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Abstract: Bearing is one of the key components of a rotating machine. Hence, monitoring health1

condition of the bearing is of paramount importace. This paper develops a novel particle swarm2

optimization (PSO)-least squares wavelet support vector machine (PSO-LSWSVM) classifier, which is3

designed based on a combination between a PSO, a least squares procedure, and a new wavelet kernel4

function-based support vector machine (SVM), for bearing fault diagnosis. In this work, bearing5

fault classification is transformed into a pattern recognition problem, which consists of three stages6

of data processing. Firstly, a rich information dataset is built by extracting the features from the7

signals, which are decomposed by the nonlocal means (NLM) and empirical mode decomposition8

(EMD). Secondly, a minimum-redundancy maximum-relevance (mRMR) method is employed to9

determine a subset of feature that can provide an optimal performance. Thirdly, a novel classifier,10

namely LSWSVM, is proposed with the aid of a PSO, to provide higher classification accuracy. The11

key innovative science of this work is to propropose a new classifier with the aid of an new wavelet12

kernel type to increase the classification precision of bearing fault diagnosis. The merit features of the13

proposed approach are demonstrated based on a benchmark bearing dataset and a comprehensive14

comparison procedure.15

Keywords: Non-local means (NLM), empirical mode decomposition (EMD), support vector machine16

(SVM), wavelet kernel, minimum redundancy maximum relevance (mRMR), particle swarm17

optimization (PSO), bearing fault diagnosis.18
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Table 1. List of Abbreviation used in paper

Abbreviation Full name
BF Ball falut bearing

EMD Empirical mode decomposition
IMF Intrinsic mode function
IRF Inner race fault bearing

KNN K-nearest neighbor
PNN Probability neural network
PSO Particle swarm optimization

LSSVM Least squares support vector machine
LSWSVM Least squares wavelet support vector machine

LSRBFSVM Least squares radial basis function support vector machine
mRMR Minimum-redundancy maximum-relevance

NLM Nonlocal mean
NM Normal bearing
ORF Outer race fault bearing
RBF Radial basis function

SMO Sequential minimal optimization
SVM Support vector machine

WSVM Wavelet support vector machine

1. Introduction19

Since bearing is a crucial component in the machine, its failure will hugely affect to the disruption20

of the machine. Therefore, condition monitoring for rolling bearings has become more and more21

important to detect early damage and increase safe of the operating systems. In the literature,22

two approaches can be applied to detect the bearing defects: 1) acoustic signal analysis, where23

the acoustic signal is acquired to obtain bearing characteristic information, and 2) vibration signal24

analysis, where the vibration signal is acquired. Among them, using vibration signal usually provides25

better defect detecting accuracy becuase it contains rich information of the bearing characteristics and26

less measurement noise [1].27

Bearing defects can be detected by either analyzing the fault frequency spectrum [2] or pattern28

recognition [3]. However, the analysis in [4] shown that the pattern recognition can give higher29

accuracy compared to the spectrum approach. In the approach of traditional pattern recognition,30

the system will include three major components: feature extraction, feature selection and feature31

classification. The goal of the feature extraction task is to get as much information about the condition32

of the system as good. For this purpose, we employ the NLM-EMD method, which has been developed33

in our previous work [5] and proved its effectiveness, to extract a rich bearing feature set.34

Feature extraction usually results in a large feature set. Unfortunately, the large feature set does35

not neccessarily provide higher classification accuracy as it possibly contains irrelevant and redundant36

features. Thus, it is signiticant to eliminate the irrelevant and redundant features before it is fed back37

to a classifier. To obtain an optimal feature subset, a minimum-redundancy maximum-relevance38

(mRMR) feature selection method has been developed [6]. The mRMR tries to search an outstanding39

combination of candidate features for minimum redundancy and maximum relevance. Due to the40

merits of the mRMR, it is employed in this paper to select the effective features.41

Once the salient features are selected, they are fed into a classifier to identify the system condition.42

Due to its high performance classification and less requirement on sample data input, the support vector43

machine (SVM) proposed by Cortes and Vapnik [7] has been successfully applied to signal processing44

[8], regression analysis [9], pattern recognition [10], and bearing fault diagnosis [11]. However, the45

original SVM classifier provides high computational burden due to the method used to solve the46

quadratic programming problem in the SVM [12]. In order to reduce this, many methods have been47

developed, for example the SVM light decomposition algorithm [13], sequential minimal optimization48

(SMO) algorithm [14], neighbor algorithm [15], and least squares SVM (LSSVM) [16]. Among them, the49
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LSSVM is commonly applied in real applications due to its simplicity in implementation and efficiency50

in classification and computation [17].51

In the SVM classifier, a kernel function is used to transform the data from the lower dimension52

space to a high dimension space. Hence, the prior selection of the kernel will decide the way of53

classification of the SVM [18]. Several kind of kernels have been developed for SVM, for example,54

polynomial, dot product, and radial basis function (RBF) kernels. Among them, RBF kernel has55

shown to be more effective because it has good capacity to approximate nonlinear functions. Recently,56

wavelet kernel has been developed as an effective method for nonlinear approximation and mapping57

[4,19]. In [20], Zhang et al. has employed the wavelet kernel for the SVM classifier, and a wavelet58

