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Abstract 
Most catalytic, structural and regulatory functions of the cell are carried out by functional 
modules, typically complexes containing or consisting of proteins. The composition and 
abundance of these complexes and the quantitative distribution of specific proteins across 
different modules is therefore of major significance in basic and translational biology. To 
date, the systematic detection and quantification of protein complexes has remained 
technically challenging. The chromatographic separation of native protein complexes 
followed by the mass spectrometric analysis of the proteins contained in sequential fractions 
results in potentially thousands of protein elution profiles from which, in principle, the 
presence of specific complexes can be inferred. However, the de novo inference of protein 
complexes from such datasets has so far remained limited with regard to selectivity and the 
retrieval of quantitative information. 
 
We recently developed a variant of this strategy, complex-centric proteome profiling, which 
extends the concepts of targeted proteomics to the level of native protein complex analysis. 
The complex-centric workflow consists of size exclusion chromatography (SEC) to 
fractionate native protein complexes, DIA/SWATH mass spectrometry to precisely quantify 
the proteins in each SEC fraction based on a consistent set of peptides, and targeted, complex-
centric analysis where prior information from generic protein interaction maps is used to 
detect and quantify protein complexes with high selectivity and statistical error control via the 
computational framework CCprofiler. Complex-centric proteome profiling captures the 
majority of proteins in complex-assembled state and reveals their organization into hundreds 
of complexes and complex variants observable in a given cellular state. The protocol is 
applicable to genetically unaltered tissue cultures and adaptable to primary tissue. At present 
it requires approximately 8 days of wet-lab work, 15 days of MS measurement time and 7 
days of computational analysis. 

Introduction  
Proteins are major effectors and regulators of biological processes and can elicit or participate 
in multiple functions depending on their interaction with other proteins and most catalytic, 



regulatory and structural functions are carried out by protein complexes. Therefore, it is of 
central and general interest in basic and translational biology to identify protein complexes in 
biological samples and to detect changes in their composition and/or abundance across 
different samples and states. Over the last decades, different strategies to systematically study 
protein-protein interactions (PPIs) and protein complexes have been developed. With 
increasing technical abilities in the area of mass spectrometry based proteomics, high-
throughput methodologies for detecting PPIs by affinity-purification coupled to mass 
spectrometry (AP-MS) have emerged as gold-standard technique for mapping large PPI 
interaction networks 1–3. However, the need to perform multiple reciprocal pull-downs, 
requiring either genetic engineering or availability of multiple specific antibodies, makes the 
AP-MS approach limited in its capability to comprehensively study the protein interactome 
across multiple conditions and to reliably detect in parallel concurrent changes in multiple 
complexes in a set of samples. Other techniques, e.g. BioID 4, are based on proximity labeling 
and obtain information about proteins that are in close spatial proximity inside the cell but 
that do not necessarily interact directly. Another recently developed technique couples native 
protein co-fractionation of complexes with mass spectrometry followed by correlative 
analysis of chromatographic profiles to infer protein-protein interactions (CoFrac-MS or PCP-
MS) 5–12. Here, a single fractionation experiment in principle captures information on 
thousands of PPIs and hundreds of protein complexes in parallel and substantially increases 
the throughput for screening protein complexes. 
 
Previous applications of CoFrac-MS strategies already provided interesting novel insights 
into the protein complex landscape across different organisms 10 and molecular perturbations 
13. They also showed that the CoFrac-MS approach faces the general limitation that the 
cumulative number of proteins detected across the fractions exceeds the number of fractions 
and by almost two orders of magnitude. Further, the methods remained limited with regard to 
the resolution of chromatographic separations, the accuracy and consistency of mass 
spectrometric protein measurements as well as the specificity in the inference of protein-
protein interactions and the composition of protein complexes from the highly convoluted 
data 7,12,14. 
 
