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Abstract 13 

Marine structures are typically sensitive to the direction of wind and waves, especially in extreme 14 

metocean conditions. The extreme metocean conditions and their associated predicted directions are not 15 

easily reachable from traditional design methodologies. In this research, the most probable combinations of 16 

different extreme metocean conditions along with their associated direction are predicted for the HyWind 17 

Scotland wind farm, Scotland. To achieve this, the Hierarchical Bayesian Modelling approach is applied to 18 

define the Joint Probability Distribution Function (JPDF) of four combinations of metocean parameters, 19 

including wave direction, wind direction and wind-wave misalignment. The data is provided by the ERA-20 

Interim dataset in 40 years (1979-2018). The JPDFs are composed of a marginal PDF of directional 21 

variables (a mixture of von-Mises Fischer distributions) and two conditional JPDFs which are defined to 22 

satisfy the periodicity and positivity of distribution parameters. Then, applying the Inverse First-Order 23 

Reliability Method (IFORM) to the JPDFs, the Environmental Contours (ECs) for four sets of metocean 24 

data are developed. The results show that extreme values obtained from ECs, including directional 25 

variables, are higher than the values of traditional linear ECs. The maximum 50-year extreme value of wind 26 

speed from the JPDF of wind direction, wind speed and wave height is 2 m/s higher than the same extreme 27 

extracted from the JPDF of wind speed, wave height and period. Another important observed point is that 28 

the direction at which the extreme of metocean parameters occurs is quite different from their dominant 29 

direction of wind rose or the most probable direction of their probability density function. According to the 30 

results, it seems for direction-dependent structures; the application of this method may lead to a more 31 

realistic presentation of joint occurrence of linear and directional metocean parameters. 32 

 33 

Keywords: Extreme metocean analysis, Joint probability model, Linear and circular statistics, Directional 34 

dependence, First-Order Reliability Method (FORM), Rosenblatt transformation, Northwestern North Sea 35 

coastlines. 36 

 37 

  38 
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1. Introduction 39 

The development of coastal and offshore structures towards areas with potentially more severe 40 

environmental conditions exposes the structures to extreme loading situations. Safety of such structures 41 

must, therefore, be ensured under the expected sea states during extreme metocean conditions. This 42 

necessitates a reliable estimation of specific important metocean parameters with very low probabilities of 43 

occurrence, which might lead to severe damages to the structure. Among all potential marine environmental 44 

factors, it is the wind and wave conditions to be considered as influential metocean parameters affecting 45 

significantly the design and integrity assessment of many marine engineering applications [1, 2]. 46 

Accordingly, current design standards and recommended practices, such as DNV GL's [3], NORSOK N-47 

003 [4], API-RP-2A-WSD [5], ISO [6], IEC 64001-3 standard [7], and ABS [8], have issued guidelines 48 

prescribing modelling instructions on extreme wind and wave loadings through a series of load cases 49 

including either a single load pattern or a combination of load patterns. The required statistical measures of 50 

wind and waves in the specified extreme load cases are generally quantified through two types of variables: 51 

linear and circular, reflecting magnitude and direction of variables, respectively. The extreme values of 52 

linear variables in both single and combined loading patterns are typically assumed to be conditionally 53 

independent of their corresponding circular measures (i.e., linear circular-independent variables); and are 54 

associated with their frequently occurring values of their circular measures, such as mean or spectral peak 55 

directions [3-7, 9]. However, the probability of experiencing such direction-independent extreme loadings 56 

(i.e., single or combined) is very low and has often led to inconsistent estimation of environmental action 57 

effects associated with a particular recurrence period in other directions different than the typically 58 

considered direction (i.e., mean or spectral peak directions), which could result in inefficient and unreliable 59 

designs [10-12], especially in case of directional dependent structures such as non-axisymmetric support 60 

structures and mooring systems. This is due to the fact that these parameters are in reality correlated and 61 

direction-dependent so that due to the existence of usual multi-hour time lag between wind and wave fields 62 

during extreme events, a wind field with most likely less severe magnitude and different direction can be 63 

combined with a wave field during its extreme state [13-15].  64 

Several recent studies have addressed this issue and provided some recommendations on probable 65 

appropriate treatments, see, e.g., [11, 12, 16-18]. On this basis, to deal with the directional dependence 66 

problem, a recommended approach is to apply the directional adjustment factors to the wind and wave 67 

extreme values obtained from omnidirectional marginal Probability Density Functions (PDFs) [11, 17, 18]. 68 

The directional dependent empirical formulations signifying wind and wave correlation can also be utilized 69 
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along with this method when time-series of data is not accessible for defining marginal PDFs of each 70 

metocean variable [18]. A second approach to obtain directionality consistent extreme values is to develop 71 

marginal PDFs within several directional bands, reflecting design requirements and constraints, for wind 72 

and wave parameters. In this case, the directional characteristic values must be calculated such that the 73 

overall non-exceedance probabilities obtained by the product of survival probabilities in all directions be 74 

equal to the desired omnidirectional reliability level [12]. The main problem with these approaches is that 75 

the dependence of linear and circular variables is either not taken into account or to some relatively large 76 

extent ignored. A third and more realistic approach is to develop a joint probability model of occurrence for 77 

metocean variables accounting different combinations of magnitudes and directions [16]. This approach is 78 

a multivariate probabilistic method, in which the simultaneous occurrence of extreme values of linear 79 

variables dependent on their circular measures could be predicted with an adequate degree of accuracy [3, 80 

6, 7]. On this basis, consistent estimation of both single and combined wind and wave actions; and 81 

consequently, extreme action effects can then be obtained [16]. The result, in this case, is an envelope also 82 

known as ‘‘environmental contour’’, which is, in fact, a simple, economic but yet sophisticated method 83 

from computational and accuracy point of views to define an appropriate combination of metocean variables 84 

with a specified MRP [1, 2]. The quality of environmental contour generally depends on several crucial 85 

factors including derivation methodology, probabilistic description of variables, fitting process and 86 

goodness-of-fit criteria, joint probability models (JPMs) (i.e., marginality or conditionality of each 87 

parameter or in another word structural dependence of variables). In dealing with such difficulties, several 88 

computational techniques to establish such multivariate probabilistic description including Inverse First 89 

Order Reliability Method (IFORM) [19], Inverse Second-Order Reliability Method (ISORM) [20]), Highest 90 

Density Contour (HDC) method [21], and hyper plans-/Monte Carlo-based approaches [22] have been 91 

developed. The newly established direct sampling method has been also used for the development of ECs 92 

in higher dimensions and directional variables [23, 24]. Moreover, different JPMs [10, 25-27], as well as 93 

various parametric [28] and non-parametric [29] statistical approaches have been presented and examined 94 

to define marginal/conditional PDF of variables. 95 

 96 

2. The current stage of directional metocean modelling and challenges 97 

The omni-directional and directional design conditions in combination of individual extreme values 98 

have been the subject of many studies (directional adjustment factors and direction-dependent marginal 99 

