Android apps requires streams

f user emulated input events such as touches, gestures, or clicks

o enable greater code coverage when run in either emulator or

eal phone. Choudhary et al. (2015) demonstrated that among

he input generation tools analysed comparatively in their study

i.e. Monkey Developers (2012) , Dynodroid Machiry et al. (2013) ,

CTEve Anand et al. (2012) , A3E Azim and Neamtiu (2013) , GUIRip-

er Amalfitano et al. (2012) , SwiftHand Choi et al. (2013) , and

UMA Hao et al. (2014)), Monkey performed the best in terms of

ode coverage. Nevertheless, in Alzaylaee et al. (2017) and Yerima

t al. (2019) investigations proved that Monkey’s code coverage ca-

ability could be surpassed by stateful approach enabled by tools

uch as DroidBot Li et al. (2017) . The same studies have also shown

hat a stateful input generation is more stable and robust com-

ared to the stateless approach enabled by Monkey. Hence, the

eep learning-based system DL-Droid proposed in this paper is

ased on the dynamic stateful input generation approach.

The difficulty of detecting Android malware manually has led

esearches to explore the use of machine learning to automate and

peed the detection process. Arp et al. (2014) ; Dini et al. (2012) ;

eiravian and Zhu (2013) ; Rasthofer et al. (2014) ; Shabtai et al.

2012) ; Yerima et al. (2015b, 2016b) are examples of published

esearch that apply machine learning techniques to detect zero-

ay Android malware. Deep learning is re-emerging as a machine

earning approach that is growing in popularity in many fields in-

luding Android malware detection. Droid-Sec Yuan et al. (2014) is

ne of the first frameworks that applied deep learning to classify

ndroid malware, achieving 96.5% accuracy using 200 features ex-

racted by means of a hybrid (static + dynamic) approach evalu-

ted on 250 clean and 250 malware Android apps. Droid-Sec was

 preliminary work for DroidDetector Yuan et al. (2016) , where

he authors increased the number of the analysed apps to 20,0 0 0

lean and 1760 malware and achieved 96.76% accuracy. Hou et al.

2016) proposed Deep4MalDroid , an automatic Android malware

M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663 3

d

t

t

a

p

A

o

S

m

d

D

F

u

a

b

v

p

m

p

v

d

t

l

t

4

i

b

m

3

m

o

i

3

t

D

d

o

d

S

d

a

a

t

p

a

l

(

f

b

(

a

fi

m

k

f

o

a

c

p

p

b

b

p

p

r

s

t

r

k

d

B

t

a

o

e

p

d

G

e

f

t

w

s

T

d

s

m

w

h

e

F

s

4

g

o

e

3

a

fi

O

1

r

m

d

t

3

r

Y

t

p

t

t

p

T
etection system, which will dynamically extract Linux kernel sys-

em calls using Genymotion emulator. The best detection accuracy

hey reached was 93.68% on features extracted from 1500 benign

nd 1500 malware Android apps. Similarly, Hou et al. (2017) pro-

osed AutoDroid (automatic Android malware detection) based on

PI calls extracted using static analysis. Their system was devel-

ped using different types of deep neural networks (i.e., DBN and

AEs). The best accuracy of the DBN was 95.98% based on experi-

ents with 2500 benign and 2500 malware Android apps.

In contrast to existing deep learning based Android malware

etection frameworks, the key differentiates of our proposed DL-

roid framework is its dynamic stateful input generation approach.

urthermore, our work is based on real devices rather than em-

lators. Moreover, we employed 420 static and dynamic features

nd achieved better performance than existing frameworks. To the

est of our knowledge, this is the first work that extensively in-

estigates Android malware on real devices using over 30,0 0 0 ap-

lications, and presents evaluations with different input generation

ethods in order to measure the impact of their code coverage ca-

abilities on the proposed DL-based malware detection approach.

Since our approach is based on feature extraction from real de-

ices instead of emulators, the system is inherently robust against

etection avoidance techniques aimed at emulators. Dynamic ex-

raction from real devices also enables the system to overcome the

imitations of static analysis e.g. dynamic code loading, obfusca-

ion, data encryption, etc. It is also worth noting that some of the

20 features extracted are indicative of the malware incorporat-

ng these evasive behaviours, thus the deep learning system will

e automatically equipped with the ability to learn how to detect

alware with these behaviours during the training phase.

. Methodology and experiments

In this section, we describe the methodology and the experi-

ents which were conducted in order to evaluate the performance

f the DL-Droid approach using real phones and two different test

nput generation methods: Stateless and Stateful.

.1. Experimental setup

An automated platform is needed to run Android apps and ex-

ract their features. These features will be used as inputs for DL-

roid’s deep learning based classification in order to detect An-

roid malware. Since our aim is to investigate the performance

f DL-Droid through several experiments, we utilized the DynaLog

ynamic analysis framework described in Alzaylaee, M.K., Yerima,

.Y. and Sezer, S. (2016) .

DynaLog is designed to accept and run a large number of An-

roid apps automatically, launch them in sequence using either

n emulator (an Android Virtual Device “AVD”) or a real phone,

nd log and extract several dynamic features (i.e. API calls, Ac-

ion/events). With the dynamic analysis of Android apps, test in-

ut generation is needed in order to ensure sufficient code cover-

ge to trigger the malicious behaviours. DynaLog is capable of uti-

izing different test input generation methods including: stateless

random-based) (using the Monkey tool Developers (2012)), state-

ul (using DroidBot Li et al. (2017)), and hybrid-based (which com-

ines stateless and stateful input generation tools Alzaylaee et al.

2017) . The stateless approach is the most popular input generation

pproach and have been used extensively by researchers in this

eld. In fact, most existing dynamic analysis platforms for Android

alware detection utilize a stateless approach (based on the Mon-

ey tool). A previous study Yerima et al. (2019) , compared the per-

ormance of stateless, stateful and hybrid-based input generation

n various machine learning classifiers. In this study, the stateful

pproach is proved to be more robust and enabled greater code
overage than the hybrid-based input generation. Therefore, in this

aper, we used only stateless (Monkey) and stateful (DroidBot) in-

ut generation for our experiments with DL-Droid.

The Monkey tool generates pseudo-random streams of events

ecause of a pseudo-random number generator which is controlled

y a seed. A pseudo-random stream of events is still a random ap-

roach since the event selection is not based on a pre-determined

attern, even though it is configurable. It is important to note that

andom here refers to selection of next event to be executed i.e. no

pecific pattern is followed, unlike in the stateful approach where

he event to be executed is chosen based on evaluation of the cur-

ent state (i.e. the user interfaces state at a particular time). Mon-

ey is based on a stateless approach and this is the most important

ifference that distinguishes the approach from the stateful Droid-

ot. We propose the stateful approach the default component of

he DL-Droid framework, while we utilize the stateless method as

 baseline for comparative analysis in this paper.

Alzaylaee et al. (2017) have shown that dynamic analysis done

n real devices is more efficient than using emulators. Thus, our

xperiments are completely based on real phones. Eight different

hone brands were used with the following configurations: An-

roid 6.0 “Marshmallow”, 4GB RAM, 2.6Hz CPU, 32GB ROM and 32

B of external SD card storage. Each smartphone processed an av-

rage of 100 apps daily. The SD cards contained a folder full of dif-

erent resources such as pictures, text files, videos, sound files, etc.

o simulate a typical phone. Moreover, each phone was equipped

ith a sim card containing call credits to enable 3G data usage,

end text messages, and even make a phone calls when requested.

he phones were also connected to an internal WiFi service in or-

er to enable tested applications to connect with their external

ervers when necessary.