With the goal to address these prevailing limitations and to assess proteome organization 
more quantitatively and precisely, we developed the complex-centric proteome profiling 
strategy that builds on SEC-based protein complex fractionation with increased 
chromatographic resolution, optimized peptide and protein quantification by data-independent 
acquisition mass spectrometry (DIA/SWATH-MS) and the targeted detection of protein 
complexes at controlled error-rates based on queries of putative protein complexes in 
complex-centric analysis 15. The core difference to other approaches lies in the concept of 
complex-centric analysis which essentially changes the data analysis strategy of CoFrac-MS 
data from a discovery-based strategy to a multiple hypothesis testing based strategy that uses 
prior information of protein complexes to suggest stable modules. In essence, the complex-
centric strategy is an extension of the targeted proteomics rationale (Box 1) from the level of 
protein analysis to the level of protein complex analysis. The targeted query of protein 
complexes in the high quality and consistent co-fractionation data generated by 
DIA/SWATH-MS improves selectivity compared to other, discovery based data analysis 
approaches that generally focus on the detection of pairwise interactions from which complex 
compositions are then estimated (interaction-centric, 14,16). In addition to accurate detection, 
complex-centric analysis also extracts quantitative information on the composition and 
abundance of the cellular module(s) in which each detected protein participates. Complex-
centric proteome profiling thus supports the parallel detection and quantification of hundreds 
of protein complexes at unprecedented resolution and bears significant potential to discover 
novel aspects of modular proteome function in diverse biological processes. 

Overview of the protocol 
This protocol article provides step-by-step instructions to profile the higher order complex 



assembly state of a given proteome via the complex-centric SEC-SWATH-MS workflow. The 
workflow consists of three main modules: (1) Sample preparation via extraction of protein 
complexes under native conditions from a biological sample and their fractionation by size 
exclusion chromatography (SEC); (2) Data acquisition by bottom-up proteomics analysis of 
all collected fractions by data-independent acquisition mass spectrometry and targeted, 
peptide-centric analysis (SWATH-MS); and (3) Computational inference of proteome 
assembly state and detection of specific protein complexes by targeted, complex-centric 
analysis within the R software package CCprofiler.  
 
The protocol takes as input a biological sample, exemplified by 7e7 HEK293 cells, as well as 
prior information on the tested protein interactions and/or complexes formed within the 
proteome of interest. The protocol produces as output (1) a quantitative assessment of the 
global proteome assembly state of the proteome analyzed, (2) a quantitative assessment 
indicating how each protein partitions into a certain number of SEC-resolvable, distinct 
protein assemblies, and (3) a quantitative assessment of the interactions and protein 
complexes in the given proteome in the biological state tested. Figure 1 schematically 
summarizes the overall complex-centric proteome profiling workflow by SEC-SWATH-MS.  
 
The key requirements to successfully perform a SEC-SWATH-MS experiment and to analyze 
the resulting data are (1) the availability of biological specimens from which intact native 
complexes can be isolated, (2) HPLC and DIA-enabled mass spectrometric equipment and (3) 
computing infrastructure for data storage, peptide-centric SWATH-MS data analysis as well 
as complex-centric SEC-MS data analysis in the R environment. The built-to-task algorithms 
for complex-centric analysis are implemented in the R package CCprofiler. Familiarity with 
the R programming language is not required for the use of the canonical complex-centric 
workflow but highly recommended if deviations from the canonical workflow as presented 
herein are required.  

Applications of the method 
The key feature of complex-centric proteome profiling by SEC-SWATH-MS is its ability to 
assign separated proteins to hundreds of protein complexes in parallel from the same sample 
and to determine the relative distribution of protein mass across different assembly states. 
These analyses provide results at controlled error-rate and at sub-complex resolution. 
Preliminary results show that the analysis strategy can be extended to quantitatively compare 
protein complex abundance and composition and the distribution of proteins into alternative 
assembly states across different biological conditions, which is the focus of ongoing work. 
 