SVM (WSVM) classifier has been proposed as a result. Since the wavelet transform provides better59

approximation capacity than the RBF, the WSVM classifier provides higher accuracy than the SVM60

with RBF kernel. Since then, the WSVM have been employed in many real applications, such as in61

the medical field [21], and machine fault diagnosis [22]. Due to the merits of the LSSVM classifier62

and the approximation capability of the wavelet kernel, a new least squares wavelet support vector63

machine (LSWSVM) is proposed first time in this paper to improve both computational efficiency and64

classification accuracy. However, the generalization performance of the LSWSVM is affected by its65

parameters. Thus, it is necessary to optimize the parameters to obtain a better performance. In the66

literature, Particle swarm optimization (PSO) [23] has been developed as an effective optimization67

technique to optimize parameters of a process. Compared with other optimization methods, PSO68

have many advantages, such as simple implementation, few parameters, parallel computation ability,69

and quickly converge [24]. The PSO had proved its optimization capacity when applying for many70

practical applications, such as for optimizing the parameters of SVMs [25] and other optimization71

problems [26,27]. Therefore, the PSO is used in this paper to effectively select the parameters of the72

LSWSVM, leading to a new PSO-LSWSVM classifier, which addresses all difficulties in the use of the73

SVM classifier.74

In summary, the novelties and main contributions of this paper can be listed as follows:75

• A new methodology for bearing fault diagnosis is developed by combining between feature76

extration based on a NLM-EMD method, a feature selection based on a mRMR and a new77

PSO-LSWSVM classifier.78

• To improve the generalization performance of the SVM, a novel PSO-LSWSVM classifier, which79

combines between a least squares procedure, a new wavelet kernel function and the PSO, is80

proposed.81

2. Feature Extraction82

In this paper, we employ the NLM-EMD method, which has been developed in our previous83

work [5] and proved its effectiveness, to extract a rich bearing feature set. For the merit features of the84

NLM-EMD and its detail description, the interested readers can refer to the previous work [5].85

2.1. Nonlocal mean (NLM) de-noising86

Consider a noise signal has a form as y = u + n, where u is the true signal and n is an additive
noise. The noise component can be eliminated using a NLM as below:

û(i) =
1

M(i) ∑
j∈Ωi

ω(i, j)y(i) (1)

The parameters used in (1) can be designed as in [5]. For more detail description of the NLM87

denoising, the interested readers can refer to our previous paper [5].88
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2.2. Empirical mode decomposition89

Consider an original signal x(t), a number of IMFs C(t) can be obtained from the original signal
using EMD method as [28]

x(t) =
n

∑
j=1

Cj(t) + rn(t) (2)

where the high frequency is decreased from C1(t), C2(t), C3(t), ..., Cn(t), and rn(t) contains no90

meaningful information. Generally, fault information is distributed significantly on the high and91

mid-frequency components [4,19]. Thus, the first five IMFs are used in this work for bearing fault92

analysis since they represent the mid- and high frequency components of the original signal.93

2.3. Energy feature extraction94

In the previous section, the EMD has been employed to decompose the original signal into a95

number of IMF components with different frequency bands. On the other hand, the frequency band96

can be referenced of the energy of fault vibration signal. Hence, in order to capture the effects of faults97

on the change of the energy of the vibration signal, IMF energy features are employed.98

Each IMF component Cj(t) possesses an energy Ej(t), which can be calculated as:

Ej =
∫
|Cj(t)|2dt (3)

Then, a normalization procedure can be applied for each Ej(t):

Tj =
Ej

T
(4)

where T is the total energy of the first five IMF components:

T =

( 5

∑
j=1
|Ej|2

) 1
2

(5)

2.4. Time-domain feature extraction99

Time-domain features usually provide rich information to distinguish normal condition and fault100

condition. In this paper, the nine time-domain dimensionless parameters defined in Table 2 is used to101

extract fault information from the de-noised signal and the first five IMFs to obtain rich information of102

bearing faults.103

Finally, a set of features, which includes 5 + 9× 6 = 59 fetures, is obtained to represent a bearing104

condition.105

Table 2. Time-domain dimensionless parameters

No. Feature Equation No. Feature Equation

1 Standard deviation xstd =

√
∑N

n=1(x(n)−xm)2

N 6 Root mean square xrms =

√
∑N

n=1(x(n))2

N
2 Peak xp = max|x(n)| 7 Clearance factor CLF =

xp(
1
N ∑N

n=1 |x(n)|

)2

3 Skewness xskew = ∑N
n=1(x(n)−xm)3

(N−1)x3
std

8 Shape factor SF = xrms
1
N ∑N

n=1 |x(n)|

4 Kurtosis xkur =
∑N

n=1(x(n)−xm)4

(N−1)x4
std

9 Impulse factor IF =
xp

1
N ∑N

n=1 |x(n)|
5 Crest factor CF =

xp
xrms

where x(n) is a signal series for n = 1, 2, ..., N.
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3. Minimum redundancy maximum relevance (MRMR) feature selection106