The executed runtime was different on each run and deter-

ined by the chosen test input generation. The required timing

as confirmed after evaluation with several apps to determine

ow much time was needed to trigger every possible event using

ither the stateful tool (DroidBot), or the stateless tool (Monkey).

or the stateful method, 180 s was found to be sufficient. For the

tateless generation using Monkey, 300 s was enough to generate

0 0 0 events for the apps. Beyond 40 0 0 events, most apps did not

enerate any further dynamic output from Dynalog. The overview

f the DL-Droid process using DynaLog as well as the DL classifier

ngine is shown in Fig. 1

.2. Dataset

For the purpose of evaluating DL-Droid accuracy performance

nd to compare it with other popular machine learning classi-

ers, we used a dataset consisting 31,125 Android applications.

ut of these, 11,505 were malware samples while the rest were

9,620 internally vetted benign samples obtained from Intel Secu-

ity (McAfee Labs). These samples consist of a variety of app for-

ats, including paid apps, powerful utility apps, banking apps, me-

ia player apps, and popular game apps. The samples are available

o other researchers on request.

.3. Features extraction and preprocessing

In the feature extraction phase, each application is installed and

un on one of the eight phones using DynaLog (Alzaylaee, M.K.,

erima, S. Y. and Sezer, S. 2016). Once completed for each of the

wo scenarios, Stateless and Stateful, the logged features are pre-

rocessed into text files of feature vectors representing the fea-

ures extracted from each application. These text files were fur-

her processed into a single.csv file for each scenario with the pur-

ose of evaluating the detection performance using deep learning.

he.csv is an acceptable file format for both H2O flow and WEKA

4 M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663

Fig. 1. DL-Droid framework.

Table 1

Total number of the extracted features used in the ex-

periments.

Feature set No. of features

Application attributes features 97

Actions/Events features 23

Permission features 300

Total 420

D

s

t

T

i

M

s

i

M

s

m

g

u

3

l

r

a

o

W

c

i

e

p

l

c

c

(

F

f

m

I

r

p

T

T

F
which were used later in the experiments. Note that, each feature

in the.csv file is binary containing either ‘0’ or ‘1’ which represents

the absence or presence of each extracted features.

Originally, DynaLog was equipped to extract 178 features dy-

namically (i.e. API calls and intents - Actions/Events). These fea-

tures were ranked using InfoGain (information gain provided by

WEKA), and then the top 120 features were selected for the exper-

iments. Dynalog was extended to enable extracting Android per-

missions statically prior to each dynamic run. This step allows us

to test the detection performance of DL-Droid with more features

as a bonus.

Over 300 Android permissions that have been used by the

investigated Android apps that govern access to different device

hardware and system resources. These permissions are considered

as either normal, signature, or dangerous permissions. This step

allowed us to collect the most relevant permissions which some

of which were relatively new and had not been used in previous

works. Hence, as shown in Table 1 , we obtained a total of 420 fea-

tures from our feature extraction phase. The 420 extracted features

were ranked using the information gain (InfoGain) feature ranking

algorithm in WEKA. The top 20 ranked dynamic features (includ-

ing and excluding the extracted permissions) based on InfoGain

in both test input scenarios (stateless and stateful) are shown in

Tables 2 –5 respectively.

3.4. Features ranking comparisons

From Tables 2 , and–5 , it is interesting to note that the API calls

methods getDeviceId, getSubscriberId, getLine1Number, and get-

SimSerialNumber from the TelephonyManager class, that provides

access to information about the telephony services on the device,

were among the top 20. However, the InfoGain score is higher

for these features when extracted using DroidBot-based stateful

input generation. For example, the InfoGain score of the feature

TelephonyManager;- > getDeviceId is 0.099 in Tables 2 and 3 using
roidBot based stateful input generation, whereas the score for the

ame feature using stateless Monkey based random input genera-

ion is 0.075 in Tables 4 and 5 .

Similar findings can be seen with the feature

elephonyManager;- > getSubscriberId which scored 0.057 us-

ng DroidBot based input generation, while the score is 0.042 for

onkey based input generation. The feature action.SMS_RECEIVED

cores 0.096 for the DroidBot based generation in Table 2 , which

s higher than the score for the same feature extracted using

onkey based generation in Table 4 Hence, this indicates that the

tateful DroidBot based input generation method has triggered

ore behaviours than the stateless Monkey based random input

eneration. Note that most existing dynamic analysis on Android

tilize the Monkey tool for input event generation.

.5. Investigating Deep Learning Classifier vs. other popular machine

earning algorithms

Our main goal is to build a model for DL-Droid to enable accu-

ate classification and detection of Android malware from benign

pps. In our experiments, we train our deep learning classifiers

n a classification problem with two labels, benign or malicious.

e utilize H2O which currently supports only the Multilayer Per-

eptron classifier (MLP) Candel et al. (2016) . A confusion matrix

s performed in our system to evaluate the effectiveness of differ-

nt classifiers. The second phase of the experiments compared the

erformance between the proposed DL and seven popular machine

earning approaches proposed in the literature. The classifiers in-

lude: Support Vector Machine (SVM Linear), Support Vector Ma-

hine with radial basis function kernel (SVM RBF), Naive Bayes

NB), Simple Logistic (SL), Partial Decision Trees (PART), Random

orest (RF), and J48 Decision Tree. We also investigated the per-

ormance of each classifier for two different test input generation

ethods. The results of our experiments are presented in section

II using the performance metrics defined as follows:

The true positive ratio (TPR) also known as recall, true negative

atio (TNR), false positive ratio (FPR), false negative ratio (FNR), and

recision are defined as follows:

 P R =

T P

T P + F N

(1)

 NR =

T N

T N + F P
(2)

 P R =

F P

F P + T N

(3)

M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663 5

Table 2

Top 20 Ranked Features based on InfoGain using Stateful input generation DroidBot (Per-

missions excluded).

Feature Malware Bening InfoGain score

TelephonyManager;- > getDeviceId 4899 1078 0.099

com.android.vending.INSTALL_REFERRER 741 3890 0.096

action.SMS_RECEIVED 2421 375 0.096

TelephonyManager;- > getSubscriberId 1993 203 0.057

action.USER_PRESENT 2633 545 0.056

methods/HttpPost;- >< init > 3408 1044 0.054

TelephonyManager;- > getLine1Number 1429 163 0.043

WifiManager;- > getConnectionInfo 2680 792 0.039

content/Context;- > bindService 573 2271 0.037

Ljava/util/TimerTask;- >< init > 7399 4068 0.033

Ljava/io/FileOutputStream;- > write 3775 1563 0.032

PackageManager;- > checkPermission 2726 858 0.032

Landroid/net/NetworkInfo;- > getState 1632 396 0.032

Ljava/io/File;- > exists 6217 3361 0.027

security/MessageDigest;- > getInstance 4905 2779 0.027

Landroid/content/Context;- > unbindService 264 1347 0.02

action.PHONE_STATE 1030 215 0.019

action.PACKAGE_ADDED 1540 508 0.018

TelephonyManager;- > getSimSerialNumber 859 157 0.018

SmsManager;- > sendTextMessage 351 2 0.018

Table 3

Top 20 Ranked Features based on InfoGain using Stateful input generation DroidBot

(Permissions included).

