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Statistical learning methods show great promise in providing an accurate prediction of materials
and molecular properties, while minimizing the need for computationally demanding electronic
structure calculations. The accuracy and transferability of these models are increased significantly by
encoding into the learning procedure the fundamental symmetries of rotational and permutational
invariance of scalar properties. However, the prediction of tensorial properties requires that the
model respects the appropriate geometric transformations, rather than invariance, when the reference
frame is rotated. We introduce a formalism that, extending existing schemes, makes it possible
to perform machine-learning of tensorial properties of arbitrary rank, and for general molecular
geometries. To demonstrate it, we derive a tensor kernel adapted to rotational symmetry, which
is the natural generalization of the smooth overlap of atomic positions (SOAP) kernel commonly
used for the prediction of scalar properties at the atomic scale. The performance and generality of
the approach is demonstrated by learning the instantaneous response to an external electric field of
water oligomers of increasing complexity, from the isolated molecule to the condensed phase.

The last few years have seen a surge in applications of
statistical learning approaches to the prediction of the
properties of molecules and materials. Chemical and ma-
terials informatics approaches – in which large databases
are mined to find correlations between structure and
macroscopic properties – have become ubiquitous [1–7].
Furthermore, “machine-learning potentials” are increas-
ingly used as surrogate models for demanding electronic
structure calculations, and to obtain information on the
stability and properties of a material as a function of the
microscopic arrangement of its atoms [8–12]. For these
approaches to be effective, it is crucial that the statistical
learning algorithm and the mathematical representation
of the atomic configurations respect the fundamental sym-
metries of the problem. For example, scalar properties
should be invariant under rigid translations, rotations or
reflections of the atomic configurations, as well as per-
mutations of the order of identical atoms. Methods that
fulfill these requirements have demonstrated very promis-
ing performance for predicting scalar quantities such as
electronic ground-state energies [8, 13–16].

A complete description of molecular and condensed-
phase systems, however, also requires the prediction of
properties that are not scalars. The response of a mate-
rial to mechanical, magnetic or electric perturbations all
require response coefficients that are tensorial in nature.
The electrical response moments – the dipole moment µ,
polarizability α, first hyperpolarizability β, etc. – un-
derlie in particular the modelling of experiments such as
infrared [17], Raman [18–20] and second-harmonic spec-
troscopy [21–23]. No less importantly, they represent a
fundamental ingredient to include many-body effects in
atomistic simulations of a material through the develop-
ment of polarizable force-fields [24–29].

Gaussian process regression (GPR) is a commonly used

machine learning technique, which is formally equivalent
to kernel-ridge regression [30, 31], and is built upon the
definition of a kernel function k(X ,X ′) that encodes the
similarity between two configurations X and X ′ [31–33].
In order to guarantee that predicted properties respect
the relevant physical symmetries, the kernel function must
obey corresponding transformation rules. For instance,
when predicting a scalar, k(X ,X ′) should be invariant
to rotations of the two configurations. The extension to
tensorial quantities is not straightforward. As discussed
recently for the case of the learning of vectorial properties
such as forces [34], the regression framework must be
designed so that the predicted properties are covariant
with respect to symmetry operations applied to the system.
Under certain conditions, suitable strategies can be used
to bypass the problem: for example, in the presence
of relatively rigid molecular units (e.g. in water) it is
possible to define a local reference frame, so that response
tensors can be learned by comparing mutually aligned
molecules [35, 36]. However, this approach is not generally
applicable to flexible or dissociable molecular systems. A
learning algorithm that handles symmetries in a more
general, mathematically rigorous fashion is required.

In this Letter, we introduce a GPR framework that
explicitly includes the rotational symmetry of tensorial
properties of arbitrary order, generalizing an earlier frame-
work designed for the kernel ridge regression of forces [34],
and can treat molecular or condensed-phase systems of
arbitrary complexity. As a practical implementation, we
define a family of kernels that are based on the smooth
overlap of atomic positions (SOAP) kernels of Ref. [13],
which we modify to account for the covariance of the
tensorial property.

The objective of any regression framework is to predict
a property y for a configuration X , based on a set of
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reference inputs {XI} for which the property values yI
have been determined already. In the case of GPR [33],
the prediction is written as a linear combination of kernel
functions k(X ,X ′), that are used to quantify the similarity
between the trial configuration and the references:

y(X ) =
∑
I

wIk(X ,XI). (1)

The weights can be determined by solving a linear prob-

lem w =
(
K + η21

)−1
y, where KIJ = k(XI ,XJ) and y

contains the values of the target property for the {XI}.
The regularization η can be interpreted as the expected
error of the fit, due to both any intrinsic noise in the target
data and the limitations of the model representation.