Let F be the initial feature set and |S| be the cardinality in seeking feature subset S. The following
criterion is developed for minimal redundancy:

min
S⊂F

1
|S|2 ∑

i,j∈S
I( fi, f j) (6)

and the maximum relevance criterion is defined as:

max
S⊂F

1
|S| ∑i∈S

I(C, fi) (7)

where I( fi, f j) is the mutual information of two features, fi and f j; and I(C, fi) quantifies the relevance107

of the feature, fi, in S and the target class, C.108

To obtain a feature subset with minimum redundancy and maximum relevance, a mRMR function
is obtained by combining (6) and (7):

max
S⊂F

(
∑
i∈S

I(C, fi)−
1
|S| ∑

i,j∈S
I( fi, f j)

)
(8)

The completed procedure of the mRMR can be refered to [4]. To obtain the desired feature subset,109

forward selection search [29] is employed.110

4. PSO-LSWSVM111

4.1. Least squares support vector machine (LSSVM)112

Given a training set of N data points, (x1, y1), (x2, y2), ..., (xN , yN), where xi ∈ Rd is the ith

input vector and yi ∈ ±1 is the corresponding target, we employ the idea of the transformation of
an input pattern into a reproducing kernel Hilbert space using a set of mapping functions, φ(x). The
reproducing kernel, K(x, x′), in the reproducing kernel Hilbert space is the dot product of the mapping
functions at x and x′, i.e., K(x, x′) = 〈φ(x).φ(x′)〉. In the new defined kernel space, a linear classifier
usually has a form below:

y(x) = sign(ω.φ(x) + b) (9)

To facilitate the selection of the parameters ω and b, the LSSVM formulates the optimization113

problem as:114

minimize
ω, b, e

F(ω, b, e) =
1
2

ωTω +
C
2

N

∑
i=1

e2
i

subject to yi[ω
Tφ(xi) + b] = 1− ei

(10)

The feature mapping, i.e., φ(x), is usually unknown, and Mercer’s condition [30] can be appllied.115

Ωij = yiyjφ(xi)
Tφ(xj) (11)

The decision function of the LSSVM classifier becomes:

yi = sign
( N

∑
j=1

αjyjK(xi, xj) + b
)

(12)
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A kernel RBF can be chosen as:

K(xi, xj) = exp
(
−
||xi − xj||2

σ2

)
(13)

where σ is a free parameter.116

4.2. Least squares wavelet support vector machine (LSWSVM)117

Generally, the family of wavelet analysis has a form:

ha,c(z) = |a|−
1
2 h
( z− c

a
)

(14)

where z, a, c ∈ R, a is a dilation factor, c is a translation factor; and h(z) is the mother wavelet, which
satisfies the following condition [31,32]:

Wh =
∫ ∞

0

|F(ω)|2
|ω| < ∞ (15)

where F(ω) is the output of h(z) using Fourier transform. Employing a wavelet transform for g(z),
one obtains:

Wa,c(g) = 〈g(z), ha,c(z)〉 (16)

where 〈〉 indicates the dot product. The function g(z) is provided by [31]:

g(z) =
1

Wh

∫ ∞

−∞

∫ ∞

0

1
a2 Wa,c(g)ha,c(z)dadc (17)

Reformulate (17):

ĝ(z) =
N

∑
i=1

Wihai ,ci (z) (18)

where Wi is the reconstruction coefficient, and g(z) is approximated by ĝ(z).118

A wavelet function can be selected as [31]:

h(z) =
N

∑
i=1

h(zi) (19)

where z = [z1, z2, ..., zN ]
T ∈ R. Then, if z, z′ ∈ RN , the dot-product wavelet kernels can be computed

as:

K(z, z′) =
N

∑
i=1

h
( zi − ci

a
) N

∑
i=1

h
( z′i − c′i

a
)

(20)

and the following expression is used to describe the translation invariant wavelet kernels [31]:

K(z, z′) =
N

∏
i=1

h
( zi − zj

a
)

(21)

Substituting (21) into (12), the decision function of the LSWSVM classifier has a form below:

yi = sign
( N

∑
j−1

αjyj

N

∏
j=1

h
( xt,j − xi,j

ai
+ b
)

(22)

where xt,j and xi,j denote the jth element of xt and the ith training sample, xi, respectively.119
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In order to approximate a general nonlinear model, in this paper, we propose to use the following
wavelet kernel:

h(x) = λcos
(

k
x
a

)
. exp

(
− x2

a2

)
(23)

where a is a parameter of the RBF kernel; k and λ are new parameters that control the kernel shape.120

It is obvious to see from equation (23) that the performance of the defined wavelet kernel depends121

significantly on the selection of the parameters a, k, and λ. When the parameters a, k, and λ are122

changed, the shape of the kernel is changed. Therefore, it is needed to optimize these parameters to123

obtain a good performance of the system.124

4.3. Particle swarm optimization (PSO) for parameter selection of LSWSVM - the PSO-LSWSVM classifier125

In order to get the optimal values of the parameters a, k, and λ, particle swarm optimization (PSO)
[33] is employed in this paper. The detail description of the PSO can be referred to our previous work
[4,19] to reduce the length of the paper. The velocity, position and the initial weight of the PSO are
updated using the following three equations:

vt+1
id = ω.vt

id + c1r1.(pt
best,id − xt

id + c2r2.(gt
best,d − xt

id (24)

xt+1
id = xt

id + vt+1
id (25)

ωk = ωmax −
ωmax −ωmin

itermax
× iter (26)

The definitions of the parameters used in equations (24-26) can be referred to [4,19].126

The LSWSVM classification model constructed using the wavelet kernel function defined in127