Feature Malware Bening InfoGain score

permission.SEND_SMS 5128 1084 0.16

permission.READ_PHONE_STATE 10,508 10,183 0.133

TelephonyManager;- > getDeviceId 4899 2011 0.099

com.android.vending.INSTALL_REFERRER 741 7285 0.096

permission.RECEIVE_SMS 4054 1565 0.096

action.MOUNT_UNMOUNT_FILESYSTEMS 2889 781 0.082

permission.WRITE_SMS 2847 764 0.071

permission.READ_SMS 3592 1429 0.07

permission.SYSTEM_ALERT_WINDOW 4314 2276 0.069

action.SMS_RECEIVED 2421 665 0.066

TelephonyManager;- > getSubscriberId 1993 387 0.057

action.USER_PRESENT 2633 912 0.056

permission.INSTALL_PACKAGES 1640 290 0.054

permission.ACCESS_MTK_MMHW 1092 29 0.047

permission.GET_TASKS 5790 5040 0.046

permission.RECEIVE_BOOT_COMPLETED 6648 6378 0.044

methods/HttpPost;- >< init > 3408 1985 0.044

permission.USE_CREDENTIALS 313 3369 0.043

TelephonyManager;- > getLine1Number 1429 278 0.041

permission.ACCESS_WIFI_STATE 8406 9802 0.039

Table 4

Top 20 Ranked Features based on InfoGain using stateless Monkey based input generation

(Permissions excluded).

Feature Malware Bening InfoGain score

com.android.vending.INSTALL_REFERRER 737 6686 0.106

TelephonyManager;- > getDeviceId 4269 1800 0.075

action.SMS_RECEIVED 2416 608 0.057

action.USER_PRESENT 2627 853 0.053

TelephonyManager;- > getSubscriberId 1682 363 0.042

TelephonyManager;- > getLine1Number 1385 286 0.035

Landroid/content/Context;- > bindService 589 3260 0.031

Landroid/net/NetworkInfo;- > getState 1570 593 0.026

client/methods/HttpPost;- > < init > 2526 1634 0.022

Ljava/io/FileOutputStream;- > write 3082 2296 0.021

Ljava/util/TimerTask;- > < init > 6943 7564 0.021

action.PHONE_STATE 1026 349 0.018

TelephonyManager;- > getSimSerialNumber 896 257 0.018

Landroid/content/Context;- > unbindService 287 1800 0.018

wifi/WifiManager;- > getConnectionInfo 1977 1235 0.018

action.PACKAGE_ADDED 1533 804 0.017

/PackageManager;- > checkPermission 2111 1419 0.017

Ljava/io/File;- > exists 5674 6027 0.016

telephony/SmsManager;- > sendTextMessage 332 1 0.015

action.NEW_OUTGOING_CALL 655 182 0.013

6 M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663

Table 5

Top 20 Ranked Features based on InfoGain using stateless Monkey based input gener-

ation (Permissions included).

Feature Malware Bening InfoGain score

permission.SEND_SMS 5117 1006 0.16

permission.READ_PHONE_STATE 10,468 9146 0.135

android.vending.INSTALL_REFERRER 737 6686 0.106

permission.RECEIVE_SMS 4043 1420 0.082

TelephonyManager;- > getDeviceId 4269 1800 0.075

permission.WRITE_SMS 2841 697 0.07

action.MOUNT_UNMOUNT_FILESYSTEMS 2879 741 0.069

permission.READ_SMS 3584 1322 0.068

permission.SYSTEM_ALERT_WINDOW 4299 2138 0.063

action.SMS_RECEIVED 2416 608 0.057

action.USER_PRESENT 2627 853 0.053

permission.INSTALL_PACKAGES 1638 243 0.049

permission.ACCESS_MTK_MMHW 1087 26 0.046

permission.GET_TASKS 5770 4534 0.044

permission.RECEIVE_BOOT_COMPLETED 6621 5760 0.043

permission.USE_CREDENTIALS 311 3004 0.043

TelephonyManager;- > getSubscriberId 1682 363 0.042

permission.GET_ACCOUNTS 3012 8601 0.039

permission.ACCESS_WIFI_STATE 8376 8941 0.035

TelephonyManager;- > getLine1Number 1385 286 0.035

W

p

c

m

4

4

4

i

u

t

f

d

a

p

s

c
F NR =

F N

F N + T P
(4)

P =

T P

T P + F P
(5)

Where TP denotes the number of true positives, TN the number of

true negatives, FP the number of false positives, and FN the num-

ber of false negatives.

FM is the F measure calculated for both malware and benign

classes. The combined measure known as weighted FM is defined

as follows:

F M =

2 ∗ recall ∗ precision

r ecall + pr ecision

(6)

 − F M =

(F m

.N m

) + (F b .N b)

N m

+ N b

(7)

Where F b and F m

are the FM of the benign and malware

datasets respectively, whereas N b and N m

are the number of sam-
Table 6

Deep learning results with different combinations of hidden layers (with the use of stat

No. of layers No. of Neurons TPR TNR FPR FNR Preci

2 50,50 0.9532 0.8804 0.1196 0.0468 0.931

2 100,100 0.9337 0.8896 0.1104 0.0663 0.937

2 200,200 0.9663 0.9075 0.0925 0.0337 0.947

2 300,300 0.9663 0.907 0.093 0.0337 0.946

2 400,400 0.9903 03:04.3 0.2062 0.0097 0.888

2 500,500 0.9739 0.8975 0.1025 0.0261 0.942

3 50,50,50 0.9047 0.9082 0.0918 0.0953 0.944

3 100,50,100 0.973 0.8929 0.1071 0.027 0.94

3 50,100,50 0.9762 0.8832 0.1168 0.0238 0.934

3 100,100,100 0.7478 0.9542 0.0458 0.2522 0.964

3 100,200,100 0.5356 0.9868 0.0132 0.4644 0.985

3 200,100,200 0.4526 0.9997 0.0003 0.5474 0.999

3 200,200,200 0.9776 0.9086 0.0914 0.0224 0.948

3 300,100,300 0.5384 0.9986 0.0014 0.4616 0.998

3 300,300,300 0.9735 0.9055 0.0945 0.0265 0.944

3 400,400,400 0.7219 0.9842 0.0158 0.2781 0.987

3 500,500,500 0.9738 0.9089 0.0911 0.0262 0.947

4 50,50,50,50 0.9567 0.8949 0.1051 0.0433 0.939

4 100,100,100,100 0.5671 0.9986 0.0014 0.4329 0.998

4 200,200,200,200 0.9744 0.9109 0.0891 0.0256 0.948

4 300,300,300,300 0.9868 0.8552 0.1448 0.0132 0.920

4 400,400,400,400 0.9622 0.885 0.115 0.0378 0.935
les in the benign and malware datasets respectively. The 10-fold

ross validation approach was used in all of the presented experi-

ents.