PDFs ) [11, 12, 16-18]. The directionally effects in metocean joint modelling has also been addressed [10, 100 
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25-27]. However, the problem of making consistent design criteria using multivariate JPMs considering 101 

both intensities and directions of wind and waves is has not been appropriately studied. With this in mind, 102 

the main objective of this study is to quantify the influence of direction on the combined extreme values. 103 

To accomplish our goal, a series of direction-independent and -dependent multivariate joint metocean 104 

models using the Conditional Modelling Approach (CMA) are developed, and the extreme metocean 105 

conditions are compared by omnidirectional and directional contours. The joint probability distribution of 106 

random variables to capture their inherent interdependence can be estimated by different methods. There is 107 

no preferred or recommended method for producing environmental contours from site-specific data sets; 108 

however, the differences in the methods mainly result from how dependencies or correlations are defined. 109 

Therefore, choosing the best method, which neither under- nor over-estimates the required quantities, is not 110 

always straightforward. The CMA can be implemented in the joint probability modelling when the 111 

sufficient amount of data in the form of simultaneous multi-variate time series (hindcast or recorded) is 112 

available. In the CMA, the first random variable is divided into the bins and a conditional probability 113 

function for the second random variable associated with each bin is estimated by analyzing the collected 114 

data in each bin. When the environmental data is not present in the form of recorded or hindcast data and 115 

just the marginal distribution of data besides their correlations is in hand, an approximate joint probability 116 

distribution approach, such as copula [30] and Nataf-based [31] models are used, avoiding the need to 117 

search for conditional independence. Nonetheless, the problem with copula and Nataf distribution 118 

approaches is that since dependence structure is predefined based on certain correlations, the use of 119 

correlation coefficients together with the marginal distribution may not capture the effect of dependence 120 

between the variables as it is applicable by described conditional distributions. So, it might not be possible 121 

to reflect the underlying shape of the data distribution well. In this case, the shapes of contours are generally 122 

rigid concerning the given sample data [32, 33]. 123 

This study proposes four different sets of conditional joint models to evaluate the influence of 124 

directionality on the extreme metocean condition. The paper is organized as follows: In Section 3, the study 125 

area along with utilized metocean data, are presented. In Section 4, the basic methodology for the long-term 126 

description of metocean and considered conditional models for metocean linear and circular variables along 127 

with multivariate distribution for each representative model is described. The analysis framework and fitting 128 

procedure implemented in this study are presented in Section 5. The application of developed joint models 129 

in extreme value analysis is discussed in details in Section 6. At last, the discussion on the directional 130 

dependency of extreme metocean conditions and remarks are provided in Sections 8 and 9. 131 
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3. Study area and metocean data description 132 

The area considered in the present study is located at the north-western portion of North Sea 133 

approximately 25 km off the northeast coast of Scotland, Peterhead, where a multi-MW floating offshore 134 

wind farm known as “Hywind Scotland Pilot Park” over an area of 15 km2 with a water depth around 95-135 

120 m is currently operating. An overview of the study area and study point location (57°29′00″N and 136 

1°21′00″W) is presented in Figure 1. To develop the joint distribution of wind and wave parameters, 137 

simultaneous wind and wave time histories at the location for a regular time interval of hours over several 138 

years (e.g., typically 3-6 hours and 30-50 years, respectively [1]) are needed. In this study, the required 139 

long-term data to describe wind and wave environmental conditions are provided by ERA-Interim dataset, 140 

a dataset from Numerical Weather Prediction Model (NWPM) of European Center for Medium-range 141 

Weather Forecast (ECMWF). [34]. This database is produced by much more accurate atmospheric 142 

modelling and assimilation techniques (i.e., better resolution and description of the wind and wave fields) 143 

compared to previous ECMWF datasets such as ERA-15 and ERA-40. The accuracies of the ERA-Interim 144 

reanalysis wave and wind field data against measurements have also been comprehensively evaluated and 145 

verified in various locations, see e.g., [35]. The data contains information regarding wind parameters, 146 

including speed and direction along with wave characteristics consisting of wave height, wave period, and 147 

direction of the wave. It covers the span of 1979-2018 (40 years) with a temporal resolution of six-hours 148 

which means there are about 58440 short-term environmental condition data points in the gathered database. 149 
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 150 

Figure 1. Location for study point at Hywind Scotland pilot wind park (yellow point) concerning the coast 151 

of Peterhead (red point). (For colour interpretation of this figure, the reader is referred to the web version 152 

of this article). 153 

 154 

4. Methodology 155 

Development of environmental contours (i.e., line in 2D cases and on a surface in 3D cases) is a process 156 

composed of generally two main steps: (1) Defining the dependence structure between metocean variables 157 

and (2) Establishing the environmental contours either directly in the original variable space (e.g., Monte 158 

Carlo-based approaches) or by transforming the variables between physical and standard normal spaces 159 

(e.g. IFORM). In the present study, the dependence between variables is described using the Conditional 160 

Modelling Approach (CMA) [36], while the joint models of the environmental variables are developed 161 

based on inverse first-order reliability method (IFORM) utilizing the Rosenblatt transformation [19, 37]. 162 

The theoretical elements of each step are described in details in the following subsections. 163 

4.1. Dependence modelling of variables 164 

One of the critical issues to obtain practical and reliable environmental contours is to describe the 165 

structure of dependence between intensities and associated directions of wind and wave characteristic 166 

parameters. To cope with this aspect, recent studies, see, e.g., [10, 25-27], have mainly adopted two 167 
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techniques. In the first approach, the directional distributions are conditioned on their most correlated 168 

characteristic parameters (i.e., one dependent parameter for conditional variables) as is expected to be 169 

compatible with the physics of the phenomenon [26]. For instance, wind direction depends on wind speed, 170 

but not vice versa. This model is sophisticated and realistic but can be computationally expensive as it turns 171 

out that there is no guaranty to have a unique conditional PDF for each circular variable in all directions. 172 

Therefore, alternative simplified but yet sufficiently accurate approaches with up to two dependent 173 

parameters for conditional variables have been suggested in order to reduce computational efforts. In these 174 

models, as the most widely used ones, the directional distributions are incorporated into at most tri-variate 175 

joint probability functions through marginal distributions [10, 25, 27]. This is generally a reasonable 176 

assumption mainly for the sake of convenience as it is easier to specify one unique PDF to each circular 177 

variable or their misalignment in all directions. In this case, the statistical dependencies in generated JPMs 178 

have also been defined using IFORM based Nataf transformation approach and CMA [25]. 179 

On this premise, the dependence between linear and circular metocean variables in the present study is 180 

modelled based on the Conditional Modelling Approach, (CMA). This method assumes that the probability 181 

density function of the combination of parameters can be described by the product of marginal distribution 182 

of a primary variable and some conditional PDFs of other ones. Therefore, the Joint Probability Distribution 183 

Function (JPDF) of random variables ( 1 2, , ..., nx xx ) is written as: 184 

1 1 21 2 1 2 1 2 1 1
, ,..., 1 2 1 2 1, ,...