(23) has four user-determined parameters, including a regularization parameter C and three kernel128

parameters, λ, k and a. In this paper, we use PSO to automatically select the parameters of the129

LSWSVM classifier; hence, a relatively new classifier, i.e., PSO-LSWSVM, is proposed. The step-by-step130

implementation details of parameters selection for the LSWSVM classifer based on PSO are described131

below.132

Step 1: Initializes the parameters of the PSO: the population N, the position and velocity of each133

particle (C, a, k and λ - parameters for LSWSVM).134

Step 2: Uses the following fitness function, which is obtained from the output of the LSWSVM
classifier, to evaluate the initialized particles:

fitness function =
Nt

Nt + N f
(27)

where Nt and N f denotes the number of true and false classification, respectively.135

Step 3: Creates a new swarm by updating the velocity and position of each particle using (24) and136

(25).137

Step 4: For the new obtained swarm, the fitness values are computed and compared to update the138

pbest,i and Gbest of the swarm.139

Step 5: Checks the termination condition: If the maximum number is reached, goes to Step 6.140

Otherwise, return to Step 3 and continue the closed-loop process.141

Step 6: Encodes the optimal parameter of the wavelet kernel of the LSWSVM classifier from the global142

best position, Gbest.143
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5. Fault diagnosis methodology144

Figure 1. Flow chart of the developed strategy for bearing fault diagnosis.

The proposed fault diagnosis methodology is briefly described as in Figure. 1. The implementation145

is executed as follows:146

Step 1: A number of effective IMFs are obtained after filtering the vibration signals using the NLM147

and EMD.148

Step 2: Extracts the energy and time domain features to obtain a combined feature set.149

Step 3: Uses the mRMR feature selection technique to get an optimal feature subset.150

Step 4: Uses the wavelet kernel function defined in (23) for LSSVM classifier and optimizes the151

parameters using the PSO technique.152

Step 5: Classifies the bearing fault types using the PSO-LSWSVM classifer based on the ‘one to others’153

multi-class classification strategy [34], which is illustrated in Fig. 2, and the selected feature154

subset in Step 3.155

Figure 2. Flow chart of the developed strategy for bearing fault diagnosis.

Remark: Although the full fault diagnosis system, which includes feature extraction, feature156

selection, and feature classification, is presented in this paper, the major contribution of this paper157

is to introduce a novel PSO-LSWSVM classifier. The feature extraction tasks are mainly taken from158

the previous work [4], while the feature selection based on the mRMR is a standard and well-known159

technique in the literature.160
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6. Experimental results161

6.1. Training and Test Data Configuration162

Figure 3. The bearing testbed

The data used in this experiment are taken from the Case Western Reserve University Bearing163

Data Center (2014) [35]. The bearing test-bed is shown in Fig. 3. In this paper, four types of bearing164

conditions are considered, including one normal condition (no fault) which is labeled as NM and three165

fault conditions. The three fault conditions include fault at outer race, fault at inner race and fault166

at ball which are labeled as ORF, IRF and BF respectively. In each type of fault condition, fault size167

can have the value of 0.007, 0.014 or 0.021 mili-inches. Therefore, totally 10 conditions (10 classes) of168

bearing are taken into account.169

6.2. Parameter Selection170

In the first simulation set, we illustrate the performance of the NLM and EMD. Figs 4, 5, 6 and 7171

illustrate the denoising results using the NLM. The denoised signals are then passed through the EMD172

to obtain the effective IMF components. The 59 features are then extracted from the denoised signal173

and the IMF components as described in section 2.174

In the second and third simulation sets, the computed feature set is fed into the mMRM feature175

selection to get an optimal feature subset. The selected feature subset is then used as input to a classifier176

to identify the bearing conditions. The LSWSVM classifier was implemented based on a modification177

of the LS-SVMLabtoolbox [36]. In order to verify the effectiveness of the PSO and the proposed178

wavelet kernel function, we constructed four different classifiers: (1) an LSRBFSVM classifier using179

an RBF kernel for the LSSVM with parameters selected by the user; (2) a PSO-LSRBFSVM classifier180

(LSRBFSVM with parameters are selected by using PSO); (3) an LSWSVM classifier using the proposed181

wavelet kernel in (25) with parameters selected by the users; and (4) a PSO-LSWSVM classifier (using182

PSO to automatically select the parameters of the LSWSVM). In addition, to verify the effects of the183

parameters λ, k and a, the PSO-LSWSVM classifier is used in three different circumstances: (a) λ and k184

are firstly selected by user, and the PSO is used to tune the parameters a and C; (b) λ is firstly selected,185

and the PSO is used to tune the parameters k, a and C simultaneously; and (c) the PSO is used to tune186

the parameters λ, k, a and C simultaneously. These classifiers are also compared with the k-nearest187

neighbor (KNN) [37] and probability neural network (PNN) [38] classifiers, which are widely applied188

for bearing fault diagnosis, to further verify the effectiveness of the proposed classifier.189

6.3. Performance Evaluation190

According to the forward selection search algorithm [29], 59 feature subsets are created based on191

the mRMR feature selection. To compare the generalization performance of the classifiers, we consider192

each feature subset as an independent dataset. Thus, we have 59 different datasets corresponding193