. Experimental results and discussions

.1. Deep learning classifier analysis

.1.1. DL comparisons with dynamic features: Stateful vs. Stateless

nput generation

Table 6 depicts the results of experiments undertaken to eval-

ate the performance of the DL approach with different combina-

ions of hidden layers. The results shown here is for the dynamic

eatures only, using the stateful Droidbot input generation tool. 22

ifferent combinations of hidden neurons, containing two, three,

nd four layers, have been applied in order to determine the best

ossible performance based on the w-FM. At Table 6 , the results

how that the 20 0, 20 0, 20 0 combination performs the best when

ompared to other combinations, with running time of nine min-
eful input generation and dynamic features only).

sion Recall Accuracy w-FM AUC Running time (min:sec)

7 0.9532 0.9264 0.9423 0.971476 01:35

4 0.9337 0.9178 0.9355 0.965159 03:14

9 0.9663 0.9449 0.957 0.981357 06:31

9 0.9663 0.9445 0.9565 0.982852 10:46

9 0.9903 0.9166 0.9369 0.895044 13:44

8 0.9739 0.946 0.9581 0.982761 18:46

7 0.9047 0.906 0.9243 0.928607 01:50

0.973 0.9436 0.9562 0.982075 03:19

 0.9762 0.9417 0.9546 0.979091 02:14

9 0.7478 0.8246 0.8426 0.861435 03:50

4 0.5356 0.7046 0.694 0.76359 05:06

6 0.4526 0.6536 0.6231 0.726156 06:42

2 0.9776 0.9521 0.9627 0.986742 09:05

5 0.5384 0.7086 0.6996 0.768651 09:08

5 0.9735 0.9479 0.9588 0.9838 13:56

5 0.7219 0.8183 0.8341 0.85698 20:40

8 0.9738 0.9497 0.9606 0.984606 26:44

7 0.9567 0.9339 0.9482 0.97666 01:58

6 0.5671 0.7248 0.7234 0.783015 04:24

8 0.9744 0.9508 0.9614 0.984959 10:39

6 0.9868 0.9381 0.9525 0.921231 18:39

3 0.9622 0.9339 0.9485 0.975693 29:28

M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663 7

Table 7

Deep learning results with different combinations of hidden layers (with the use of stateful input generation and static + dynamic features).

No. of layers No. of Neurons TPR TNR FPR FNR Precision Recall Accuracy w-FM AUC Running time (min:sec)

2 50,50 0.8701 0.9252 0.0748 0.1299 0.952 0.8701 0.8904 0.9092 0.920539 03:43

2 100,100 0.9669 0.9162 0.0838 0.0331 0.9516 0.9669 0.9482 0.9592 0.980748 07:18

2 200,200 0.9661 0.8771 0.1229 0.0339 0.9306 0.9661 0.9332 0.948 0.970208 14:51

2 300,300 0.9693 0.9121 0.0879 0.0307 0.9495 0.9693 0.9481 0.9593 0.980417 21:42

2 400,400 0.972 0.9082 0.0918 0.028 0.9475 0.972 0.9484 0.9596 0.978372 30:50

2 500,500 0.9735 0.9261 0.0739 0.0265 0.9574 0.9735 0.956 0.9654 0.983072 36:36

3 50,50,50 0.9718 0.9059 0.0941 0.0282 0.9462 0.9718 0.9474 0.9588 0.978387 04:05

3 100,50,100 0.9718 0.9149 0.0851 0.0282 0.9512 0.9718 0.9507 0.9613 0.983224 07:38

3 50,100,50 0.9646 0.8707 0.1293 0.0354 0.9271 0.9646 0.9299 0.9455 0.976274 04:34

3 100,100,100 0.9733 0.9202 0.0798 0.0267 0.9541 0.9733 0.9537 0.9636 0.982417 08:33

3 100,200,100 0.9737 0.9231 0.0769 0.0263 0.9557 0.9737 0.955 0.9647 0.984257 09:40

3 200,100,200 0.9733 0.9314 0.0686 0.0267 0.9603 0.9733 0.9578 0.9668 0.984114 15:13

3 200,200,200 0.9956 0.967 0.033 0.0044 0.9809 0.9956 0.985 0.9882 0.997105 17:21

3 300,100,300 0.976 0.9089 0.0911 0.024 0.9481 0.976 0.9512 0.9618 0.980004 22:34

3 300,300,300 0.9762 0.912 0.088 0.0238 0.9498 0.9762 0.9525 0.9628 0.982277 26:29

3 400,400,400 0.9764 0.9166 0.0834 0.0236 0.9523 0.9764 0.9543 0.9642 0.982026 38:16

3 500,500,500 0.9765 0.9287 0.0713 0.0235 0.959 0.9765 0.9588 0.9676 0.983941 49:31

4 50,50,50,50 0.9676 0.9195 0.0805 0.0324 0.9535 0.9676 0.9498 0.9605 0.981414 04:31

4 100,100,100,100 0.9661 0.9265 0.0735 0.0339 0.9573 0.9661 0.9515 0.9617 0.982657 09:29

4 200,200,200,200 0.9757 0.9207 0.0793 0.0243 0.9545 0.9757 0.9553 0.965 0.982594 20:05

4 300,300,300,300 0.9739 0.9131 0.0869 0.0261 0.9503 0.9739 0.9514 0.9619 0.980652 36:36

4 400,400,400,400 0.9717 0.9093 0.0907 0.0283 0.9481 0.9717 0.9486 0.9597 0.982227 43:52

u

t

w

t

t

T

w

i

n

F

l

c

D

f

4

S

p

s

o

p

u

a

4

w

p

g

l

l

c

o

o

0

t

c

D

w

a

s

D

p

(

w

I

c

e

p

s

w

F

t

a

4

o

d

m

9

2

e

2

2

I

D

t

5

a

p

a

s

e

a

m
tes. We can see that DL can achieve w-FM of 0.963 when setting

he number of layers to 3 and selecting 200 neurons in each layer

ith dynamic features only.

We repeated the same experiments on the dynamic features ex-

racted using the stateless Monkey based random input generation

ool in order to compare the results with the previous scenario.

able 8 shows the results obtained. The best w-FM is also recorded

ith three layers similar to the previous scenario. However, this

s obtained with different combination of neurons. The number of

eurons in each layer is 30 0, 10 0, 30 0 respectively for the best w-

M of 0.958. Even though the running time is 8 minutes, which is

ess by almost one minute, our focus has been the detection ac-

uracy. Therefore, from Tables 6 and 8 , we can confirm that the

L-Droid achieves its best performance with the features obtained

rom the use of the stateful input generation approach.

.1.2. DL comparisons with dynamic features and static features:

tateless vs. Stateful input generation

The same experiments outlined in the previous section were re-

eated with the addition of static features, i.e. permissions, and re-

ults are shown in Table 7 We can see that the same combination

f 200 neurons in each hidden layer with three hidden layers is su-

erior to the other deep networks for Android malware detection

sing the stateful input generation approach. The w-FM reached

pproximately 0.99.

.2. Comparison of the performance of the Deep Learning Classifier

ith other popular machine learning classifiers

In this section, we compare the detection accuracies of the pro-

osed DL approach with the most popular machine learning al-

orithms as shown in Tables 10 and 11 . Overall seven machine

earning algorithms were selected based on results of several pre-

iminary experiments had been conducted. From the tables, we

an clearly see that the proposed DL approach outperforms the

ther machine learning algorithms. In Table 10 , where results from

nly dynamic features are presented, the second highest w-FM of

.94 is achieved by the Random Forest algorithm, while that of

he deep learning approach is 0.963. When we perform further

omparison by adding permissions to the analysis (Table 11), the

L approach still topped the rest with a w-FM of nearly 0.99,

hile the next highest, which is again Random Forest, achieved

w
 w-FM of 0.97. We can clearly observe that the addition of

tatic features i.e. permissions improved the detection accuracy of

L-Droid.