Consider now the case of a tensorial property T . We
will label the components of the tensor using a compact
notation Tµ, where µ indicates for example a set of Carte-
sian axes µ ≡ (αβ . . .). Within a Bayesian interpretation,
the kernel k represents a measure of correlations between
the values of the tensorial property associated with the
configurations (X ,X ′). In particular, we can write:

kµν(X ,X ′) ≡
〈
Tµ(X );T †ν (X ′)

〉
, (2)

where 〈A;B〉 indicates the covariance between A and B.
In this formalism the learning algorithm is expected to
simultaneously take into account all the components of T .
Eq. (2) represents a block of a full kernel matrix, which
can be built by merging the portions associated with each
pair of configurations. The complete matrix is Hermitian,
so that for each block kµν(X ,X ′) = k∗νµ(X ′,X ).

When a generalized symmetry operation Ŝ is applied to
one configuration X of the system, the corresponding ten-
sorial property transforms as Tµ(ŜX ) =

∑
µ′ Sµµ′Tµ′(X ).

Given two independent symmetry operations Ŝ and Ŝ′

acting on the two configurations, it follows from Eqn. (2)
that k must satisfy the following transformation rule:

kµν(ŜX , Ŝ′X ′) =
∑
µ′ν′

Sµµ′S′νν′kµ′ν′(X ,X ′). (3)

This is the generalization of the covariance conditions
introduced in Ref. [34] for the special case of learning
vectors. Similarly to that case, one can then verify that a
kernel which satisfies Eq. (3) can be obtained starting from
a scalar kernel κ(X ,X ′), by averaging over the matrix
that represent the symmetry operation Ŝ:

kµν(X ,X ′) =

∫
dŜ Sµνκ(X , ŜX ′). (4)

The scalar kernel κ only needs to be independent of the
absolute reference frame, i.e. κ(ŜX , ŜX ′) = κ(X ,X ′), but
not of the relative orientation of the two configurations.

In the case of a Cartesian tensor Tαβ... of rank r, a full
hierarchy of Cartesian kernels can be built by combin-
ing r orthogonal rotation matrices, i.e., S(αβ...)(α′β′...) =

Rαα′Rββ′ · · · in Eq.(4), generating a kernel with blocks
of size 3r × 3r. However, this strategy is unnecessarily
complicated. The actual dimensionality of the problem
can be significantly reduced by a unitary transformation
that transforms the tensor into a block-diagonal form, its
irreducible spherical tensor (IST) representation T : {T λ}.
Each λ identifies an orthogonal subspace of dimension
2λ + 1, according to SO(3) algebra [37]. Depending on
the rank and the symmetries of the tensor, the decom-
position contains a different number of elements, which
in any case correspond to diagonal blocks of size smaller
than 2r + 1. Performing a decomposition into the IST
components makes the statistical learning faster and more
transparent, since each tensorial component T λ can now
be independently learned as a vector of dimension 2λ+ 1.
What is more, in the spherical basis, the covariance con-
ditions of Eqs. (3) and (4) can be reformulated by using
the fact that each spherical component T λ of a covariant
tensor follows the same transformation rules as the corre-
sponding vector spherical harmonics Y λ [37]. It follows
that if the kernel is required to encode rotational symme-
try in three dimensions, the generalized transformation
matrix Sµν of Eq. (4) is given by the Wigner matrix Dλ

associated with the active rotations R̂ of the system [38].
As a practical implementation of Eq. (4), we consider

the case where κ(X ,X ′) is given by the overlap between
Gaussian smoothed atom densities,

κ(X ,X ′) =

∣∣∣∣∫ ρ(r) ρ′(r) dr

∣∣∣∣2 , (5)

where ρ(r) =
∑

x∈X gσ(r − x) is a sum over the atoms
making up the environment X and gσ(r−x) is a Gaussian
of width σ centred on x. The range of the kernel can be
tuned by introducing a cutoff function that zeroes out
the contribution from atom that lie farther than a given
distance rc from the central atom. With this choice of
κ(X ,X ′), the matrix kernel kλ(X ,X ′) associated with a
given IST component is,

kλ(X ,X ′) =

∫
dR̂ Dλ(R̂)

∣∣∣∣∫ ρ(r) ρ′(R̂r) dr

∣∣∣∣2 . (6)