Version June 11, 2020 submitted to Sensors 10 of 20

Table 3. Accuracy comparison (%) among classifiers

Classifier Mean Max Position Computation time (s)
kNN 56.83 83.91 7 0.125
PNN 70.92 85.95 17 0.109

LSRBFSVM 71.37 91.42 11 0.375
PSO-LSRBFSVM 82.80 94.76 20 24.49

LSWSVM 81.40 99.05 12 0.422
PSO-LSWSVM (a) 90.15 100 14 30.52
PSO-LSWSVM (b) 95.97 100 5 30.52
PSO-LSWSVM (c) 98.14 100 2 30.52

to 59 feature subsets. To evaluate the performance of the methods, the extracted feature vectors are194

used as inputs for the classifiers to obtain the classification accuracies. In this paper, to estimate the195

generalized classification accuracy, l-fold cross-validation (CV)[39], where l is set to 3, is employed. To196

obtain a precisely classification result, l-fold CV is performed ten times in this study.197

6.3.1. Training process198

First, the training process is performed to obtain an optimal feature subset of each classifier and
the kernel parameters of the LSRBFSVM and LSWSVM classifiers. The PSO is performed at this
training step. The validation accuracy in this study is computed as follows:

Caccuracy =
∑K NTP

NS
× 100% (28)

where K = 10 indicates number of classes, NTP indicates the number of true classifications, and NS is199

the number of samples used in this experiment.200

The validation accuracy of 59 features dataset for the KNN, PNN, LSRBFSVM, PSO-LSRBFSVM,201

LSWSVM, and PSO-LSWSVM classifiers are shown in Figs. 8, 9, 10, 11, 12 and 13, respectively. The202

mean and best results and the computational time (for one fold) of each method are also reported203

in Table 3 for the sake of comparison. The subspaces according to the best records are assigned as204

the optimal feature subset according to the forward selection search algorithm [29]. Observing from205

these figures, we can see that the combined 59 features yields a low classification accuracy due to the206

presence of the irrelevant and redundant features; for example, 43% for the KNN, 55.95% for the PNN,207

45.71% for the LSRBFSVM, 68.57% for the PSO-LSRBFSVM, 62.86% for the LSWSVM, and around208

90.95% for the PSO-LSWSVM. By using the mRMR criteria for feature selection, the classification209

accuracy is clearly increased. For example, for the KNN classifier, the peak value is obtained at 7210

features with the accuracy increased up to 83.91%; for the PNN classifier, the peak value is obtained at211

17 features with the accuracy increased up to 91.42%; for the LSRBFSVM, the peak value is obtained212

at 11 features with the accuracy increased up to 91.43%; for the PSO-LSRBFSVM, the peak value is213

obtained at 20 features with the accuracy increased up to 94.76%; for the LSWSVM, the peak value is214

obtained at 12 features with the accuracy increased up 99.05%; and for the PSO-LSWSVM, the peak215

value is obtained at 2 features with the accuracy increased up to 100%.216

From these results, four observations can be obtained: 1) the feature subsets selected by the217

mMRM commonly yield higher accuracy than the use of all 59 features; 2) although the computational218

time of the PSO-LSWSVM (PSO: 30.52s+ LSWSVM: 0.422s) classifier is higher than the KNN (0.125s),219

PNN (0.109s) and the PSO-LSRBFSVM classifier (PSO: 24.49s+LSRBFSVM: 0.375s), it gives much220

better performance. It should be notice that although the PSO requires a higher computational time,221

however the PSO training is done offline, and thus it will not affect to the real time fault diagnosis; 3)222

comparison results between Fig. 12 with Figs. 8, 9 and 10 shown that the LSWSVM classifier provides223

better accuracy compared to the KNN, PNN and LSRBFSVM classifiers; 4) by comparing Fig. 11224

with Fig. 10 and Fig. 13 with Fig. 12, it is clear that using the PSO for parameters selection always225
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provides better performance than using the random selection. In addition, comparisons between Fig.226

13a, 13b and 13c shown that all parameters, λ, k, a and C, have significant effects on the performance227

of the LSWSVM classifier, and that the selection of four parameters simultaneously will produce228

better generalization performance. Based on Table 3 and the forward selection search algorithm [29], 8229

features, 17 features, 20 features and 2 features are selected as the optimal feature subset for the KNN,230

PNN, PSO-LSRBFSVM and PSO-LSWSVM classifiers, respectively.231

6.3.2. Testing process232

After the optimal feature subset and optimal model are selected for each classifier, the testing data233

samples are used to verify the effectiveness of the classifiers. The confusion matrices that show the234

performances of the KNN, PNN, PSO-LSRBFSVM and PSO-LSWSVM (using PSO to automatically235

select all parameters, i.e., λ, k, a and C) classifiers are shown in Tables 4, 5, 6 and 7, respectively. From236

the results, it is obvious to see that the proposed PSO-LSWSVM classifier (accuracy=95.33%) gives237

superior classification accuracy compared to the KNN (accuracy=83.05%), PNN (accuracy=84.77%),238

and PSO-LSRBFSVM (accuracy=86.84%).239

Table 4. Confusion matrix for showing classification results of the KNN classifier