Fig. 2 , presents the results of comparison between the two in-

ut generation methods i.e. stateful (using Droidbot) and stateless

using monkey). Fig. 2 shows the w-FM results for DL-Droid as

ell as the selected seven popular machine learning algorithms.

n the experiments with dynamic features only, all classifiers ex-

ept for NB and J48, performed better where stateful input gen-

ration with Droidbot was utilized, compared to the stateless ap-

roach using Monkey. However, in the experiment with combined

tatic and dynamic features, the stateful input generation approach

as superior for all the classifiers. With these results depicted in

ig. 2 , we can conclude that DL-Droid with stateful input genera-

ion (our initially proposed approach) achieves the best detection

ccuracy.

.3. Results comparison with existing work

Table 12 , presents a comparison of DL-Droid performance with

ther existing deep learning based methods for Android malware

etection. DroidDetector’s static and dynamic based deep learning

ethod achieved 96.76% accuracy compared to DL-Droid which has

8.5% accuracy. DL-Droid outperformed DroidDetector (Yuan et al.,

016) in all other metrics, while utilizing more samples for the

xperiments. DL-Droid also outperforms Maldozer (Karbab et al.,

017), Deep4MalDroid (Hou et al., 2016), AutoDroid (Hou et al.,

017) and the CNN approach presented in (McLaughlin et al., 2017).

t is interesting to note that, just like in Deep4MalDroid and Auto-

roid, the number of the optimum hidden layers for DL-Droid is

hree.

. Conclusion

In this paper, we presented DL-Droid, an automated dynamic

nalysis framework for Android malware detection. DL-Droid em-

loys deep learning with a state-based input generation approach

s the default method, although it has the capability to employ the

tate-of-the-practice popular Monkey tool (stateless method). We

valuated DL-Droid using 31,125 Android applications, 420 static

nd dynamic features, comparing its performance to traditional

achine learning classifiers as well as existing DL-based frame-

orks. The presented results clearly demonstrate that DL-Droid

8 M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663

Table 8

Deep learning results with different combinations of hidden layers (with the use of stateless input generation and dynamic features only).

No. of layers No. of Neurons TPR TNR FPR FNR Precision Recall Accuracy w-FM AUC Running time (min:sec)

3 100,100,100 0.6111 0.9954 0.0046 0.3889 0.9951 0.6111 0.7619 0.7572 0.803875 03:31

3 50,100,50 0.6285 0.967 0.033 0.3715 0.9659 0.6285 0.7648 0.7615 0.806743 02:00

2 400,400 0.726 0.9615 0.0385 0.274 0.9666 0.726 0.8189 0.8292 0.854101 12:33

2 100,100 0.8221 0.9105 0.0895 0.1779 0.9321 0.8221 0.8575 0.8736 0.886959 02:53

2 50,50 0.8795 0.8266 0.1734 0.1205 0.8867 0.8795 0.8587 0.8831 0.89001 01:26

3 500,500,500 0.997 0.7606 0.2394 0.003 0.8622 0.997 0.9025 0.9247 0.879508 06:10

3 100,50,100 0.9233 0.9081 0.0919 0.0767 0.9372 0.9233 0.9172 0.9302 0.940436 02:52

3 50,50,50 0.9526 0.8824 0.1176 0.0474 0.9257 0.9526 0.9249 0.9389 0.973505 01:36

4 300,300,300,300 0.9672 0.8975 0.1025 0.0328 0.9349 0.9672 0.9396 0.9508 0.981281 17:00

4 50,50,50,50 0.9671 0.8977 0.1023 0.0329 0.9355 0.9671 0.9397 0.951 0.979724 01:49

3 200,200,200 0.9764 0.8905 0.1095 0.0236 0.9302 0.9764 0.942 0.9527 0.984125 07:12

4 100,100,100,100 0.9752 0.8902 0.1098 0.0248 0.9311 0.9752 0.9415 0.9527 0.981828 04:14

2 500,500 0.971 0.901 0.099 0.029 0.9363 0.971 0.943 0.9533 0.982513 16:08

4 200,200,200,200 0.9791 0.8831 0.1169 0.0209 0.9293 0.9791 0.9417 0.9535 0.981191 09:53

4 400,400,400,400 0.973 0.8978 0.1022 0.027 0.9359 0.973 0.9433 0.9541 0.982963 25:48

3 300,300,300 0.9754 0.8945 0.1055 0.0246 0.9342 0.9754 0.9435 0.9543 0.980887 11:57

3 200,100,200 0.9717 0.903 0.097 0.0283 0.9384 0.9717 0.9444 0.9547 0.983906 05:50

2 200,200 0.9696 0.9077 0.0923 0.0304 0.9415 0.9696 0.9452 0.9553 0.982541 06:19

3 400,400,400 0.9759 0.8963 0.1037 0.0241 0.9355 0.9759 0.9446 0.9553 0.983396 16:45

3 100,200,100 0.9741 0.9104 0.0896 0.0259 0.943 0.9741 0.9488 0.9583 0.985178 04:23

2 300,300 0.9798 0.8997 0.1003 0.0202 0.9386 0.9798 0.9486 0.9588 0.984684 09:37

3 300,100,300 0.9778 0.9064 0.0936 0.0222 0.9408 0.9778 0.9495 0.9589 0.985202 08:08

Table 9

Deep learning results with different combinations of hidden layers (with the use of stateless input generation and static + dynamic features).

No. of layers No. of Neurons TPR TNR FPR FNR Precision Recall Accuracy w-FM AUC Running time (min:sec)

2 50,50 0.8788 0.8905 0.1095 0.1212 0.9244 0.8788 0.8834 0.901 0.916957 03:32

2 200,200 0.9246 0.8612 0.1388 0.0754 0.9102 0.9246 0.8995 0.9174 0.956576 14:11

3 50,50,50 0.9443 0.8505 0.1495 0.0557 0.9058 0.9443 0.9071 0.9247 0.961333 03:46

3 50,100,50 0.9403 0.87 0.13 0.0597 0.9168 0.9403 0.9125 0.9284 0.963836 04:18

2 100,100 0.9569 0.8841 0.1159 0.0431 0.9263 0.9569 0.928 0.9413 0.971361 07:18

4 400,400,400,400 0.9703 0.8882 0.1118 0.0297 0.9296 0.9703 0.9377 0.9495 0.975414 44:27

2 300,300 0.9625 0.9063 0.0937 0.0375 0.9399 0.9625 0.9402 0.9511 0.978022 21:32

3 200,200,200 0.9609 0.9131 0.0869 0.0391 0.9439 0.9609 0.942 0.9524 0.977116 16:27

4 50,50,50,50 0.9653 0.906 0.094 0.0347 0.9399 0.9653 0.9418 0.9525 0.977894 04:12

3 300,100,300 0.9764 0.8921 0.1079 0.0236 0.9323 0.9764 0.943 0.9539 0.977185 21:11

4 100,100,100,100 0.9649 0.9125 0.0875 0.0351 0.9438 0.9649 0.9441 0.9542 0.979354 08:42

3 100,100,100 0.9627 0.9191 0.0809 0.0373 0.9477 0.9627 0.9454 0.9551 0.98 07:51

4 300,300,300,300 0.9671 0.9137 0.0863 0.0329 0.9446 0.9671 0.9459 0.9557 0.979939 36:36