( , ,..., ) ( ) ( )... ( , ,..., )
n n n

X X X n X n nX X X X X X
f x x f x f x x f x x xx x


                                                       (1) 185 

where 
1 1( )Xf x  is the marginal PDF of the primary variable and 

1 2
2 1 1

1, ,...
( , ,..., )

n n
n nX X X X

f x x x x


  is the 186 

conditional PDF of the nx  given 1x  to 1nx  . 187 

Considering the exchangeability of parameters priority in the CMA, one can assume different forms of 188 

priority in the Joint probability model. Here, due to the high number of mixture components in the 189 

distributions fitted to directional parameters, and to fit less sophisticated forms of interpolation functions, 190 

the JPM is set so that the primary variable is the directional one (when one of the variables is directional). 191 

On this basis, in the present study, four sets of environmental contours from a combination of six main 192 

metocean parameters including both linear and circular variables (i.e., wind speed, wU , significant wave 193 

height, sH , peak wave period, pT , wind direction, wind , wave direction, wave , and wind and wave 194 

misalignment,   ) have been developed. The JPDF of these sets is first described in Table 1. In all the 195 

distributions, it is assumed that the dependence between the second and third variable is negligible as 196 
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described by [38]. Each distribution, hereafter termed as D1-D4, is a product of three distributions as 197 

defined by Equation 1. These underlying distributions are categorized into two main classes of marginal 198 

and conditional distributions. The base distributions of D1-D4 JPMs are a set of marginal distributions, as 199 

discussed in Subsection 4.1.1 and three forms of conditional distribution functions as displayed in Table 1. 200 

Table 1. 201 
The underlying distributions for Environmental Contours developed in this research. 202 

JPDF 1X   2X  3X   
1 1Xf x   1

2 1
2X X

f x x   2
3 2

3X X
f x x  

D1 
wU  sH  pT  Weibull LLCW LLCL 

D2 
wave  sH  pT  movMF CLCW LLCL 

D3 . wind . wU  sH  movMF CLCW LLCW 

D4   
wU  sH  movMF CLCW LLCW 

 203 

4.1.1. Marginal PDF of circular variables 204 

The most naturally observed PDFs for circular parameters are shown to be the wrapped Cauchy, 205 

wrapped normal, and circular normal or von-Mises Fischer distribution functions [39, 40]. Among these 206 

forms, the von-Mises Fischer distribution function, which reduces to von-Mises distribution in the 2D case 207 

and is the normal distribution function projected over the perimeter of the circle, has shown to be the most 208 

suitable statistical distribution to model the directionality of metocean parameters, e.g., wind and wave 209 

directions [27, 41-43]. This distribution as a symmetric unimodal distribution is defined by its mean value, 210 

 0,2  , and a concentration parameter, 0  , as: 211 

 
 

 
0

1
exp cos

2
f

I
   

 
                                                                                                                           (2) 212 

where I0(κ) is the modified Bessel function of the first kind and zero-order. A mixture of von-Mises Fisher 213 

distributions can also be written as: 214 

1

1

( ) ( )

1

0 1,

n

i i

i

n

i

i

w

i

f f  









 



 





                                                                                                                                                            (3) 215 
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were 
i

  are weight coefficients. In the present study, the utilized Expectation-Maximization (EM) 216 

algorithm for the log-likelihood of the mixture in the package movMF [44] is applied to find the mixture 217 

parameters. 218 

4.1.2. Conditional PDFs of linear and circular variables 219 

The conditional dependence of variables in D1-D4 models is modelled by the three distributions. These 220 

distributions appear in different JPMs (i.e., D1-D4) and their parameters are estimated from the underlying 221 

data for each distribution.  222 

4.1.2.1. Linear-Linear Conditional Weibull Distribution (LLCW) 223 

The conditional Weibull distribution of variable ix  given the linear variable jx  is defined by Equation 224 

7. The shape and scale parameters of the Weibull distribution fitted to jX  are defined as power functions 225 

of the primary variable ( iX ):  226 

 
1

exp
ll

j

ll

ll ll

ll
ll

i j

j

i jX X

x
f x x

x







 



 

  
  
   

                                                                                                            (4) 227 

where 228 

3

1 2 i

c

ll c c x                                                                                                                                                   (5) 229 

4 5

6c

ll ic c x                                                                                                                                                    (6) 230 

This model has been applied to demonstrate the dependence between wind speed and wave height in 231 

the D1, D3, and D4 models (see also Table 1). 232 

4.1.2.2. Linear-linear Conditional Lognormal Distribution (LLCL) 233 

The conditional lognormal distribution of a linear ix  given the linear variable jx  can be written as: 234 

 
2

ln

2

lnln

(ln( ) )1
exp( )

22

X

XX

i j

i
i jX X

i

f x x
x

x






                                                                                                (7) 235 

in which 236 

3

ln 1 2

d

X j
d d x                                                                                                                                                (8) 237 

2

ln 4 5 6
exp( )

X j
d d d x                                                                                                                                   (9) 238 

The distribution of wave period given the wave height is assumed to follow this model for D1 and D2 239 

models (see also Table 1).  240 



11 

 

4.1.2.3. Circular-Linear Conditional Weibull Distribution (CLCW) 241 

The conditional Weibull distribution of a linear variable ix , e.g., wave height, dependent on a directional 242 

variable, w  is defined by:  243 

 
1

exp
cl

j

cl

cl cl

cl
cl

i j

j

i jX

x
f x

x







 

 



 

  
  
   

                                                                                                           (10) 244 

where: 245 

   0
cos b sin

1

n
a n nn j n jcl

i
a    


                                                                                                                    (11) 246 

and  247 

   0
cos b sin

1
cl

n
a n nn j n j

i
a    


                                                                                                                     (12) 248 

The functions defined by Equation 5 and Equation 6 are Fourier series with non-negative coefficients since 249 

the shape and scale parameters of Weibull distribution cannot take negative values, the function should also 250 

be periodic in the period of 0 ~ 360  and be able to resemble the shape of data points with reasonable 251 

accuracy. This model has been applied to demonstrate the dependence of wind speed and wave height with 252 

their corresponding individual directions as well as misalignments in the D2-D4 models (see also Table 1). 253 

4.2. Construction of Environmental Surface (ES) for D1-D4 254 

A well-known way of tackling problems associated with events of small exceedance probabilities is 255 

using the structural reliability methods. If we can assume the performance function of a structural system 256 

with ( )g X , where X  is the vector of random variables, the ( ) 0g X   is the failure surface or boundary 257 

of the system. The failure probability is defined then by: 258 

( ) 0
Pr( ( ) 0) ( )f X

g X
p g X f X dX


                                                                                                             (13) 259 

where ( )Xf x  is the joint PDF of random variables. The integral can be solved by direct numerical integration 260 

methods if the ( )Xf X and ( )g X are known functions. The last section described the definition of ( )Xf X by 261 

