Optimising secondary prevention in the acute period following a TIA of ischaemic origin

Heron, N. (2017). Optimising secondary prevention in the acute period following a TIA of ischaemic origin. BMJ Open Sport & Exercise Medicine, [e000161]. https://doi.org/10.1136/bmjsem-2016-000161

Published in:
BMJ Open Sport & Exercise Medicine

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 The Authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Optimising secondary prevention in the acute period following a TIA of ischaemic origin

Neil Heron¹,²,³

ABSTRACT

Background: Transient ischaemic attacks (TIAs) are highly prevalent conditions, with at least 46 000 people per year in the UK having a TIA for the first time. TIAs are a warning that the patient is at risk of further vascular events and the 90-day risk of vascular events following a TIA, excluding events within the first week after diagnosis when the risk is highest, can be as high as 18%. Immediate assessment of patients with TIA, either at accident and emergency, general practice and/or TIA clinics, is therefore required to address secondary prevention and prevent further vascular events.

Discussion: This article addresses the need for optimising secondary prevention in the acute period following a TIA of ischaemic origin to reduce the risk of further vascular events as per recent Cochrane review advice and presents a novel project, Stroke Prevention Rehabilitation Intervention Trial of Exercise (SPRITE), to do this.

Summary: One novel way to tackle vascular risk factors and promote secondary prevention in patients with TIA could be to adapt a cardiac rehabilitation programme for these patients. SPRITE, a feasibility and pilot study (ClinicalTrials.gov Identifier: NCT02712385) funded by the National Institute for Health Research, is attempting to adapt a home-based cardiac rehabilitation programme, ‘The Healthy Brain Rehabilitation Manual’, for use in the acute period following a TIA. The use of cardiac rehabilitation programmes post-TIA requires further research, particularly within the primary care setting.

What this study adds?

- Following a transient ischaemic attack (TIA), people are at risk of further cardiovascular events and this is a key time to initiate secondary cardiovascular prevention.
- Previous studies have focused on pharmacological secondary prevention following a TIA.
- However, there is a clear need to initiate non-pharmacological secondary cardiovascular measures, including physical activity promotion, following a TIA.
- One way to promote both pharmacological and non-pharmacological secondary cardiovascular prevention following a TIA is to adapt a home-based cardiac rehabilitation programme, ‘The Healthy Brain Rehabilitation Manual’, for this population following the Medical Research Council guidelines for developing complex health service interventions, which will be done within the Stroke Prevention Rehabilitation Intervention Trial of Exercise study.

Aetiology of TIAs: TOAST classification system

The underlying aetiology of each TIA event can be classified as per the TOAST classification system.² The TOAST classification denotes the underlying cause of the TIA event and this paper focuses on secondary prevention following a TIA due to atherosclerosis or small vessel occlusion, two TOAST subtypes.

TIA risk factors

TIAs are most commonly caused by the embolic or thrombotic consequences of atherothrombotic disease,³ which is similar to the underlying pathological mechanism for cardiovascular disease.⁴-⁶ In addition to sharing a similar underlying pathological mechanism, cerebrovascular and cardiovascular disease share common underlying risk factors.⁵⁻⁷

The modifiable risk factors for all vascular diseases include smoking, excessive alcohol intake, physical inactivity, dietary factors,
hypertension, dyslipidaemia, diabetes and obesity as well as low VO\textsubscript{2}\text{max}. Thus, there are several lifestyle modifications that might contribute to a substantial reduction in the risk of vascular events post-TIA and there is evidence that the earlier these interventions can be introduced, the better the outcome.10,11

Pharmacological secondary prevention of stroke

National UK guidelines for the pharmacological treatment of TIA/stroke have been established by the National Institute for Health and Care Excellence (NICE)12 and are supplemented by guidelines on tackling individual risk factors. Following the acute diagnosis of TIA, a prophylactic daily dose of 75 mg of aspirin should be initiated and other agents, for example, dipyridamole and clopidogrel, may be added. These agents reduce blood clotting and therefore reduce the chances of a future clot forming within the circulation. Statins should be initiated to lower cholesterol levels13 and appropriate antihypertensive medications are used for blood pressure control14 as per national management guidelines. However, evidence is growing regarding the contribution of change in modifiable risk factors to reductions in deaths15 and there is a need to consider how to promote non-pharmacological measures within secondary prevention.16

Non-pharmacological/ lifestyle risk factors

Physical activity

Physical activity promotion and participation must be one of the key goals for modern-day health systems. Indeed, the WHO in 201017 identified physical inactivity as the fourth leading risk factor for global mortality and this equates to 6% of global deaths. Following a TIA, patients should be encouraged to achieve at least the minimum recommended levels of physical activity as established by the chief medical officers and the departments of health.18

Cardiorespiratory fitness

Related to physical activity is cardiorespiratory fitness, which can be measured by VO\textsubscript{2}\text{max} and is inversely correlated with mortality.19-22 the progression of carotid atherosclerosis23 and the risk of stroke.24 Myers \textit{et al}25 found that in male subjects with and without cardiovascular disease, peak exercise capacity after adjustment for age was the strongest predictor of the risk of death and each one metabolic equivalent increase in exercise capacity conferred a 12% improvement in survival.