2 400,400 0.9755 0.901 0.099 0.0245 0.9375 0.9755 0.9459 0.9561 0.980394 28:08

4 200,200,200,200 0.9711 0.9107 0.0893 0.0289 0.9431 0.9711 0.9472 0.9569 0.981067 19:10

2 500,500 0.9693 0.9155 0.0845 0.0307 0.9459 0.9693 0.948 0.9575 0.980055 34:25

3 100,50,100 0.9707 0.9148 0.0852 0.0293 0.9455 0.9707 0.9486 0.958 0.980691 07:16

3 200,100,200 0.9658 0.9261 0.0739 0.0342 0.9521 0.9658 0.9501 0.9589 0.981751 15:04

3 100,200,100 0.9668 0.9251 0.0749 0.0332 0.9516 0.9668 0.9503 0.9591 0.982598 09:29

3 300,300,300 0.9649 0.9301 0.0699 0.0351 0.9546 0.9649 0.9511 0.9597 0.981693 25:08

3 500,500,500 0.9732 0.9248 0.0752 0.0268 0.9517 0.9732 0.954 0.9623 0.984339 48:29

3 400,400,400 0.9719 0.9272 0.0728 0.0281 0.9531 0.9719 0.9542 0.9624 0.983771 38:19

Table 10

Results for DL and seven machine learning algorithms (with stateful input generation and dynamic

features only).

TPR TNR FPR FNR Precision Recall w-FM

NB 0.62 0.855 0.145 0.38 0.765 0.768 0.764

SL 0.761 0.933 0.067 0.239 0.87 0.87 0.868

SVM Linear 0.758 0.938 0.062 0.242 0.872 0.872 0.87

SVM RBF 0.758 0.944 0.056 0.242 0.876 0.875 0.873

J48 0.855 0.954 0.046 0.145 0.917 0.918 0.917

PART 0.861 0.955 0.045 0.139 0.92 0.92 0.92

RF 0.88 0.971 0.029 0.12 0.938 0.938 0.937

DL(200,200,200) 0.9776 0.9086 0.0914 0.0224 0.9482 0.9776 0.9627

y

m

d

(

i

A

achieved high accuracy performance reaching better figures than

those presented in existing deep learning-based Android malware

detection frameworks. To the best of our knowledge, this is the

first work to investigate deep learning using dynamic features ex-

tracted from apps using real phones. Our results also highlight

the significance of enhancing input generation for dynamic anal-
sis systems that are designed to detect Android malware using

achine learning. As future work, self-adaptation such as intro-

uced and investigated recently for Intrusion Detection systems

 Papamartzivanos et al., 2019) could be explored as a means of

mproving the performance of the deep learning based system for

ndroid malware detection.

M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663 9

Table 11

Results for DL and seven machine learning algorithms (with stateful input generation and static

+ dynamic features).

TPR TNR FPR FNR Precision Recall w-FM

NB 0.816 0.886 0.114 0.184 0.86 0.86 0.86

SL 0.871 0.957 0.043 0.129 0.925 0.925 0.924

SVM RBF 0.871 0.957 0.043 0.129 0.925 0.925 0.924

SVM Linear 0.875 0.964 0.036 0.125 0.931 0.931 0.931

J48 0.919 0.967 0.033 0.081 0.949 0.949 0.949

PART 0.931 0.968 0.032 0.069 0.954 0.954 0.954

RF 0.941 0.988 0.012 0.059 0.971 0.971 0.971

DL(200,200,200) 0.9956 0.967 0.033 0.0044 0.9809 0.9956 0.9882

Fig. 2. w-FM for DL-Droid and seven selected ML algorithms. Stateful vs. stateless input generation.

Table 12

Comparisons of DL-Droid with other existing deep learning approaches.

Classification System Extracted Features Types Benign Malware No. of neurons Acc. Prec. Recall F-score

DroidDetector Yuan et al. (2016) Static only 880 880 [150,150] 89.03 90.39 89.04 89.76

DroidDetector Yuan et al. (2016) Dynamic only 880 880 [150,150] 71.25 72.59 71.25 71.92

DroidDetector Yuan et al. (2016) Static & Dynamic 880 880 [150,150] 96.76 96.78 96.76 96.76

CNN McLaughlin et al. (2017) Static (opcode) 863 1260 N/A 98 99 95 97

MalDozer Karbab et al. (2017) Static only 37,627 20,089 N/A N/A 96.29 96.29 96.29

Deep4MalDroid Hou et al. (2016) Dynamic (sys. Calls) 1,500 1,500 [200,200,200] 93.68 93.96 93.36 93.68

AutoDroid Hou et al. (2017) Static only 2,500 2,500 [200,200,200] 96.66 96.55 96.76 96.66

DL-Droid (Stateless) Dynamic only 19,620 11,505 [300,100,300] 94.95 94.08 97.78 95.89

DL-Droid (Stateless) Static & Dynamic 19,620 11,505 [400,400,400] (Table 9) 95.42 95.31 97.19 96.24

DL-Droid (Stateful) Dynamic only 19,620 11,505 [200,200,200] 95.21 94.82 97.76 96.27

DL-Droid (Stateful) Static & Dynamic 19,620 11,505 [200,200,200] 98.5 98.09 99.56 98.82

10 M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663

K

L

M

M
M

P

R

R

S

S

S

T

T
W

Y

Y

Y

Y

Y

Y

Y

Y

M

c

p

a

t

H

l

C

g

r

(

h

l

o

g
Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

References

Aafer, Y., Du, W., Yin, H., 2013. Droidapiminer: mining API-Level features for robust
malware detection in android. Secur. Priv. Commun. Netw. 127, 86–103. doi: 10.

1007/978- 3- 319- 04283- 1 _ 6 .

Alzaylaee, M.K., Yerima, S.Y., and Sezer, S., 2016. Dynalog: an automated dynamic
analysis framework for characterizing android applications. In: 2016 Interna-

tional Conference On Cyber Security And Protection Of Digital Services (Cyber
Security), pp. 1–8. doi: 10.1109/CyberSecPODS.2016.7502337 .

Alzaylaee, M.K., Yerima, S.Y., Sezer, S., 2017. Emulator vs real phone: android mal-
ware detection using machine learning. In: Proceedings of the 3rd ACM on In-

ternational Workshop on Security And Privacy Analytics. ACM, Scottsdale, Ari-

zona, USA - March 24, - 24, 2017, pp. 65–72. doi: 10.1145/3041008.3041010 .
Alzaylaee, M.K., Yerima, S.Y., Sezer, S., 2017. Improving dynamic analysis of android

apps using hybrid test input generation. In: 2017 International Conference on
Cyber Security And Protection Of Digital Services (Cyber Security), pp. 1–8.

doi: 10.1109/CyberSecPODS.2017.8074845 .
Amalfitano, D., Fasolino, A.R., Tramontana, P., De Carmine, S., Memon, A.M., 2012.

Using gui ripping for automated testing of android applications. In: Proceedings

of the 27th IEEE/ACM International Conference on Automated Software Engi-
neering. ACM, New York, NY, USA, pp. 258–261. doi: 10.1145/2351676.2351717 .

Anagnostopoulos, M. , Kambourakis, G. , Gritzalis, S. , 2016. New facets of mobile bot-
net: architecture and evaluation. Int. J. Inf. Secur. 15 (5), 455–473 .