CMA. The second unknown function is a failure surface ( ( )g X ). Most of the structural reliability methods 262 

are defined to find a solution for the failure surface at the design point and the IFORM is set so that the 263 

failure surface ( )g X can be assumed to have a tangent hyperplane in the design point.  264 
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This method transforms the Correlated X  variables from the physical space to the uncorrelated 265 

Gaussian U  variables in the standard normal space. The distance of the design point from the origin in the 266 

standard normal space is called the reliability index  . For the case of standard normal space the reliability 267 

index is written as:  268 

1(1 )fp                                                                                                                                                          (13) 269 

where   is the CDF of the standard normal distribution function.  270 

The standard normal space which is defined by a hypersphere which can be related to the probability of 271 

occurrence of variables and their associated return period as follows: 272 

2 2U                                                                                                                                                                   (14) 273 

where   is the target reliability level associated with return period R  by the following relation: 274 

1(1 )
365.25*24*

sT

R
                                                                                                                                                                     (15) 275 

Here sT  denotes the duration of each short term observation (here 6-hours) and R  is assumed to be in 276 

years.  277 

Through the definition of variables by CMA, the ECs are defined for each value of  . The Rosenblatt 278 

transformation can be written as: 279 

1

2 1

3 2

1

1 1

1

2 2 1

1

3 3 2

( )

(

( )

( ( ))

( ))

X

X X

X X

F x

F x x

F x x

U

U

U







 





                                                                                                                                                 (16) 280 

where 1... nU U  are the base vectors of the hypercube and defined by: 281 

1

2

3

sin cos 0 2

sin sin 0

cos

r

r

r

U

U

U

    

    

 

  

  



                                                                                                                                                 (17) 282 

Utilizing this method, any combination of metocean variables can produce their environmental contours 283 

when their joint probability distribution function is appropriately described. 284 

 285 

5. Joint models fitting procedure and specifications  286 

The joint models described in Section 4 has been fitted to the metocean data using MATLAB and the 287 

movMF package in CRAN-R [44]. To this aim, first, the marginal PDF of the primary variable is estimated 288 
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and then according to the order of variables in each model, the data has been sorted in bins, and the functions 289 

have been fitted to each related conditioned parameter. For example, the D1 JPM as described in Table 1 is 290 

a product of marginal PDF of wind speed  ( )
wU wf u  as will be mentioned in Table 2 and two conditional 291 

JPDFs. The first one is the LLCW of wave height given wind speed  ( )
s w

s wH U
f uh and the second one is 292 

the LLCL of wave period given the wave height  
p s

T p sH
f ht . Accordingly, for the  

s w
s wH U

f uh , the 293 

values of wave height sH  are sorted and binned according to their corresponding values of wind speed wU294 

, and then the conditional Weibull distribution of Equation 4 is fitted to the sorted and binned data by 295 

nonlinear-least squares method to define the parameters of Equations 5 and 6. For the  
p s

T p sH
f ht  after 296 

binning and sorting the data, the LLCL of Equation 7 with parameters defined in Equations 8 and 9 is fitted 297 

in the same way. After defining the parameters of all the distributions, the ECs are produced applying the 298 

methodology described in Section 4.2. The overall process of the methodology applied in this research to 299 

conclude the directional interference of metocean parameters is illustrated in Figure 2.  300 
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 301 

Figure 2. A detailed flowchart of the analysis framework steps. 302 
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6. Results 303 

In this section, two methods used to calculate the extreme values of linear and circular variables with a 304 

particular recurrence period are described. The first method commonly utilized in practice is a univariate 305 

distribution modelling of the data, in which the dependency of variables is ignored, and a second method 306 

proposed in this paper consisting a series of multivariate/joint distribution of linear and circular variables. 307 

 308 

6.1. Raw data  marginal distributions and correlation  309 

In this section, the extreme values of linear variables from their marginal distributions are calculated 310 

from the marginal distributions fitted to them. To this aim, the marginal distributions of linear metocean 311 

variables (i.e., significant wave height ( sH ), mean wind speed ( wU ), mean wave period ( pT )) are displayed 312 

in Figure 2, while the probability density function of directional variables (i.e., mean wave and wind 313 

directions ( wave  and wind ) as well as wind and wave misalignment (  ) are shown in Figure 3. Table 1 314 

also lists the variables and the distributions fitted in Figure 2 and Figure 3d-f. Moreover, the number of 315 

components estimated for each circular variable is presented in  316 

Table 2. The details of the components are listed in Table A1 of the Appendix. The rose diagram for 317 

wind direction, wave direction, and wind-wave misalignment are plotted in Figure 3a-c. The correlation 318 

coefficients between the parameters as an informative measure of the concurrency of variables were also 319 

calculated using the Spearman's Rho [45] formulation and listed in  320 

Table 3. These correlations between circular and linear variables (l-c), (l-l) for linear and (c-c) for 321 

circular variables will be discussed later. The Spearman's Rho is a measure of association which evaluates 322 

the monotonicity in the values of two variables, i.e. their tendency to change together in the same way, but 323 

not necessarily with a constant rate. If two variables are in a robust relationship but their relation is not 324 

monotonic, the Spearman's Rho may be significantly low. As it is expected, (l-l) coefficients showing a 325 

correlation between ( sH , wU ) and then ( sH , pT ) hold the highest values in  326 

Table 3. The dependency between ( wU , pT ) is considerably low in contrast to the other (l-l) correlations, 327 

which was the base for the assumption of dependency between ( wU , pT ) in the D1 distribution. The 328 

definition of (l-c) and (c-c) correlation coefficients, based on the Spearman's Rho, are different than (l-l) 329 

and thus quite different values should be expected. When it comes to calculation of this measure for circular 330 

and linear variables, the concept becomes more complicated; i.e. the tendency of variables to decrease or 331 
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decrease in the same way for the circular and linear variables is not physically easy to interpret. While in 332 

the case of (l-l) and (c-c) the concurrency of variables can be observed and understood more easily.  333 

 334 

                                          (a)                                                                                (d) 335 

 336 

                                          (b)                                                                                (e) 337 

 338 

                                          (c)                                                                                (f) 339 

Figure 3. Marginal distribution of linear (left panel) and directional (right panel) variables for the metocean 340 

data (from 1979 to 2018): (a) Mean wind speed, (b) Significant wave height, (c) Mean wave period, (d) 341 

Mean wave direction, (e) Mean wind direction, (f) wind-wave misalignment. 342 

As shown in  343 

Table 3., the (l-c) correlation coefficient of ( sH , wind ) is higher than that of ( sH , wave ). Here a question 344 

may arise that why the wave height is more dependent on the wind direction than on the wave direction. 345 