Compared to other co-fractionation methods, the complex-centric workflow supports the 
rapid and error-controlled detection of hundreds of protein complexes from a single 
dimension of chromatographic fractionation, supported by key improvements in quantitative 
profiling and data analysis. The workflow extends the targeted proteomics rationale as 
initially implemented by selected reaction monitoring (SRM) and more recently by 
DIA/SWATH-MS towards the detection of protein complexes from CoFrac-MS data in 
targeted queries of database-curated complexes or other sources providing prior information 
about the protein complexes to be tested. We could demonstrate that the targeted analysis 
rationale improves the overall selectivity of detecting reference complexes to a level 
comparative to that of a state-of-the-art CoFrac-MS workflow based on the analysis of a 12-
fold higher number of fractions generated by multidimensional biochemical separations and 
binary interaction-centric data processing 9,10,15. In addition to indicating complex 
composition, the complex-centric workflow also provides insights into the abundance of the 
subunits (complex stoichiometry) as well as the relative distribution of specific proteins 
across the detectable complexes in which they participate. These types of information are 
expected to closely correlate with the functional state the respective protein modules, based 
on the principle that biochemical activities of a protein complex substantially depend on its 
subunit composition, topology and overall structure and that alterations of these parameters 



also alter activity and function 17. 
 
While the first exemplary application of the protocol was shown for the HEK293 cell line 15, 
the complex-centric methodology can be readily adapted to different sample types that are 
compatible with mild lysis and the extraction of sufficient amounts of native protein 
complexes for SEC-SWATH-MS analysis (at least 1 mg of total protein). The complex-
centric proteome profiling strategy can thus serve to assess proteome organization and 
assembly states of specific protein complexes across a wide range of experimental model 
systems and perturbations, including clinical specimen. Besides studying essential biological 
processes such as e.g. the impact of growth factor treatment or cell differentiation, it can be 
envisaged that SEC-SWATH-MS can also be employed towards the characterization of drug 
mode of action with respect to protein complex assembly states or in fact for biomarker 
discovery. For example, complex-centric profiling might capture off-target effects that do not 
affect the level of transcripts or proteins but that alter cellular functions by altering the 
assembly state of specific protein complexes. Application of the complex-centric proteome 
profiling workflow to different experimental systems or across perturbations bears profound 
potential to provide novel insights into the interplay between proteome organization and 
function. A core focus of future work will therefore be to further improve method throughput 
to enable larger comparative or longitudinal studies, for example by high throughput on-line 
C-18 liquid chromatography 18. Further, we envisage the extension to additional fractionation 
techniques and the extension of the computational framework CCprofiler to quantitatively 
compare protein complex assemblies across conditions both on the level of protein complex 
assembly states and protein complex composition. 
 
The overall performance of the presented workflow is tightly linked to chromatographic 
resolution, the accuracy of mass spectrometric readout and the selectivity of complex-centric 
analysis. We thus recommend applying all three modules of the workflow as presented herein. 
However, depending on the specific biological question at hand and the available technology 
and expertise in a research laboratory, we anticipate that individual modules of the workflow 
can be replaced by alternative approaches or adapted to specific conditions. For example, 
protein complexes could be fractionated by other techniques than SEC, such as density 
gradient centrifugation, blue native poly-acrylamide gel electrophoresis (BN-PAGE), or ion-
exchange chromatography (IEX), as has been employed in other studies 9,10,19. It should be 
noted, however, that the fractionation technique employed will determine key attributes such 
as resolution and observability of certain protein complexes that may impair workflow 
performance, especially in cases where no specific size information is obtained as is the case 
in IEX. Available size estimates of the detected protein complexes improve the selectivity of 
the canonical SEC-SWATH-MS workflow. Furthermore, bottom-up proteomic quantification 
can alternatively be achieved by conventional data-dependent acquisition (DDA) in 
combination with MS1-based or spectral counting-based quantification, in contrast to 
DIA/SWATH-MS and MS2-based quantification as is suggested in this protocol. However, 
depending on the MS instrument and acquisition setup, this can result in a reduced 
quantification precision and consistency, thereby leading to less sensitive protein complex 
detection (Figure 2C in 15). Finally, if the discovery of novel protein complexes is of interest, 
the data analyzed with regard to quantitative assembly states of previously known protein 
complexes via CCprofiler can alternatively or in addition be employed to predict novel 
complexes via analysis tools such as PrInCe 14 or EPIC 20. This might be especially useful in 
cases where no or only limited prior knowledge on protein complexes is available for the 
organism analyzed.  
 