NM ORF1 IRF1 BF1 ORF2 IRF2 BF2 ORF3 IRF3 BF3
NM 1452 4 6 0 10 1 11 2 3 1

ORF1 8 889 10 2 15 4 57 15 50 0
IRF1 0 0 1126 2 10 342 12 8 7 7
BF1 0 3 10 1135 5 3 0 7 10 0

ORF2 2 1 4 0 1249 2 13 73 1 24
IRF2 0 0 299 0 2 1144 3 5 2 3
BF2 38 191 2 0 11 0 1270 0 28 0

ORF3 0 20 2 18 192 1 1 1346 22 0
IRF3 0 7 41 12 6 3 3 4 1377 0
BF3 0 385 0 331 0 0 130 40 0 1465

Sensitivity(%) 96.8 59.27 75.07 75.67 83.27 76.27 84.67 90.07 91.8 97.67
Specificity(%) 99.72 98.85 97.1 99.73 99.13 97.64 98.02 98.07 99.45 93.47
Accuracy (%) 83.05

Table 5. Confusion matrix for showing classification results of the PNN classifier

NM ORF1 IRF1 BF1 ORF2 IRF2 BF2 ORF3 IRF3 BF3
NM 1485 2 18 45 2 5 10 0 3 7

ORF1 0 1304 43 55 4 6 27 3 5 21
IRF1 1 53 1053 1 5 305 14 0 415 3
BF1 0 59 18 1290 10 2 33 7 16 9

ORF2 0 0 5 100 1250 1 42 65 0 0
IRF2 0 0 299 0 5 1177 0 0 3 1
BF2 14 13 0 0 101 0 1337 0 0 8

ORF3 0 0 0 3 63 0 0 1325 0 13
IRF3 0 2 64 6 60 4 0 50 1058 2
BF3 0 67 0 0 0 0 37 50 0 1436

Sensitivity(%) 99.0 86.93 70.2 86.0 83.33 78.47 89.13 88.33 70.53 95.73
Specificity(%) 99.32 98.79 94.5 98.86 98.42 97.72 99.99 99.41 99.45 98.86
Accuracy (%) 84.77
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Table 6. Confusion matrix for showing classification results of the PSO-LSRBFSVM classifier

NM ORF1 IRF1 BF1 ORF2 IRF2 BF2 ORF3 IRF3 BF3
NM 1483 2 7 1 1 2 5 0 1 3

ORF1 0 1227 60 0 7 4 61 4 9 14
IRF1 1 20 1005 55 25 270 20 1 179 0
BF1 0 20 1 1276 3 0 0 0 2 5

ORF2 0 15 8 0 1354 0 41 62 1 0
IRF2 0 0 342 0 1 1215 5 0 0 1
BF2 15 78 0 1 0 0 1320 1 2 30

ORF3 0 50 0 0 80 0 0 1408 5 9
IRF3 0 31 77 97 28 9 0 1 1301 1
BF3 1 57 0 70 1 0 48 23 0 1437

Sensitivity(%) 98.87 81.80 67.00 85.07 90.27 81.00 88.00 93.87 86.73 95.80
Specificity(%) 99.84 98.82 95.93 99.77 99.06 97.42 99.06 98.93 99.45 98.52
Accuracy (%) 86.84

Table 7. Confusion matrix for showing classification results of the PSO-LSWSVM classifier

NM ORF1 IRF1 BF1 ORF2 IRF2 BF2 ORF3 IRF3 BF3
NM 1500 0 2 0 1 0 5 0 0 2

ORF1 0 1484 0 0 1 0 1 0 2 0
IRF1 0 0 1210 0 10 164 0 0 60 0
BF1 0 0 25 1493 1 0 2 0 0 4

ORF2 0 0 20 0 1464 0 3 31 0 0
IRF2 0 0 178 0 2 1317 5 0 8 3
BF2 0 12 0 1 1 18 1473 1 0 0

ORF3 0 0 0 1 20 0 0 1447 0 0
IRF3 0 0 65 0 0 1 0 21 1421 0
BF3 0 4 0 5 0 0 11 0 9 1491

Sensitivity(%) 100 98.93 99.43 80.67 97.60 87.80 98.20 96.47 94.73 99.40
Specificity(%) 99.93 99.97 99.92 98.27 99.60 98.55 99.76 99.84 99.45 99.79
Accuracy (%) 95.33
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(a) k = 1.75, λ = 1, using PSO to automatically select C and a

(b) λ = 1, using PSO to automatically select C, a and k

(c) Using PSO to automatically select C, a, k and λ

Figure 13. Validation accuracy of the PSO-LSWSVM classifier



Version June 11, 2020 submitted to Sensors 14 of 20

7. Conclusion240

Two major contributions have been presented in this paper:241

• A new pattern recognition approach for bearing fault diagnosis is developed by combining242

between feature extration based on a NLM-EMD method, a feature selection based on a mRMR243

and a new PSO-LSWSVM classifier.244

• A novel PSO-LSWSVM classifier, which combines between a least squares procedure, a new245

wavelet kernel function and the PSO, is proposed.246

In the presented method, the combined NLM-EMD is first employed to acquire more effective247

IMF components of vibration signals. Then, for the de-noised signal and each IMF component, the248

energy and time-domain feature parameters are extracted to obtain characteristic parameters. Next,249

the mRMR feature selection technique is adopted to eliminate the irrelevant and redundant features250

and select the best combined feature subset. Finally, the selected feature subset is fed into the proposed251