Referring to the origin of Spearmen's Rho, which is how the sH  and wave can affect interchangeably, may 346 

help to answer the question. Since the waves are known to be mainly wind-generated, it is acceptable that 347 

the waves are affected by the wind direction and also because the wave direction is dependent on the 348 
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topology of the site and the changes in the wave direction toward the shoreline and changes in the depth. 349 

The correlation between ( wU ,  ) and that of ( sH ,  ), on the other hand, are close to each other, while 350 

the misalignment has a bit more tendency to be affected by wU . The (c-c) correlation between ( wave ,  ) 351 

is the only negative value in Table 3. While the (c-c) correlation coefficient of ( wind ,  ) takes the 352 

reasonably high value of 0.161. This means the increase in the misalignment is much more dependent on 353 

the wind direction, while it is inversely dependent on the wave direction. Another issue about the slightly 354 

low values of (c-c) and (l-c) correlation coefficients can be explained by the fact that although winds 355 

generate waves, there are usually time lags between highest values of winds and waves. Therefore, the 356 

extreme values of wind speeds and wave heights do not coincide, and this leads to lower values of 357 

correlation coefficients. 358 

Table 2. 359 
Metocean variables used in this research and their marginal distributions. 360 

Variable Distribution 

Mean wind speed ( wU ) Weibull ( 8.742 2.206   ) 

Significant wave height( sH ) Weibull ( 1.766 1.916   ) 

Peak wave period ( pT ) Log-normal ( 1.847 0.206   ) 

Mean wind direction ( wind ) A mixture of von-Mises ( n=8) 

Mean wave direction ( wave ) A mixture of von-Mises (n=6) 

The absolute value of wave wind  ,(  )  A Mixture of von-Mises (n=12) 

 361 

Table 3. 362 
The Spearman's Rho correlation coefficient between variables. 363 

 
wU  sH  pT  wind  wave    

wU  1 0.773 0.149 0.141 0.348 0.101 

sH   1 0.644 0.108 0.069 0.094 

pT    1 0.185 0.346 0.149 

wind     1 0.369 0.161 

wave      1 -0.131 

       1 
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 364 

 365 

Figure 4. Scatter plot of wind direction vs. wave direction. 366 

Figure 4 is the scatter plot of wave and wind directions. The area between 120 ̊ ~ 300 ̊ is lighter in 367 

density and less scattered which is in accordance with the density plots as shown in Figure 3d and Figure 368 

3e. The rose diagram for wind speed and direction, wave height and direction and wind-wave misalignment 369 

and wind speed are plotted in Figure 5a-c. The rose plot of wind and wave misalignment in Figure 5c shows 370 

the gradual decrease in the density of wind speeds with the increase of misalignment from 0 ̊ to 360 ̊. It can 371 

also be seen that the misalignment between wave and wind direction is less than 90 ̊ in a majority of wind 372 

and wave combinations. It is to be noted that the wind-wave misalignment is defined as the absolute value 373 

of the difference between wind and wave directions, as mentioned in Table 1. 374 

 375 

 376 

                         (a)                                                         (b)                                                  (c) 377 

Figure 5. Density of directional parameters in different directions (a) Wind direction vs.wind speed (m/s) 378 

(b) Wave direction vs.wave height (m) (c) Absolute value of wind-wave misalignment vs. wind direction 379 

(m/s). 380 
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6.2. Multivariate extreme metocean conditions calculation 381 

The environmental contours for distributions D1 to D4 models have been developed using the above-382 

described methodology. The results for a mean return period of 50 years are presented in Figure 6 to Figure 383 

9, respectively. Each figure is composed of four parts (a-d), where the overall view of the surface is 384 

displayed in part (a) and the contours of surface elevation in three planes are shown in parts (b) to (d). 385 

6.2.1. D1 model 386 

The developed EC for D1 model (i.e., wU , sH  and pT ) is displayed in Figure 6. In this case, the related 387 

parameters of wind speed marginal distribution as the primary variable are reported in  388 

Table 2, and the parameters of the conditional distribution of wave height and wave period are listed in 389 

Table A4 and Table A5. According to Figure 6a., the entire environment surface is expanded in pT ~ (2.5 390 

s-12.2 s), sH ~ (0-7.4 m), and wU ~ (0-26 m/s), such that the contours of wU  shrink to smaller areas and get 391 

concentrated on more specified values of sH  and pT  as wU  increases. It can also be seen that the contour 392 

line corresponding to wU =26 m/s is located where sH  and pT  experience fewer values than the 393 

corresponding values at the contour line associated with wU =25 m/s meaning that the maxima of pT , sH  394 

and wU  are not located at the same representative point. This is more evident in Figure 6(b-d) where the 395 

values of sH  and pT  for the highest range of wU  between 6.17 m and 6.94 m and 10.27 s and 11 s, 396 

respectively, while the extreme value of wave height and wave period (i.e., 7.35 m, 12.2 s respectively) 397 

occur in lower values of wind speed, (i.e., 24.74 m/s, 8.5 m/s respectively). 398 
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 399 

                                             (a)                                                                            (b) 400 

 401 

                                             (c)                                                                                (d) 402 

Figure 6. ES (environmental surface) envelope developed for D1 distribution: a) The overall view of the 403 

surface, b) contour lines of wU  in (m/s), c) contour lines of pT in (s), and d) contour lines of sH  in (m). 404 
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6.2.2. D2 model 405 

The ES (environmental surface) developed based on D2 model for wave parameters, including 406 

significant wave height ( sH ), mean wind direction, and ( wave ) mean wave period ( pT ) is shown in Figure 407 

7. The parameters of the model for wave direction as the primary variable are reported in Table A1. This 408 

ES (environmental surface) is an extension of the LonoWe model (which is a JPDF of wave height and 409 

period) for all the wave directions. Table A6 and Table A4 also report the related parameters of wave height 410 

and wave period distributions, respectively. 411 

Figure 7a displays the surface and the underlying data, and it shows that there are multiple peaks in the 412 

sH - pT  values in specific wave directions showing irregular and non-monotonic behaviour. Figure 7b shows 413 

the contours of sH - pT  for different wave directions. As the contours take more extreme sea states, they 414 

tend to get deformed and have a sharp edge on the most extreme point. The least value of pT  in the contours 415 

is more than 2.3 s which complies with the underlying distribution of pT  as shown in Figure 3c that shows 416 

the minimum value of pT  at the 2.2 s. The highest value of pT  in almost all the contours is 12.2 s. The most 417 

extreme contour exists at the 106  where sH =8.4 m and pT =12.2 s. The other peaks in the surface also 418 

appear close to the 0 . This also supports what can be inferred from Figure 3d, where the density of 419 

directions near 0  is higher than in the other regions. If the design approach suggests selecting the design 420 

direction based on the density plot of wave directions, the 0 can be the right choice according to Figure 3d. 421 

However, the present method reveals that the most extreme sea states occur in the 106 , while this direction 422 

does not take a high-density value in the density plot (Figure 3b). This kind of understanding cannot be 423 

comprehended just from the rose plot of wave direction (Figure 4a) or the density plot (Figure 3b). Figure 424 