Experimental design 
Complex-centric proteome profiling by SEC-SWATH-MS was designed to maximize the 
resolution and depth of biological insights obtainable from a single protein co-fractionation 
experiment. This is achieved by extending concepts from the analysis of peptides via targeted 



proteomics to the level of protein complexes, thus implementing a targeted data analysis 
strategy. The workflow extracts quantitative information on the observed assembly states of 
predefined protein complexes with high selectivity. The workflow consists of three main 
modules, each of which was optimized to address the prevailing limitations of previous co-
fractionation workflows.  

(1) Extraction of protein complexes from a biological sample and fractionation by size 
exclusion chromatography  
To minimize complex disassembly under the diluted conditions present after cell or tissue 
lysis, all processing steps up to the collection of fractions are carried out rapidly, at minimal 
dilution and below 4°C. To improve on protein complex resolution and to produce strongly 
correlated, sharp peak signals for the detected proteins, SEC is performed with high-
resolution stationary phase material that offers an optimal tradeoff between resolution and 
fractionation range. A preferred column material combines 3 μm particle size and 500 Å pore 
diameters. 
Protein complexes are isolated using a mild detergent, nonidet-P40, that has been shown to 
support the extraction and maintenance of the integrity even of relatively labile protein 
complexes 21–23. To minimize the artifactual disruption of native protein complexes cells are 
snap-frozen in liquid nitrogen prior to immediate processing. The cells are lysed by freeze-
thawing into a low volume of 0.5% detergent-containing lysis buffer supplemented with 
protease- and phosphatase inhibitors. These precautions are taken to minimize artifactual 
proteome rearrangements that do not reflect the true biological state of the system. After 
proteome extraction, lysates are cleared by ultracentrifugation. This step is pivotal to remove 
cellular components interfering with successful SWATH-MS analysis. To reduce detergent 
levels and to concentrate the sample for SEC fractionation, the buffer is exchanged over a 30 
kDa molecular weight cut-off membrane in multiple dilution steps to minimize dilution-
induced complex dissociation. To monitor column performance and calibrate the apparent 
molecular weight scale per each fraction, a 5-protein standard sample is analyzed prior to and 
after the preparative protein complex fractionations required for an experiment or study. The 
elution profiles of standard proteins are further used to determine the fraction collection 
scheme. We generally aim at collecting 7-8 independent MS measurements (fractions) across 
each eluting peak, a measure that has proven optimal in targeted proteomics applications 
aimed at the accurate quantification of peptides based on fragment ion chromatogram peak 
groups along peptide elution from on-line C-18 chromatography 24,25. 
An aliquot of the unfractionated sample should be included for SWATH/DIA LC-MS/MS 
analysis to obtain a ‘master’ sample and SWATH-MS dataset in which most if not all signals 
observable across the individual fractions are represented. This dataset is used to optimize 
peptide-centric analysis, specifically to align parameters for statistical scoring of peptide 
fragment ion peak group signals across the full SEC-SWATH-MS study. 