Exercise, a form of physical activity, can increase VO\textsubscript{2}\text{max} in sedentary persons26 and in subacute stroke survivors.27

Smoking

Smoking is a well-recognised vascular risk factor. The landmark prospective observational study by Doll \textit{et al}28 found that British male doctors born between 1900 and 1930 who continued to smoke had a life expectancy 10 years less than that of lifelong non-smokers. Smoking as a vascular risk factor has been continually supported by other studies15,29,30 and patients with TIA should be advised about smoking cessation.31

Diet

With regards to diet, a recent meta-analysis has shown that dietary fibre is inversely correlated with the risk of stroke,32 with fish oils also being protective.33 Indeed the ‘Mediterranean diet’ has shown favourable effects on cardiovascular risk factors.34 Moreover, hypercholesterolaemia, of which dietary intake may be a source, is a modifiable risk factor for cardiovascular and cerebrovascular diseases.35 Cholesterol levels were found to be positively associated with the risk of non-haemorrhagic stroke,36 and dyslipidaemia was also a significant risk factor for ischaemic stroke in the INTERSTROKE study.37 Patients with TIA should, therefore, be advised accordingly about their dietary habits.

Stress

Psychological distress is a well-known risk factor for TIAs. In the observational study by Everson-Rose \textit{et al},38 6749 adults free of vascular disease at baseline in the USA, aged 45–84 years old, were followed up for a median of 8.5 years as part of the Multi-Ethnic Study of Atherosclerosis. The authors found that higher levels of stress and depressive symptoms were associated with increased TIA risk, independent of other known vascular risk factors. Moreover, the diagnosis of TIA often leaves survivors with stress, anxiety and depressive symptoms. Indeed, a recent systematic review39 has highlighted the prevalence of these often forgotten symptoms following a TIA and/or stroke diagnosis. Patients should therefore be educated about the signs and symptoms to be aware of and signposted appropriately for further management, with the general practitioner often as their first contact.

Alcohol

Alcohol excess is a well-known modifiable vascular risk factor, including for TIAs. Gill \textit{et al}40 report the ‘J-shaped’ association between alcohol and risk of stroke in a case–control study of approximately 1200 patients, that is, low alcohol consumption may have a protective effect for cerebrovascular events, whereas heavy consumption predisposes to TIAs. Safe alcohol consumption levels should therefore be promoted to patients with TIA to reduce the risk of future vascular events.41
DISCUSSION

The ‘evidence gap’ from research to practice

Despite the knowledge surrounding vascular risk factors and the recognition that TIs are often the precursors of disabling strokes, more needs to be done in reducing stroke as the leading cause of adult disability.42 Indeed the WHO, as part of their 2013 Global Action Plan For the Prevention and Control of Non-Communicable Diseases, is trying to target a 25% relative risk reduction in overall mortality from cardiovascular diseases, including TIs.43

One novel way to tackle vascular risk factors and promote secondary prevention in patients with TIA could be to adapt a cardiac rehabilitation programme for these patients. Indeed cardiovascular and cerebrovascular diseases share common underlying pathological mechanisms and risk factors. Moreover, cardiac rehabilitation after a myocardial infarction results in a statistically significant reduction in reinfarction (OR 0.53), cardiac mortality (OR 0.64) and all-cause mortality (OR 0.74),44 and these findings concur with those of a recent Cochrane review.45 Although Heran et al46 report that the studies included in the review mainly comprise middle-aged men, who are generally at low cardiovascular risk and this should be considered when developing future studies in this area. A Cochrane review47 also demonstrated that hospital- and home-based cardiac rehabilitation programmes result in similar health gains, with home-based programmes improving adherence to the programme48 and promoting longer-term sustainability of health benefits.48

The Stroke Prevention Rehabilitation Intervention Trial of Exercise (SPRITE) is a feasibility and pilot study (ClinicalTrials.gov Identifier: NCT02712385) funded by National Institute for Health Research (NIHR), which is attempting to adapt a home-based cardiac rehabilitation programme for use in the acute period following a TIA. The WHO has defined cardiac rehabilitation as the, ‘sum of activity and interventions required to ensure the best possible physical, mental and social conditions so that patients with chronic or post-acute cardiovascular disease may, by their own efforts, preserve or resume their proper place in society and lead an active life’.49

NICE have recommended that the components of cardiac rehabilitation should include exercise, health education and stress management,50 helping to tackle the known vascular risk factors as previously documented. Health education would include addressing the known modifiable vascular risk factors as well as advice regarding work, mental health and sexual activity.50

These components will all be addressed within our adapted home-based cardiac rehabilitation programme, ‘The Healthy Brain Rehabilitation Manual’. Such research has immediate clinical significance and the potential to change guidelines for the management of TIs, as well as the potential to reduce morbidity and mortality resulting from TIs, with clear benefit to patients.

SUMMARY

One novel way to tackle vascular risk factors and promote secondary prevention in patients with TIA could be to adapt a cardiac rehabilitation programme for these patients. SPRITE, a feasibility and pilot study (ClinicalTrials.gov Identifier: NCT02712385), is attempting to adapt a home-based cardiac rehabilitation programme, ‘The Healthy Brain Rehabilitation Manual’, for use in the acute period following a TIA. The use of cardiac rehabilitation programmes post-TIA requires further research, particularly within the primary care setting.

Acknowledgements I acknowledge my study supervisors (Professor Frank Kes, Professor Michael Donnelly, Professor Jonathan Mant and Professor Margaret Cumples) who were helping me to develop the SPRITE study.

Contributors NH conceived the study and drafted and revised the manuscript.

Funding NIHR funded this study.

Disclaimer The funding source had no role in the study design, writing the manuscript, in the decision to submit the manuscript for publication and in data interpretation, collection and analysis.

Competing interests NH is currently undertaking an NIHR clinical fellowship.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

REFERENCES