7c also demonstrates the regions of high sH  values with contours of sH =7 m and 8 m around 106 . Figure 425 

7d demonstrates the levels of pT  for different values of sH  and wave . The contour of pT =12s also shows a 426 

peak around the most severe direction ( wave = 106 ). 427 
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 428 

                                             (a)                                                                                (b) 429 

 430 

                                             (c)                                                                                (d) 431 

Figure 7. ES developed for D2 distribution: a) The overall view of surface b) Contour lines of wave  in 432 

(Degrees), c) Contour lines of sH  in (m), and d) Contour lines of pT  in (s) 433 
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6.2.3. D3 model 434 

The ES developed based on D3 model for the combination of wind direction, speed, and wave height is 435 

presented in Figure 8. The related distribution parameters of wind direction, wind speed, and wave height 436 

are tabulated in Table A2, Table A7, and Table A5, respectively. Figure 8a shows the surface with the peaks 437 

on both sides of 0  (i.e., 5 and 354 ) and in the 159 . In the direction of 159 the surface shows the extreme 438 

sea state of sH =8.19 m and wU =28.28 m/s. Figure 8b shows the contours of wind  in the wU - sH  plane. A 439 

pronounced feature of these contours is their tendency to have a virtual tangent line in their right side, none 440 

of the contours crosses this line. The line can be physically related to the wave heights which are possible 441 

to be developed in the associated wind speed. For example, in the wU =15 m/s, the sH   in none of the 442 

contours exceeds the value of 5.6 m. The interpretation of the reason for such a phenomenon needs a more 443 

precise analysis of the physical interaction of wind and waves. The wave data used in this research is the 444 

significant height of combined wind waves and swell as provided by ECMWF in the ERA-Interim database 445 

and there is no information available on the percentage of each component. So it can not be concluded 446 

directly from the shape of contours that the wave heights are related to the wind speeds (due to the existence 447 

of swells). But since the contours are generated from the JPMs derived from the raw data without applying 448 

any other filter. To explain this phenomenon, as an observed feature the physical interaction between wind 449 

speeds, fetch length, duration of blowing, water depth and bathymetry shape should be investigated which 450 

is out of the scope of this research. The contours of wU - sH  are plotted in Figure 8c in which the region 451 

around the 159  direction is highlighted with contours of increasing values of he Tform 25 to 28 m/s.  wU  452 

same region is also observable with high values of sH  in Figure 8d where the contours of wU  in the sH -453 

wind  plane are plotted. 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 
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 462 

                                             (a)                                                                                (b) 463 

 464 

                                             (c)                                                                                (d) 465 

Figure 8. ES developed for D3 distribution: a) The overall view of the surface, b) Contour lines of wind  in 466 

(Degrees), c) Contour lines of wU  in (m/s), and d) Contour lines of sH  in (m). 467 
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6.2.4. D4 model 468 

The ES for the wind-wave misalignment, wind speed, and wave height, developed based on the D4 469 

model is shown in Figure 9. The related distribution parameters for misalignment, wind speed, and wave 470 

height can be found in Table A3, Table A8, and Table A5, respectively. It can be seen from Figure 9a that 471 

the value of misalignment increases as its probability of occurrence decreases, which complies with Figure 472 

3f. This means wind and waves frequently happen from close directions. The contour lines of sH  and wU  473 

shown in Figure 9(b-d) also show that the most extreme combination of  , wU  and sH  occurs in the 68  474 

where wU  and sH  are 27.41 m/s and 7.1 m, respectively. Additionally, it is seen that high values of sH  and 475 

wU  are also likely to occur in 142 and 191  misalignments. Moreover, from Figure 9c and Figure 9d, it 476 

can be seen that the contour lines corresponding to the highest values of sH  and wU  are mostly located in 477 

the misalignment values less than 180  signifying lower probability of occurrences of opposite directions 478 

for wind and waves in the severe sea states. 479 

 480 

 481 

 482 

 483 

 484 

 485 
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 486 

                                           (a)                                                                                (b) 487 

 488 

                                           (c)                                                                                (d) 489 

Figure 9. The ES developed for D4 distribution: a) The overall view of the surface, b) contours of   in 490 

(Degrees), c) contours of wU  in (m/s) d) contours of sH  in (m). 491 

 492 

 493 
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7. Model diagnostics and validation 494 

The purpose of applying the probability models in this research is to describe the dependence of 495 

variables and generate samples similar to underlying data. The accuracy of the fits of the proposed model 496 

was investigated by nonlinear regression. Afterwards, a series of samples were generated by Monte Carlo 497 

(MC) method and the RMSE (Root mean square Error) of the model was studied through comparison of 498 

the underlying hindcast data and generated samples. The methodology of developing the JPDFs and the 499 

ECs was described in Sections 4 and 5. To test the models, the R-squared values of the fits were observed 500 

calculated. As an example, the fits of the LLCL and CLCW distributions fitted to raw data for the D2 model 501 

besides their R-squared values are reported in Figure 10. 502 

 503 

                                           (a)                                                                          (b) 504 
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 505 

                                         (c)                                                                         (d) 506 

Figure 10. The fits and raw data of D2 model a) The mean parameter of LLCL, R-squared: 0.959, b) The 507 

square of the standard deviation parameter of LLCL, R-squared: 0.997, c) The scale parameter of CLCW, 508 

R-squared: 0.979, and d) The shape parameter of CLCW, R-squared: 0.828 509 

The main scope of this research as mentioned before is to provide the designers with the joint probability 510 

of metocean parameters. The models are expected to generate a series of data which are likely to occur 511 

realistically. Monte-Carlo methods are usually used to generate pseudo-random samples from complex 512 

distributions [26, 46]. Latin Hypercube Sampling (LHS) as a more efficient way can also be applied to 513 

generate samples [47, 48]. Both of these methods were used herein to validate the JPDFs. The samples 514 

generated by the MC are compared versus the hindcast data to test the accuracy of the models. To better 515 

illustrate the correspondence of model versus hindcast variables, the histograms of generated samples are 516 

compared in Figure 11. The samples of ( , , )w s pU H T  predicted by D1 and wind , wave  and  generated 517 

respectively by D2, D3 and D4 as shown are in good accordance. The RMSE, as a popular goodness of fit 518 

test, was also utilized to check the results. The 3-variate samples of data were generated from D1-D4 519 

distributions by MC method. Then the accuracy of the fits was evaluated by the RMSE (Root Mean Square 520 