(2) Bottom-up proteomics analysis and peptide-centric analysis (SWATH-MS) 
To improve the accuracy and consistency of mass spectrometric peptide signals along the SE 
chromatographic axis, data-independent acquisition-based SWATH mass spectrometry is 
employed. Prior to sample acquisition proteins contained in each collected SEC fraction are 
denatured by heating in 1 % sodium de-oxycholate, reduced, alkylated and trypsinized 
overnight. Compared to a range of alternative sample workup regimens tested, the protocol 
described below provided most robust results. The tryptic peptides are cleaned-up by binding 
to a C18-resin and subsequent one step elution. They are then dried and resuspended in 
nanoLC buffer A, supplemented with internal standard peptides to align peptide retention 
times in C18 chromatography, essentially as described 26. The inclusion of the reference 
peptides is especially important for peptide-centric, spectral library-based data analysis (see 
below). 
 
To maintain the ability to quantitatively compare peptide/protein abundances across 
individual fractions of the recorded SEC-SWATH-MS maps, we recommend the injection of 



equal volumes per each SEC fraction for analysis by SWATH-MS. We recommend to 
determine the injection volume for a specific SEC separation based on test injections of the 
first two SEC fractions that produce highest absorbance at 280nm in UV/Vis profiling during 
SEC fractionation. The injection volume is then selected to maximize the amount of peptides 
injected per MS run without exceeding the upper sample limit tolerated by the mass 
spectrometer (Figure 2A). This upper limit is determined by detector saturation. For example, 
for a 5600+ instrument operated in SWATH 64vw mode the maximal total ion current (TIC) 
is 1e8 (here fraction 55, also see Figure 2B). As a consequence of keeping the volume 
injected from each SEC fraction constant, fractions containing smaller amounts of total 
protein will generate SWATH maps that top out significantly below the maximally tolerated 
ion current. The identity of the most highly concentrated fractions and optimal injection 
volume may depend on sample type, SEC setup and MS platform used. We recommend 
including an aliquot of the unfractionated sample in the final acquisition queue.  
 
While other MS platforms and MS acquisition schemes may in principle be also compatible 
with complex-centric profiling, we advise against employing classical DDA-MS acquisition 
and quantification because the performance of complex-centric profiling and specifically the 
selectivity of data analysis in CCprofiler strongly depend on the improved quantitative 
accuracy achievable by DIA/SWATH-MS 15,27. The workflow described was successfully 
implemented using the ABSciex 5600+ or 6600+ MS platforms in combination with the 64 
variable window acquisition scheme (also see Tables 1, 2 and 3) 15,27. Other quantitative DIA 
workflows as implemented on alternative mass spectrometric platforms may also produce 
data of sufficient quality for effective complex-centric proteome profiling 28–30. We 
recommend acquisition of SWATH-MS maps along the SEC fractions in 120 min gradients, 
yet recent studies have shown promising results when employing shorter (e.g. 60 min) 
nanoLC or super-short fastLC gradients (20min, 18). 
 
The interpretation of DIA/SWATH-MS data is most effective in conjunction with a reference 
spectral library that contains information about peptide elution, MS fragmentation and other 
pertinent properties. These parameters then support the detection and quantification of the 
respective peptides by targeted data analysis. Whereas samples from less intensely studied 
species may require the generation of a customized spectral library from DDA data acquired 
on the same sample 26, for more extensively studies species, including human, mouse, yeast 
and zebrafish, large scale libraries are available via http://www.swathatlas.org/ 31–33. For 
applications involving human samples, we recommend using the combined human assay 
library (CAL) that combines peptide query parameters from over 300 DDA-MS injections 
across diverse human tissue types 31. The CAL also contains spectral information from our 
complex-centric analysis of the HEK293 proteome 15 and is thus expected to be sufficiently 
representative also for future studies of human (cell lines) via SEC-SWATH-MS. In the 
course of developing the SEC-SWATH-MS methodology, the use of a sample-specific vs. the 
combined human assay library was evaluated. The results showed benefits of the CAL with 
respect to increased sequence coverage and increased number of peptides per protein 34. If a 
given research question depends on a sample-specific spectral library, we recommend DDA 
acquisition side-by-side with the DIA/SWATH-MS measurements and library construction as 
described previously 26. 
 