PSO-LSWSVM classifier to identify the bearing conditions, wherein a novel combination of a PSO, a252

least squares procedure, and a new wavelet kernel is proposed to address the difficulties in the use253

of the traditional SVM classifier. By experimenting with a real bearing vibration signal, we verified254

that the proposed wavelet kernel function has a better generalization performance than the previous255

kernels, i.e., RBF kernel, and the proposed PSO-LSWSVM classifier can overcome all difficulties in the256

use of the traditional SVM classifer. In addition, the uses of the NLM-EMD for the feature extraction257

and mRMR for the feature selection are effective. Therefore the proposed fault diagnosis methodology258

based on the NLM-EMD, mMRM feature selection and PSO-LSWSVM classifier improves the bearing259

recognition accuracy significantly, up to 95.53 %.260

Funding: This research was supported by Basic Science Research Program through the National Research261

Foundation of Korea(NRF) funded by the Ministry of Education (2019R1D1A3A03103528), and partly supported262

by the start-up grant of Queen’s University Belfast (D8203EEC3054789).263

Conflicts of Interest: The authors declare no conflict of interest.264

References265

1. Kharche, P.P.; Kshirsagar, S.V. Review of fault detection in rolling element bearing. International Journal of266

Innovative Research in Advanced Engineering 2014, 1, 169–174.267

2. Huang, D.; Yang, J.; Zhou, D.; Litak, G. Novel Adaptive Search Method for Bearing Fault Frequency Using268

Stochastic Resonance Quantified by Amplitude-Domain Index. IEEE Transactions on Instrumentation and269

Measurement 2020, 69, 109–121.270

3. Hoang, D.T.; Kang, H.J. A Motor Current Signal Based Bearing Fault Diagnosis Using Deep Learning And271

Information Fusion. IEEE Transactions on Instrumentation and Measurement 2019.272

4. Van, M.; Kang, H.J. Bearing defect classification based on individual wavelet local fisher discriminant273

analysis with particle swarm optimization. IEEE Transactions on Industrial Informatics 2015, 12, 124–135.274

5. Van, M.; Kang, H.J.; Shin, K.S. Rolling element bearing fault diagnosis based on non-local means de-noising275

and empirical mode decomposition. IET Science, Measurement & Technology 2014, 8, 571–578.276

6. Radovic, M.; Ghalwash, M.; Filipovic, N.; Obradovic, Z. Minimum redundancy maximum relevance277

feature selection approach for temporal gene expression data. BMC bioinformatics 2017, 18, 9.278

7. Cortes, C.; Vapnik, V. Support-vector networks. Machine learning 1995, 20, 273–297.279

8. He, J.; Song, C.; Luo, Q.; Lan, L.; Yang, C.; Gui, W. Noise-robust self-adaptive support vector machine for280

residual oxygen concentration measurement. IEEE Transactions on Instrumentation and Measurement 2020.281

9. Wang, C.P.; Kim, H.J.; Yue, C.; Weygand, J.M.; Hsu, T.S.; Chu, X. Effects of solar wind ultralow-frequency282

fluctuations on plasma sheet electron temperature: Regression analysis with support vector machine.283

Journal of Geophysical Research: Space Physics 2017, 122, 4210–4227.284

10. Chen, D.; Tian, Y.; Liu, X. Structural nonparallel support vector machine for pattern recognition. Pattern285

Recognition 2016, 60, 296–305.286

11. Li, Y.; Wang, X.; Si, S.; Huang, S. Entropy based fault classification using the Case Western Reserve287

University data: A benchmark study. IEEE Transactions on Reliability 2019.288



Version June 11, 2020 submitted to Sensors 15 of 20

12. Huang, G.B.; Mao, K.; Siew, C.K.; Huang, D.S. Fast modular network implementation for support vector289

machines. IEEE Transactions on Neural Networks 2005, 16, 1651–1663.290

13. Joachims, T. Making large-scale SVM learning practical. Technical report, Technical Report, 1998.291

14. Platt, J. Sequential minimal optimization: A fast algorithm for training support vector machines 1998.292

15. Keerthi, S.S.; Shevade, S.K.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to Platt’s SMO algorithm for293

SVM classifier design. Neural computation 2001, 13, 637–649.294

16. Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural processing letters295

1999, 9, 293–300.296

17. Xu, H.; Chen, G. An intelligent fault identification method of rolling bearings based on LSSVM optimized297

by improved PSO. Mechanical systems and signal processing 2013, 35, 167–175.298

18. Smola, A.J.; Schölkopf, B.; Müller, K.R. The connection between regularization operators and support299

vector kernels. Neural networks 1998, 11, 637–649.300

19. Van, M.; Kang, H.J. Wavelet kernel local fisher discriminant analysis with particle swarm optimization301

algorithm for bearing defect classification. IEEE Transactions on Instrumentation and Measurement 2015,302

64, 3588–3600.303

20. Zhang, L.; Zhou, W.; Jiao, L. Wavelet support vector machine. IEEE Transactions on Systems, Man, and304

Cybernetics, Part B (Cybernetics) 2004, 34, 34–39.305

21. Mazidi, M.H.; Eshghi, M. Detection of Heart Attack using Cross Wavelet Transformation and Support306

Vector Machine. Applied Medical Informatics. 2019, 41, 77–92.307

22. Xia, K.; He, S.; Tan, Y.; Jiang, Q.; Xu, J.; Yu, W. Wavelet packet and support vector machine analysis of series308

DC ARC fault detection in photovoltaic system. IEEJ Transactions on Electrical and Electronic Engineering309