Error) statistic [46]. Two sets of this statistic were computed for the models. The RMSE of the whole JPDFs 521 
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are listed in Table 1. Then the RMSE of pairs of variables are reported in Table 2. As can be seen, the low 522 

values (near zero) show adequate accuracy of the model. 523 

Table 4. 524 
The RMSE of the JPDFs  525 

 D1 D2 D3 D4 

RMSE 0.0151 0.0082 0.0065 0.0062 

 526 

Table 5. 527 
The RMSE of pairs of variables  528 

  
wU  sH  pT  

D1 ( , , )w s pU H T  
wU   0.0216 0.0207 

sH    0.0131 

D2 ( , , )wave s pH T  
wave  

 
0.0104 0.0129 

sH   0.0217 

D3 ( , , )wind w sU H  
wind  0.0053 0.0119 

 

wU   0.0217 

D4 ( , , )w sU H  
  0.0058 0.0101 

 
wU   0.0217 

 529 

 530 

 531 

 532 

 533 
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 534 

                                          (a)                                                                       (b) 535 

  536 

                                          (c)                                                                      (d) 537 
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 538 

                                          (e)                                                                       (f) 539 

Figure 11. The generated vs. hindcast data: a) wU  from D1, b) sH  from D1, c) pT from D1, d) wave  from 540 

D2, e) wind  from D3, f)  from D4. 541 

8. Discussion and investigation of extreme values 542 

To discuss the results of implemented IFORM on the combinations of circular and linear metocean 543 

conditions, two sets of comparisons have been made. First, the maximum values of linear variables 544 

extracted from extreme contours of four JPMs (i.e., D1-D4 models) are compared. Then the extreme 545 

contours for two sets of variables from different JPMs are chosen to be contrasted. 546 

8.1.  Discussion on the extreme values in contrast to marginal distributions 547 

According to the results of applying the environmental contours method on the JPMs D1-D4 models (  548 

Table 2), the contours where the extreme value of each linear variable occurs were selected to compare 549 

the extremes extracted from different JPMs. The environmental contours associated with the highest value 550 

of parameters as defined and explained in Section 6, were compared to the extreme values associated with 551 

a 50-year MRP from marginal distributions in Table 6. It can be seen that the values of sH and wU are in 552 

close ranges for the D1 model, ( , , )w s pU H T , and marginal distributions. However, the extreme contours for 553 

the D2 model, ( , , )wave s pH T , and D3 model, ( , , )wind w sU H , show higher values for sH  and wU  than those 554 
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of marginal distributions. While in the D4 model, ( , , )w sU H , the extreme values are near the marginal 555 

ones. 556 

 557 

Table 6. 558 
The extreme values for the 50-year return period from marginal distribution and D1-D4 JPMs for linear 559 

variables. 560 

Parameter wU  sH  pT  

Marginal distribution 26.56 m/s 6.35 m 15.33 s 

D1 ( , , )w s pU H T  26 m/s 7.02 m 11.04 s 

D2 ( , , )wave s pH T  - 8.4 m 12.2 s 

D3 ( , , )wind w sU H  28.8 m/s 8.18 m - 

D4 ( , , )w sU H  27.4 m/s 7.1 m - 

 561 

8.2.  Comparison of extreme contours 562 

The extreme contours of specified variables from different JPMs are compared and evaluated. The 563 

extreme values from different JPMs show considerably different values. Reviewing the process of building 564 

this series of JPDFs may help to explain such differences. To find the parameters of JPDFs, the underlying 565 

data of each JPDF is at first sorted in the form of tables with specified bin numbers; then the prescribed 566 

function forms are fitted to the distribution parameters. Researchers have applied the D1 model to find the 567 

extreme sea states associated with specified MRPs [38]. In the case of the D1 model, which is the JPDF of 568 

wind speed, wave height, and wave period, there is an increasing monotonic relation between wind speed, 569 

wave height, and period.  570 

Moreover, the definition of JPDF is somehow based on the physical relation of wU , sH , and pT , while 571 

in the case of D2-D4 models, where the primary variable which has the marginal distribution is a circular 572 

variable, there is not inherently a monotonic relation between the increases of parameters. Since the winds 573 

and waves coming from different directions usually have various sources of generation, the data in these 574 

distributions in each bin of sorted data may come from different sources and show different behaviours; 575 

and thus, different parameter distributions can be fitted to them. The data in a specified bin may maintain a 576 

higher mean value; and thus, a Weibull distribution with much higher parameters than that of the aggregate 577 

data is fitted to this subpopulation. This may lead to a higher probability prediction for these bins. Vanem 578 

has recently investigated the effect of data sub-sampling on the resulted contours to account for seasonality 579 

[49]. The research shows that subsampling data for different seasons can result in the contours which are 580 
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located in higher sea states or lower sea states, i.e. the contours for harsher seasons are much higher than 581 

contours of seasons with calmer weather. However, the contours can be moderated by some methods to be 582 

applied for practical applications which are out of the scope of the current research. 583 

The definition of distributions and the order of marginal-conditional distributions affect the way the 584 

data is sorted and binned and the distributions fitted to each bin. This definition influences the shape of the 585 

ES, and thus the final extreme contour is highly dependent on the definition of distributions. To further 586 

investigate the issue, the most extreme contours from different distributions are compared in Figure 12. As 587 

can be seen, the contours which are frequent in different distributions (D1-D4 models) are chosen. First, 588 

the extreme values of contours of wU - sH  from the D1 model, D3 model, and D4 model are plotted in Figure 589 

12a. The contour of 159wind   derived from the ES of the D3 model ( wind , wU  , sH ) is located in higher 590 

values, as mentioned in Table 6. The second highest value is associated with 68   from the ES of D4 591 

model (  , wU  , sH ). The lowest value locates on the contour associated with D1 model ( wU , sH  , pT  ). 592 

Figure 10b also shows the results of comparison of contours of sH - pT  from the D1 and D2. The extreme 593 

value of the combination of sH - pT  derived from the D1 model ( wU , sH  , pT ) which is located at 594 

26 /wU m s  is a limited area, while the contour of sH - pT  derived from the D2 model (JPDF of wave , sH  595 

and pT ) is quietly extended in a big area of wave height and periods, where the 106wave  . This can be 596 

explained by a look at the difference of the form of ES of D1 and D2 models. The ES created by D1 model 597 

is physically interpreted by the inherent nature of wind and waves and has usually shown the fastest winds 598 

to be accompanied by higher waves. The generation of waves is dependent on the existence of wind. 599 

However, the problem of concurrency and the definition of wind seas and swells can be taken into account. 600 

It is clear that the sea states become more severe as higher winds below; and hence, it can be accepted that 601 

high amounts of wave are concurrent with limited conditions of wind speed. The ES created by the JPM of 602 

D1 model ( , , )w s pU H T  expands in a big area of ( , )s pH T  in the low values of wU , but the cross-sectional 603 

area reduces with the increase of wU , as can be seen in Figure 6a the number of data points also decreases 604 

as wU increases. In the case of directional variables, on the other hand, there is no physical meaning between 605 

the direction and wind and wave linear characteristics. Wind and waves generally may come from any 606 

direction without any limitations on their speeds and heights, respectively. The distributions which create 607 
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the contours rely on data in bins associated with each direction. The spreading of data in each bin of 608 

direction as in (D2-D4 models) is more varied than its diversity in the bins of wave period as in D1 model. 609 