Once all DIA/SWATH-MS data is acquired, data are converted to mzXML format for open-
source peptide-centric analysis via the OpenSWATH workflow which consists of 
OpenSWATH, PyProphet and TRIC analysis 35–40 

(3) Analysis of the global proteome assembly state and specific protein complexes by 
targeted, complex-centric analysis via CCprofiler 
The overall goal of the complex-centric workflow is the inference of the global proteome 
assembly state of the sample tested and the detection of specific protein complexes from the 
measured SEC protein profiles. We generated CCprofiler, an algorithm and computational 



framework to support these analyses. After initial data preparation and import, CCprofiler 
performs three main steps: (i) data pre-processing and quality control, (ii) protein-centric 
analysis and (iii) complex-centric analysis. In the following, the rationale behind each of 
these three steps is explained. 
 
Data preparation and import 
Prior to analysis in CCprofiler, all necessary input data first needs to be formatted and 
imported into R according to the CCprofiler guidelines (also see Table 1). The main input for 
CCprofiler is the quantitative peptide-level data, which needs to be imported into a traces 
object. This is a customized data format of the CCprofiler package. Traces objects can store 
information about quantitative peptide or protein profiles and can further include additional 
annotations of the measured peptides, proteins and fractions. For direct data import of the 
TRIC output, the importFromOpenSWATH function can be used. It removes non-proteotypic 
evidence and sums precursor signals per peptide to generate peptide-level quantitative 
information. If an alternative DIA analysis platform is selected, non-proteotypic peptides 
should be removed manually if necessary and precursor signals should be summarized to 
unique peptide quantitative information. The thereby generated quantitative peptide matrices 
can be also imported into traces objects via the importPCPdata function. In addition to (1) the 
quantitative peptide-level information, CCprofiler requires (2) a fraction annotation table that 
maps each MS run to a given fraction, (3) a molecular weight (MW) calibration table 
generated by measuring the apex fractions of an external standard set of reference proteins 
fractionated on the same SEC setup that is used to establish a log-liner-relationship between 
the SEC fractions and their the apparent molecular weight (Figure 3A), (4) a trace annotation 
table containing information from UniProt (https://www.uniprot.org/) that is used to annotate 
proteins with according gene names and monomeric MWs, and finally (5) prior protein 
connectivity information in form of defined protein complexes, e.g. annotated in CORUM 41, 
or binary interaction networks, such as StringDB 42,43 or BioPlex 1,2. A summary of the 
required input data and format for a successful CCprofiler analysis are summarized in Table 
4.  
 
Data pre-processing and quality control 
To achieve optimal data quality and sensitivity in complex-centric profiling, CCprofiler 
includes several functions to increase data completeness and to filter peptides for detection 
and quantification consistency.  
 
Once a traces object is imported, missing values can be detected based on a user defined 
criterion. In most proteomics pipelines, zero intensity values indicate either that the signal is 
“missing at random”, i.e. no detection due to technical reasons such as interferences from 
other peptides, or “missing not at random” i.e. no detection due to cellular concentrations 
below the detection limit. We suggest that a zero value is considered as “missing at random” 
in case a quantitative (non-zero) signal has been detected in both, the two fractions preceding 
or following the fraction in question. The detected “missing at random” values are 
subsequently imputed by a spline fit across the fractionation dimension. In our originally 
published analysis workflow 15 we did not perform a missing value imputation. Generally, 
when applying a SWATH-MS based workflow, only few missing values are expected. 
However, sample loss, e.g. of an entire SEC fraction, sometimes cannot be avoided, thus 
generating missing values for transparent technical reasons. To still enable a robust and 
sensitive analysis with CCprofiler in such cases, we implemented the missing value detection 
and imputation approach. While this does not make a large difference in the HEK293 SEC-
SWATH-MS dataset presented in this paper, we specifically recommend this pre-processing 
step for datasets generated by DDA or if single fractions were lost during sample processing. 
 