As shown in the Supplementary Information (SI), when
an angular decomposition of the atom-centred Gaussian
densities is applied [39], this integral can be computed
analytically. The λ = 0 case recovers the scalar SOAP
kernel of Ref. [13], which has been demonstrated to be very
effective for the statistical learning of scalar properties of
materials and molecules [40–45]. As detailed in the SI,
such a “λ-SOAP” hierarchy of tensorial kernels can be
recast as an inner product of (2λ+ 1)-size vectors P λ

nn′ll′ :

kλµν(X ,X ′) =
∑
nn′ll′

Pλµnn′ll′(X )Pλν?nn′ll′(X ′). (7)

where the contraction indexes n, n′ and l, l′ running re-
spectively over the basis sets of the radial and the angular
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FIG. 1. Learning curves of the IST components of dipole µ (λ = 1), polarizability α (λ = 0, 2) and hyperpolarizability β
(λ = 1, 3) for water monomer (left), water dimer (center) and Zundel cation (right). For all cases the testing data set consists of
500 independent configurations. Arrows with symbols indicate the intrinsic standard deviation of the testing data set. The
kernel has been computed with an environment cutoff of 4 Å for the monomer and H5O+

2 , and 5 Å for the water dimer.

expansion of atomic densities. [46] Each P λ
nn′ll′ represents

a symmetry-adapted fingerprint associated with the in-
dividual configurations X , generalizing the SOAP power
spectrum of Ref. [13].

The advantage of this formulation, which builds on a
mathematically rigorous treatment of SO(3) group sym-
metry, is that it can be applied seamlessly to molecules
as well as to systems undergoing chemical reactions or
to condensed phases of matter. Discrete symmetries can
also be included straightforwardly, as they correspond
to a discrete-sum equivalent of Eq. (4). For instance, an
O(3) kernel with inversion symmetry can be computed as

kλO(3)(X ,X
′) =

1

2

[
kλ(X ,X ′) + (−1)λ kλ(X , îX ′)

]
(8)

where î denotes inversion and kλ is a SO(3) kernel. [47]
As a demonstration of the general applicability of

the framework, we now show the performance of our
symmetry-adapted GPR algorithm (SA-GPR) in predict-
ing the static polarizability series of neutral and charged
water oligomers, as well as the instantaneous dielectric
response tensor of liquid water configurations. Details on
the training sets and the kernel hyperparameters used in
each case are provided in the SI. As a first example, we
consider the polarizability series of flexible and arbitrarily-
oriented water molecules in vacuum. The dipole moment
µ, polarizability α and first hyperpolarizability β were
computed with high-end quantum chemical methods for
1000 configurations. Due to the symmetry with respect
to permutations of Cartesian indices – which is implied
by the definition of response tensors as the derivatives
of the electronic energy with an applied electric field –
α corresponds to an irreducible representation involving
the λ = 0 and λ = 2 spherical components only, while β
has an IST decomposition containing λ = 1 and λ = 3.

Figure 1a shows the learning curves (i.e. the test error as
a function of the number of training structures included)
for all the IST components. Without explicitly using
information on the orientation of water molecules, the
SA-GPR framework can easily achieve an error below 5%
for all components with only 100 training points.

A natural approach to extend the λ-SOAP framework
to complex molecules, and eventually to condensed phases,
involves decomposing the overall properties of the system
into atom-centered components. It is straightforward to
see [45] that an atom-centered decomposition is equivalent
to the learning of the system’s properties using a single
kernel that is built by breaking down each configuration
into multiple environments, and defining the kernel of
Eq. (6) as the sum of all possible local similarities between
two configurations [45],

Kλ(X ,X ′) =
1

NN ′

N∑
i=1

N ′∑
j=1

kλ(Xi,X ′j), (9)

with Xi representing the ith environment of the configura-
tion X . kλ(Xi,X ′j) is the tensorial kernel that compares

the ith local environment of the X configuration with the
jth local environment of the X ′ configuration.

Considering a water dimer as an example, we take the
two O atoms as centers of the environments (so that N =
2), and allow all of the surrounding atoms (H and O) to
contribute to the smoothed atom density. The extension
of this formalism to multiple chemical species involves
a generalization of the scalar kernel (5), discussed in
Ref. 15. With 500 training samples, both the isotropic and
anisotropic components of the dimer polarizability can be
learned with a RMSE below 10% of the intrinsic variance
(see Fig. 1b). It is worth stressing that although we
use the dimer responses as learning targets, the additive
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kernel implies a decomposition in (environment-corrected)
monomer responses. Eq. (9) allows us to write, e.g.

α(X ) =
1

N

∑
i

α(Xi), (10)

where α(Xi) =
∑
J,j wJN

−1
J k(Xi,X Jj ) is the contribution

of the ith environment to the dimer polarizability. As
shown in the SI, when the two molecules are far apart
the monomer polarizabilities predicted using Eq. (10)
converge to the values computed separately for the two
monomers. Thus, the discrepancy observed when the
molecular separation is small can be seen as the two-body
correction to the dielectric response function of individual
monomers.