This can also be explained by the physical limitations on the wave and wind characteristics like wave 610 

steepness. Accordingly, the contours of wave and wind created by directional considerations cover a wide 611 

span of wind and wave linear characteristics. As can be seen in Figure 7-Figure 12, the cross-section of the 612 

ESs associated with D2-D4 models which contain directional variables is then extended along the direction 613 

axis with more or less continuous densities spread all over the axis.  614 

 615 

 616 

                                             (a)                                                                                (b) 617 

Figure 12. The highest contours created by different distributions. a) contours of ( wU  - sH ) b) contours of (618 

sH - pT ) 619 

9. Conclusion 620 

The present research was conducted to reach to an understanding of the concurrence of metocean 621 

conditions in the HyWind Scotland site, Scotland. To achieve this, four combinations of metocean 622 

parameters were selected, and their JPDFs were created. Then, the ESs (environmental surfaces) were 623 

developed for these combinations of parameters utilizing the IFORM and the CMA. Analysing the surfaces 624 

and their underlying contours, the subsequent outcomes can be comprehended: 625 
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 The traditional methods of design environment choosing suggest the use of rose diagrams and 626 

directional density plots to find the direction of wind or wave in which the structure will be damaged 627 

more. This research proposes the use of ESs created considering the directionality of metocean 628 

parameters to find the design direction.  629 

 Comparison of the results shows that using just the rose plot or marginal PDF of directional data for 630 

prediction of the design wind or wave direction may lead to choosing the design direction which is 631 

not associated with the most extreme sea states, since the extreme waves or winds may come from 632 

directions which are not frequent in the site. Thus, it is necessary to utilize approaches which 633 

consider the concurrency of metocean parameters to forecast the combinations with higher 634 

precision.  635 

 The shape and size of 3D ESs which account for directionality, are almost the same as the shape of 636 

their underlying ECs in 2D. e.g., The contours developed by D2, which is the JPDF of wave 637 

parameters ( wave , sH , pT ) are similar to contours of the omnidirectional form of ( sH , pT ).  638 

 The misalignment of wind and waves in the HyWind Scotland site is remarkable so that the most 639 

extreme winds and waves may act in quite the opposite directions. That may happen due to the 640 

nature of waves and winds affected by different metocean processes in the North Sea.  641 

In conclusion, the results show that the most extreme environmental conditions usually are concurrent 642 

with the directions which are not frequent. The analysis of concurrency of extreme metocean conditions 643 

through the ESs of directional variables reveals that the extreme values are dependent on the distributions 644 

on which ESs are based. Since ESs are dependent on the order of parameters in each JPDF, these 645 

distributions should be chosen based on the relative importance of metocean variables in the design process. 646 

  647 
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Appendix 648 

Table A1. 649 
Wave direction distribution. 650 

 651 

No. of component 
Parameters of Mixture of von-Mises Fischer 

      

1 0.166 -1.464 1.975 

2 0.181 0.111 11.114 

3 0.193 1.887 2.852 

4 0.203 -0.321 2.537 

5 0.136 2.915 2.302 

6 0.120 2.686 1.711 

 652 

Table A2. 653 
Wind direction distribution. 654 

No. of component 
Parameters of Mixture of von-Mises Fischer 

      

1 0.081 0.343 1.595 

2 0.150 1.181 4.232 

3 0.107 3.031 1.435 

4 0.0961 0.721 1.631 

5 0.0721 0.238 1.343 

6 0.0768 0.215 1.272 

7 0.261 1.809 3.207 

8 0.156 0.682 2.957 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 
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Table A3. 667 
Wind–wave misalignment distribution coefficients. 668 

No. of component 
Parameters of Mixture of von-Mises Fischer 

      

1 0.117 0.963 9.018 

2 0.115 0.464 27.316 

3 0.053 1.903 2.495 

4 0.104 1.012 7.775 

5 0.067 2.047 2.518 

6 0.069 0.135 131.492  

7 0.068 1.742 3.152 

8 0.053 1.737 2.8 

9 0.108 2.346 3.316 

10 0.108 -2.991 3.68 

11 0.068 1.537 3.657 

12 0.069 1.614 3.192 

 669 

Table A4. 670 
Parameters of the conditional distribution of wave period on wave height. 671 

Parameter Value 

c1 0.35 

c2 0.522 

c3 1.43 

d1 0.04326 

d2 0.3926 

d3 -0.001 

 672 

Table A5. 673 
Parameters of the conditional distribution of wave height on wind speed. 674 

Parameter Value 

c1 0.0411 

c2 1.536 

c3 0.7539 

d1 0.02 

d2 1.755 

d3 2.099 

 675 

 676 

 677 

 678 

 679 
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Table A6. 680 
Parameters of the conditional distribution of wave height on wave direction. 681 

Parameter Value 

 α β 

a0 1.749 2.18 

a1 -0.117 0.236 

b1 -0.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

69 

-0.093 

a2 -0.063 -0.126 

b2 -0.124 0.167 

a3 0.106 -0.021 

b3 -0.101 0.037 

a4 0.118 0.00 

b4 0.045 0.023 

a5 0.008 -0.004 

b5 0.016 0.001 

a6 0.005 0.003 

b6 -0.052 0.026 

a7 0.03 -0.022 

b7 -0.019 0.02 

a8 0.0001 0.02 

b8 0.006 -0.022 

a9 0.007 0.003 

b9 -0.003 0.013 

a10 0.011 0.014 

b10 -0.006 0.004 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 
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Table A7. 695 
Parameters of the conditional distribution of wind speed on wind direction. 696 

Parameter Value 

 α β 

a0 8.376 

 

2.18 
 a1 1.09  

 

0.236 

 b1 0.476 

 

0.069 

a2 -0.28 -0.126 
 b2 -0.547 

 

-0.014 

a3 -0.13 -0.021 

b3 0.227 

 

0.021 

a4 0.095 
 

-0.006 

b4 0.098 

 

0.033 

a5 0.772 

 

0.004 

b5 0.004 
 

0.012 

a6 0.029 
 

0.032 

b6 -0.11 

 

1.62e-05 

a7 -0.007 

 

-0.011 

b7 -0.066 
 

-0.009 

a8 -0.047 

 

-0.002 

b8 0.063 

 

0.007 
  697 

Table A8. 698 
Parameters of the conditional distribution of wind speed on wind-wave misalignment. 699 

Parameter Value 

 α β 

a0 8.107 2.249 

a1 -0.717 0.134 

b1 0.834 -0.029 

a2 -0.396 0.016 

b2 1.077 0.058 

a3 -0.121 0.014 

b3 0.708  0.023 

a4 0.025 0.038 

b4 0.245 -0.016 

a5 0.057 0.045 

b5 0.133  -0.008 

a6 -0.043 0.016 

b6 0.248 -0.033 

a7 -0.031 0.006 

b7 0.245 -0.004 

a8 0.029 0.027 

b8 0.182 -0.008 

 700 
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