Anand, S. , Naik, M. , Harrold, M.J. , Yang, H. , 2012. Automated concolic testing of
smartphone apps. In: Proceedings of the ACM SIGSOFT 20th International Sym-

posium on the Foundations of Software Engineering. ACM, p. 59 .
Arp, D. , Spreitzenbarth, M. , Hubner, M. , Gascon, H. , Rieck, K. , Siemens, C. , 2014.

Drebin: effective and explainable detection of android malware in your pocket..

In: Ndss, 14, pp. 23–26 .
Azim, T., Neamtiu, I., 2013. Targeted and depth-first exploration for systematic

testing of android apps. SIGPLAN Not. 48 (10), 641–660. doi: 10.1145/2544173.
2509549 .

Candel, A. , Parmar, V. , LeDell, E. , Arora, A. , 2016. Deep learning with h2o. H2O. ai
Inc .

Cen, L., Gates, C.S., Si, L., Li, N., 2015. A probabilistic discriminative model for an-

droid malware detection with decompiled source code. IEEE Trans Dependable
Secure Comput 12 (4), 400–412. doi: 10.1109/TDSC.2014.2355839 .

Choi, W. , Necula, G. , Sen, K. , 2013. Guided gui testing of android apps with min-
imal restart and approximate learning. In: ACM SIGPLAN Notices, 48. ACM,

pp. 623–640 .
Choudhary, S.R. , Gorla, A . , Orso, A . , 2015. Automated test input generation for an-

droid: Are we there yet? In: Automated Software Engineering (ASE), 2015 30th

IEEE/ACM International Conference on. IEEE, pp. 429–440 .
Developers, A., 2012. Ui/application exerciser monkey.

Dini, G., Martinelli, F., Saracino, A., Sgandurra, D., 2012. MADAM: A multi-level
anomaly detector for android malware. Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 7531 LNCS, 240–253. doi: 10.1007/978- 3- 642- 33704- 8- 21 .

DroidBox, Google Archive https://code.google.com/archive/p/droidbox/ .

Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N., 2010.
Taintdroid: an information-Flow tracking system for realtime privacy monitor-

ing on smartphones. Osdi ’10 49, 1–6. doi: 10.1145/2494522 .
Fan, M., Liu, J., Wang, W., Li, H., Tian, Z., Liu, T., 2017. Dapasa: detecting android

piggybacked apps through sensitive subgraph analysis. IEEE Trans. Inf. Forensics
Secur. 12 (8), 1772–1785. doi: 10.1109/TIFS.2017.2687880 .

Genymotion, Fast & Easy Android Emulator. (2018). Genymotion, Android Emulator

for app testing. https://www.genymotion.com/ .
Global smartphone shipments by OS 2016–2022 | Statistic.

Google Play Protect. Android2018.
Hao, S. , Liu, B. , Nath, S. , Halfond, W.G. , Govindan, R. , 2014. Puma: programmable

ui-automation for large-scale dynamic analysis of mobile apps. In: Proceedings
of the 12th annual international conference on Mobile systems, applications,

and services. ACM, pp. 204–217 .

Hou, S. , Saas, A. , Chen, L. , Ye, Y. , 2016. Deep4maldroid: a deep learning framework
for android malware detection based on linux kernel system call graphs. In:

2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops
(WIW). IEEE, pp. 104–111 .

Hou, S. , Saas, A. , Chen, L. , Ye, Y. , Bourlai, T. , 2017. Deep neural networks for auto-
matic android malware detection. In: Proceedings of the 2017 IEEE/ACM Inter-

national Conference on Advances in Social Networks Analysis and Mining 2017.
ACM, pp. 803–810 .

Kang, B., Yerima, S.Y., Mclaughlin, K., Sezer, S., 2016. N-opcode analysis for android

malware classification and categorization. In: 2016 International Conference On
Cyber Security And Protection Of Digital Services (Cyber Security), pp. 1–7.

doi: 10.1109/CyberSecPODS.2016.7502343 .
Kang, B. , Yerima, S.Y. , Sezer, S. , McLaughlin, K. , 2016. N-gram opcode analysis for

android malware detection. CoRR abs/1612.01445 .
arbab, E.B., Debbabi, M., Derhab, A., Mouheb, D., 2017. Android malware detection
using deep learning on api method sequences arXiv: 1712.08996 .

eCun, Y. , Bengio, Y. , Hinton, G. , 2015. Deep learning. Nature 521 (7553), 436 .
Li, Y., Yang, Z., Guo, Y., Chen, X., 2017. Droidbot: a lightweight ui-guided test in-

put generator for android. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pp. 23–26. doi: 10.1109/ICSE-C.2017.8 .

achiry, A. , Tahiliani, R. , Naik, M. , 2013. Dynodroid: an input generation system for
android apps. In: Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering. ACM, pp. 224–234 .

cAfee Labs Threats Predictions Report | McAfee Labs.
cLaughlin, N. , Martinez del Rincon, J. , Kang, B. , Yerima, S. , Miller, P. , Sezer, S. ,

Safaei, Y. , Trickel, E. , Zhao, Z. , Doupe, A. , et al. , 2017. Deep android malware
detection. In: Proceedings of the Seventh ACM on Conference on Data and Ap-

plication Security and Privacy. ACM, pp. 301–308 .
NVISO ApkScan Scan Android applications for malware https://apkscan.nviso.be/ .

Oberheide, J. , Miller, C. , 2012. Dissecting the android bouncer. Summercon 2012 .

Papamartzivanos, D., Gasmez MAarmol, F., Kambourakis, G., 2019. Introducing deep
learning self-adaptive misuse network intrusion detection systems. IEEE Access

7, 13546–13560. doi: 10.1109/ACCESS.2019.2893871 .
eiravian, N. , Zhu, X. , 2013. Machine learning for android malware detection using

permission and api calls. In: Tools with Artificial Intelligence (ICTAI), 2013 IEEE
25th International Conference on. IEEE, pp. 300–305 .

asthofer, S. , Arzt, S. , Bodden, E. , 2014. A machine-learning approach for classifying

and categorizing android sources and sinks.. NDSS .
astogi, V., Chen, Y., Enck, W., 2013. Appsplayground : automatic security analysis

of smartphone applications. In: CODASPY ’13 (3rd ACM conference on Data and
Application Security and Privac), pp. 209–220. doi: 10.1145/2435349.2435379 .

habtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y., 2012. ”Andromaly”: a be-
havioral malware detection framework for android devices. J. Intell. Inf. Syst. 38

(1), 161–190. doi: 10.1007/s10844-010-0148-x .

martphone OS market share worldwide 2009–2017 | Statis-
tic, Statista https://www.statista.com/statistics/263453/

global- market- share- held- by- smartphone- operating- systems .
tart the emulator from the command line | Android Developers. (2018).

Android Developers. https://developer.android.com/studio/run/emulator-
commandline .

am, K., Khan, S.J., Fattori, A., Cavallaro, L., 2015. Copperdroid: automatic reconstruc-

tion of android malware behaviors. Ndss (February) 8–11. doi: 10.14722/ndss.
2015.23145 .

racedroid http://tracedroid.few.vu.nl/ .
estyarian, Rosmansyah, Y., Dabarsyah, B., 2015. Malware detection on android

smartphones using api class and machine learning. In: 2015 International Con-
ference on Electrical Engineering and Informatics (ICEEI), pp. 294–297. doi: 10.