In a next step, peptides that have never been detected in more than N consecutive fractions, 
here N=2, are removed from the traces object. This effectively removes false positive peptide 



detections from the dataset. Finally, we leverage the idea that multiple peptides originating 
from the same protein should display highly similar quantitative elution profiles along the 
chromatographic dimension, given that the proteins are presumably intact during separation 
and are only cleaved into peptides for LC-MS/MS analysis thereafter. For each peptide, the 
average pairwise correlation with the quantitative traces of its sibling peptides, i.e. peptides 
derived from the same protein, is calculated (Figure 3B). Peptides below a minimum average 
sibling peptide correlation (SPC) cutoff can subsequently be removed. The rational for this 
step is that outlier peptides as well as proteins with very heterogeneous quantitative peptide 
traces are excluded from further analysis. Given that decoy proteins are maintained in the 
upstream analysis, CCprofiler can automatically determine an SPC cutoff at which a user-
defined criterion on the maximally acceptable global protein-level FDR is satisfied (Figure 
3C). FDR estimation can be fine-tuned by providing a prior on protein detectability in form of 
a fraction of false targets (FFT). A conservative FFT can be estimated from the protein-level 
PyProphet scoring of the unfractionad SEC input sample. This is conservative, because we 
expect to see cumulatively more proteins in the SEC fractions than in the single 
unfractionated input sample. Alternatively to the automated SPC cutoff estimation, a user-
provided SPC cutoff can be used for peptide filtering. Figure 3E shows the peptide-level 
quantitative profiles of the Proteasome subunit alpha type-1 after pre-processing and filtering. 
 
The peptide-level traces can subsequently be used for protein quantification. The protein level 
profiles are inferred from summing the top N (we recommend N = 2) most-abundant and 
well-correlated peptides of a given protein. Only peptides that map uniquely to the protein of 
interest and in the context of the full sequence database (proteotypic peptides) are used in the 
analysis.  
 
The protein-level profiles can then be used to estimate the overall complex assembly state 
observed in the sample as a quality control to ensure the successful extraction and profiling of 
largely intact complexes (Figure 3D). The protein-level profiles are further the input for 
complex-centric signal detection. 
 
Protein-centric signal detection of protein assembly states 
Protein-centric analysis aims to evaluate the number of distinct assembly states each protein is 
observed in. We define as an assembly state a distinct SEC peak in which the protein in 
question is confidently detected. The analysis thus detects peptide co-elution peak groups 
along the chromatographic dimension. Each detected peak (‘protein feature’) represents the 
protein in a specific assembly state, i.e. monomeric or bound to different protein complexes, 
as inferred from the proteins' monomeric MW and external size calibration of the SEC 
fractionation. This analysis yields a fine-grained view of individual assembly states of each 
protein but also enables more global assessments of the overall degree of higher order 
assembly observed from the biological sample.  
 
The optimal parameters for the peak detection algorithm in CCprofiler depend on the 
chromatographic resolution and the quantitative accuracy of a given dataset. Therefore, 
CCprofiler features functions to automatically screen and identify optimal parameters based 
on a parameter grid search (Box 2 and Figure 4A). The grid search screens different 
parameter combinations for their sensitivity to detect protein elution signals from sibling 
peptides (derived from the same protein) as opposed to nonsense signals among peptides 
sampled randomly from different proteins across the dataset. In our previously published 
analysis workflow 15, parameter optimization was performed based on the detection of protein 
complex signals from protein traces. In contrast, we here present and suggest parameter 
optimization based on protein-level peak detection from peptide traces, because it is 
independent of the detectability of a certain set of protein complexes in the sample and 
because the chromatographic and quantitative properties are specific to the analyzed dataset 
and not the level of analysis (complex or protein elution). 