FIG. 2. Learning curves of the IST components of water dielec-
tric response tensors ε, through direct learning (red and green
lines) and indirect learning going through the CM relation.
The testing data set consists of 500 independent configurations.
Arrows indicate the intrinsic standard deviation of the testing
samples. Filled square points show the predictions for 5 ice Ih
structures using the ML model trained on liquid water.

As the next step, we consider the case of the Zundel
cation H2O+

5 . Being both charged and chemically active,
this system would be difficult to describe in terms of
separate molecular contributions. Fig. 1c compares the
learning curves for the moduli of the spherical compo-
nents of µ, α and β, obtained using a spherical cutoff of
4 Å around each oxygen atom. Note that although each
environment encompasses the entire molecule, learning
with atom-centered environments implies enforcing the
covariance condition at the level of O atoms, which better
captures the physics of the problem. The errors for all
components are well below 5% with 500 training samples,
showing that λ-SOAP kernels are well suited to extend
the SA-GPR method to systems which are intrinsically
not separable into smaller molecular units.

In order to test the robustness and generality of our
scheme, we consider the prediction of the dielectric re-
sponse tensor ε of instantaneous configurations of con-
densed phase water. The reference data set has been

collected by computing ε through the modern theory of
polarization [48] within density functional theory, for 1000
different snapshots of a 32-molecule path integral simu-
lation [49] of room-temperature q-TIP4P/f water [50]
(see SI for further details). Fig. 2 shows how an O-
centered, rC = 4 Å, λ-SOAP kernel allows us to learn
directly both the isotropic and anisotropic components of
ε with a RMSE well below 0.01 a.u. with just 500 train-
ing samples. As we discuss in the SI, training is much
more effective if performed on the molecular polarizability
as obtained from the Clausius-Mossotti (CM) relation,
α = (ε − 1)(ε + 2)−1V . This underscores the impor-
tance of reducing the impact of non-local effects – which
appear in the definition of ε through the volume term
and through macroscopic field effects – when applying
a machine-learning strategy that is based on an atom-
centered decomposition. Indeed, similar performance can
be obtained by learning ε if rc is increased to 5 Å, so that
information on the volume of the simulation is captured
by the kernel (see SI). In Fig. 2, we also show the errors for
predicting the dielectric constant of 5 proton-disordered
configurations of ice Ih [51] using the model trained on
liquid water. Direct predictions of ε are less accurate than
what is seen for the liquid. When going through the local
CM response, however, the accuracy becomes comparable,
underscoring the transferability of the ML model, and
the ease with which it can be applied to solids.

The SA-GPR framework we introduced in this work
provides a generally applicable strategy to perform kernel-
based machine-learning of tensorial properties, fully incor-
porating their rotational symmetries. Extensions to other
discrete or continuous symmetries (e.g. to cylindrical ge-
ometries, or translational invariances) is straightforward.
Building on the existing SOAP kernel between atomic
environments, we obtain a hierarchy of λ-SOAP kernels
which can be used to predict the electric response ten-
sors of systems of increasing complexity, from isolated
molecules to liquids and solids. Being able to apply statis-
tical learning to tensors opens the way to the prediction
of anisotropic materials properties: elastic and magnetic
response, NMR chemical shifts, etc. Machine-learning of
molecular electric responses, which we used here as an
example, makes it possible to improve the computation of
linear and non-linear optical spectra, as well as to design
more accurate polarizable forcefields for complex systems
that cannot be described well in terms of rigid molecular
entities. Another application with immense potential is re-
lated to the calculation of the building blocks of electronic-
structure methods, such as the ground-state charge den-
sity, or the matrix elements of Hamiltonians written in
an atom-centered basis. Learning the Hamiltonian would
allow one to obtain “tight-binding-like” schemes free of
an explicit parameterization, which can match the accu-
racy of higher levels of electronic-structure theory when
computing properties such as electronic bands. Statisti-
cal learning methods are finding applications across all
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fields of science and technology. This letter provides an
example of how making these approaches consistent with
the fundamental physical symmetries of the problem at
hand is crucial to realize their potential.

SUPPLEMENTARY INFORMATION

See the Supplementary Information (SI) for mathemati-
cal details of the derivation of the λ-SOAP framework and
for computational details. The SI also includes Refs. [52–
60]

SOURCE CODE AND DATA AVAILABILITY

A Python code containing a rudimentary implementa-
tion of the λ-SOAP SA-GPR framework can be found at
https://github.com/cosmo-epfl/SA-GPR. The repos-
itory also contains the data we used for training and
testing.
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