1109/ICEEI.2015.7352513 .

erima, S.Y., Alzaylaee, M.K., Sezer, S., 2019. Machine learning-based dynamic anal-
ysis of android apps with improved code coverage. EURASIP J. Inf. Secur. 2019

(1), 4. doi: 10.1186/s13635- 019- 0087- 1 .
erima, S.Y., Sezer, S., 2019. Droidfusion: a novel multilevel classifier fusion ap-

proach for android malware detection. IEEE Trans. Cybern. 49 (2), 453–466.
doi: 10.1109/TCYB.2017.2777960 .

erima, S.Y., Sezer, S., McWilliams, G., Muttik, I., 2016. A new android malware de-
tection approach using bayesian classification arXiv: 1608.00848 .

erima, S.Y., Sezer, S., Muttik, I., 2015. High accuracy android malware detection

using ensemble learning. IET Inf. Secur. 9 (6), 313–320. doi: 10.1049/iet-ifs.2014.
0099 .

erima, S.Y. , Sezer, S. , Muttik, I. , 2015. Android malware detection: an eigenspace
analysis approach. In: Science and Information Conference (SAI), 2015. IEEE,

pp. 1236–1242 .
erima, S.Y., Sezer, S., Muttik, I., 2016. Android malware detection using parallel ma-

chine learning classifiers arXiv: 1607.08186 .

uan, Z. , Lu, Y. , Wang, Z. , Xue, Y. , 2014. Droid-sec: deep learning in android mal-
ware detection. In: ACM SIGCOMM Computer Communication Review, 44. ACM,

pp. 371–372 .
uan, Z. , Lu, Y. , Xue, Y. , 2016. Droiddetector: android malware characterization and

detection using deep learning. Tsinghua Sci. Technol. 21 (1), 114–123 .

ohammed K. Alzaylaee received his Ph.D. degree in Computer Science (Cyber Se-
urity) from Queen’s University Belfast, U.K. in 2019. He Holds M.Sc. degree in Com-

uter Science from the University of New Brunswick, Fredericton, NB, Canada, 2012,
nd currently he is an assistant professor in the Department of Information Sys-

ems, College of Computing in Al-Qunfudah, Umm-Al-Qura University, Saudi Arabia.
is research interests include dynamic analysis of Android applications, machine

earning for the malware detection, and cyber security.

Suleiman Y. Yerima received his Ph.D. degree in Mobile Computing and Commu-
nications in 2009 from the University of South Wales, U.K. (formerly University of

Glamorgan). He holds an MSc (with Distinction) in Personal, Mobile and Satellite
ommunications from the University of Bradford, U.K and a B.Eng. (First Class) de-

ree in Electrical and Computer Engineering from Federal University of Minna, Nige-
ia. He was a member of the Mobile Computing Communications and Networking

MoCoNet) Research group at Glamorgan from 2005 to 2009. From 2010 to 2012

e was a Research Assistant in the UK-India Advanced Technology Centre of excel-
ence in Next Generation Networks, Systems and Services (IUATC) at the University

f Ulster, Northern Ireland. He joined the Centre for Secure Information Technolo-
ies (CSIT), Queen’s University Belfast in 2012 where he had been a Research Fellow

https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1109/CyberSecPODS.2016.7502337
https://doi.org/10.1145/3041008.3041010
https://doi.org/10.1109/CyberSecPODS.2017.8074845
https://doi.org/10.1145/2351676.2351717
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0007
https://doi.org/10.1145/2544173.2509549
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0009
https://doi.org/10.1109/TDSC.2014.2355839
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0012
https://doi.org/10.1007/978-3-642-33704-8-21
https://code.google.com/archive/p/droidbox/
https://doi.org/10.1145/2494522
https://doi.org/10.1109/TIFS.2017.2687880
https://www.genymotion.com/
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0018
https://doi.org/10.1109/CyberSecPODS.2016.7502343
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0020
http://arxiv.org/abs/1607.08186
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0022
https://doi.org/10.1109/ICSE-C.2017.8
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0026
https://apkscan.nviso.be/
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0027
https://doi.org/10.1109/ACCESS.2019.2893871
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0030
https://doi.org/10.1145/2435349.2435379
https://doi.org/10.1007/s10844-010-0148-x
https://www.statista.com/statistics/263453/global-market-share-held-by-smartphone-operating-systems
https://developer.android.com/studio/run/emulator-commandline
https://doi.org/10.14722/ndss.2015.23145
http://tracedroid.few.vu.nl/
https://doi.org/10.1109/ICEEI.2015.7352513
https://doi.org/10.1186/s13635-019-0087-1
https://doi.org/10.1109/TCYB.2017.2777960
http://arxiv.org/abs/1608.00848
https://doi.org/10.1049/iet-ifs.2014.0099
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0038
http://arxiv.org/abs/1607.08186
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0042
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0042
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0042
http://refhub.elsevier.com/S0167-4048(19)30016-1/sbref0042

M.K. Alzaylaee, S.Y. Yerima and S. Sezer / Computers & Security 89 (2020) 101663 11

i

D

S

s

l

o

S

i

Q

s

E

s

t

a

n

n

I

H

n

n Mobile Security until 2017. He is currently a Senior Lecturer in Cyber Security at
e Montfort University, Leicester, UK. Suleiman is a Certified Information Systems

ecurity Professional (CISSP) and a Certified Ethical Hacker (CEH). He current re-
earch interests are in mobile security, malware analysis and detection, machine

earning, intrusion detection systems and authentication. Suleiman is the recipient
f the 2017 IET Information Security premium (best paper) award.

akir Sezer received the Dipl. Ing. degree in electrical and electronic engineer-

ng from RWTH Aachen University, Germany, and the Ph.D. degree in 1999 from
ueen’s University Belfast, U.K. Prof. Sezer is currently Secure Digital Systems Re-
earch Director and Head of Network Security Research in the School of Electronics
lectrical Engineering and Computer Science at Queen’s University Belfast. His re-

earch is leading major (patented) advances in the field of high performance con-
ent processing and is currently commercialized by Titan IC Systems. He has co-

uthored over 120 conference and journal papers in the area of highperformance
etwork, content processing, and System on Chip. Prof. Sezer has been awarded a

umber of prestigious awards including InvestNI, Enterprise Ireland and Intertrade
reland innovation and enterprise awards, and the InvestNI Enterprise Fellowship.

e is also co-founder and CTO of Titan IC Systems and a member of the IEEE Inter-

ational System-on-Chip Conference executive committee.

	DL-Droid: Deep learning based android malware detection using real devices
	1 Introduction
	2 Related work
	3 Methodology and experiments
	3.1 Experimental setup
	3.2 Dataset
	3.3 Features extraction and preprocessing
	3.4 Features ranking comparisons
	3.5 Investigating Deep Learning Classifier vs. other popular machine learning algorithms

	4 Experimental results and discussions
	4.1 Deep learning classifier analysis
	4.1.1 DL comparisons with dynamic features: Stateful vs. Stateless input generation
	4.1.2 DL comparisons with dynamic features and static features: Stateless vs. Stateful input generation

	4.2 Comparison of the performance of the Deep Learning Classifier with other popular machine learning classifiers
	4.3 Results comparison with existing work

	5 Conclusion
	Declaration of competing interest
	References