2019, 14, 192–200.310

23. Kennedy, J.; Eberhart, R. Particle swarm optimization. Proceedings of ICNN’95-International Conference311

on Neural Networks. IEEE, 1995, Vol. 4, pp. 1942–1948.312

24. Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N.A. Review of optimization techniques313

applied for the integration of distributed generation from renewable energy sources. Renewable Energy314

2017, 113, 266–280.315

25. Li, X.; Wu, S.; Li, X.; Yuan, H.; Zhao, D. Particle Swarm Optimization-Support Vector Machine Model for316

Machinery Fault Diagnoses in High-Voltage Circuit Breakers. Chinese Journal of Mechanical Engineering317

2020, 33, 1–10.318

26. Tharwat, A.; Elhoseny, M.; Hassanien, A.E.; Gabel, T.; Kumar, A. Intelligent Bézier curve-based319

path planning model using Chaotic Particle Swarm Optimization algorithm. Cluster Computing 2019,320

22, 4745–4766.321

27. Sengupta, S.; Basak, S.; Peters, R.A. Particle Swarm Optimization: A survey of historical and recent322

developments with hybridization perspectives. Machine Learning and Knowledge Extraction 2019, 1, 157–191.323

28. The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time324

series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1998.325

doi:10.1098/rspa.1998.0193.326

29. Fu, X.; Wang, L. Data dimensionality reduction with application to simplifying RBF network structure327

and improving classification performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B328

(Cybernetics) 2003, 33, 399–409.329

30. Haykin, S. Neural networks: a comprehensive foundation; Prentice Hall PTR, 1994.330

31. Zhang, Q.; Benveniste, A. Wavelet networks. IEEE transactions on Neural Networks 1992, 3, 889–898.331

32. Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE transactions on332

information theory 1990, 36, 961–1005.333

33. Szu, H.H.; Telfer, B.A.; Kadambe, S.L. Neural network adaptive wavelets for signal representation and334

classification. Optical Engineering 1992, 31, 1907–1917.335

34. Liu, Z.; Cao, H.; Chen, X.; He, Z.; Shen, Z. Multi-fault classification based on wavelet SVM with PSO336

algorithm to analyze vibration signals from rolling element bearings. Neurocomputing 2013, 99, 399–410.337

35. Loparo, K.A. Bearing data center. Case Western Reserve University 2013.338

36. De Brabanter, K.; Karsmakers, P.; Ojeda, F.; Alzate, C.; De Brabanter, J.; Pelckmans, K.; De Moor, B.;339

Vandewalle, J.; Suykens, J.A. LS-SVMlab toolbox user’s guide: version 1.7; Katholieke Universiteit Leuven,340

2010.341

https://doi.org/10.1098/rspa.1998.0193


Version June 11, 2020 submitted to Sensors 16 of 20

37. Song, L.; Yan, R. Bearing fault diagnosis based on Cluster-contraction Stage-wise342

Orthogonal-Matching-Pursuit. Measurement 2019, 140, 240–253.343

38. Liu, X.; Zhang, X.; Luan, Z.; Xu, X. Rolling bearing fault diagnosis based on EEMD sample entropy and344

PNN. The Journal of Engineering 2019, 2019, 8696–8700.345

39. Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error346

estimation. IEEE transactions on pattern analysis and machine intelligence 2009, 32, 569–575.347



Version June 11, 2020 submitted to Sensors 17 of 20

Suplementary Figures348

Figure 4. The represented a) vibration signal, and b) de-noised signal using NLM when the bearing in
normal operation

Figure 5. Denoising signal using NLM when the bearing in an inner race (IR) fault (0.021 in.).

Figure 6. Denoising signal using NLM when the bearing in an outer race (OR) fault (0.021 in.).
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Figure 7. TDenoising signal using NLM when the bearing in a ball (B) fault (0.021 in.).

Figure 8. Validation accuracy of the KNN classifier

Figure 9. Validation accuracy of the PNN classifier
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Figure 10. Validation accuracy of the LSRBFSVM classifier; C = 4.5, σ = 2.5

Figure 11. Validation accuracy of the PSO-LSRBFSVM classifier

Figure 12. Validation accuracy of the LSWSVM classifier



Version June 11, 2020 submitted to Sensors 20 of 20

© 2020 by the authors. Submitted to Sensors for possible open access publication under the terms and conditions349

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).350

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Feature Extraction
	Nonlocal mean (NLM) de-noising
	Empirical mode decomposition
	Energy feature extraction
	Time-domain feature extraction

	Minimum redundancy maximum relevance (MRMR) feature selection
	PSO-LSWSVM
	Least squares support vector machine (LSSVM)
	Least squares wavelet support vector machine (LSWSVM)
	Particle swarm optimization (PSO) for parameter selection of LSWSVM - the PSO-LSWSVM classifier

	Fault diagnosis methodology
	Experimental results
	Training and Test Data Configuration
	Parameter Selection
	Performance Evaluation
	Training process
	Testing process


	Conclusion
	References