 
Scoring and FDR estimation of the detected protein features is performed based on a target 
decoy strategy. Decoys are generated automatically, by randomly shuffling peptide-to-protein 
assignments. The co-elution scores calculated by CCprofiler (for more details also see 
information available in the appendix of the original publication 15) are converted into 
empirical p-values and used for q-value estimation 44. To ensure that the decoy based FDR 
estimation approach works correctly, the quantitative data needs to be of sufficient quality 
and a sufficient number of proteins need to be evaluated in parallel. We suggest that at least 
500 proteins with high-quality SEC patterns that pass upstream consecutive identification and 
sibling peptide correlation-based filters (see Step 37iii) should be used. To assess whether the 
FDR estimation worked correctly, it is crucial to manually inspect the p-value density 
histogram generated by CCprofiler (Figure 4B/C). There should be a high peak close to zero 
and a uniform distribution across all other p-values (also see troubleshooting). Figure 4E 
shows the three unique elution signals of the Proteasome subunit alpha type-1detected by 
protein-centric analysis. 
 
The confidently detected protein features each represent a unique protein assembly state, 
which allows the inference of several interesting biological conclusions. First, the distribution 
of protein features into signals likely representing monomeric or assembled forms of the 
protein can be used to draw conclusions about the overall assembly state of the cellular 
system tested (pie chart in Figure 4C). Second, the distribution of proteins into a single or 
multiple distinct assembly states can reveal potential moonlighting of a protein across distinct 
protein assemblies in which it may assume alternative functional roles (bar chart in Figure 
4C). Protein feature signals do, however, not yet assess the exact interaction partners involved 
and their quantitative distribution across specific protein complexes, which is a question that 
is assessed in the subsequent complex-centric signal detection module. 
 
Complex-centric detection of protein complex signals 
The heart of the CCprofiler software and the presented protocol is the complex-centric 
detection of protein complex signals. Here, prior protein connectivity information is used to 
query the SEC-SWATH-MS data for evidence of specific protein complexes or sub-
complexes thereof in the biological sample. In analogy to peptide- and protein-centric 
analysis, complex-centric analysis detects protein co-elution peak groups along the 
chromatographic dimension based on a priori defined protein complex queries and test the 
hypothesis that the query complex be present in the sample. A single protein complex query 
frequently results in the detection of multiple distinct subunit co-elution signals (‘protein 
complex features’). Each of these signals corresponds to a different (sub-)version of the 
queried protein complex with distinct composition and/or stoichiometry, eluting at a distinct 
elution time. Depending on the completeness of prior information and MS observability 
(Figure 5A), targeted, complex-centric analysis may or may not capture all involved protein 
subunits. In contrast to other analysis strategies of co-fractionation MS datasets that aim to 
predict new complexes 16,20, the complex-centric workflow aims to confidently detect a priori 
defined protein complexes and variants thereof and to quantify protein subunit distribution 
across these in the given biological state. 
 
Prior protein connectivity information can be provided either directly in the form of the 
concrete composition of query complexes ('complex queries') or in form of pair-wise protein-
protein interaction (PPI) networks. An exemplary set of target complex queries are the 
complexes represented in CORUM 41. If a PPI network is provided, it first needs to be 
partitioned into smaller sets of interacting proteins, thereby generating concrete protein 
complex queries. This is achieved by simplistic network partitioning, selecting for each 
protein its immediate neighbors (degree = 1). Any redundant, fully overlapping complex 
queries are removed such that per unique query complex one decoy query complex is 
generated, and the assumptions for the error control strategy are met. However, we suggest to 



keep protein complex subset queries, such as e.g. a first complex query including subunits A, 
B and C and a second complex query including subunits A, B, C, D and E. The reason for 
keeping also the sub-complex query ABC is that the co-elution signal A-B-C will be scored 
preferably in the CCprofiler co-elution score when compared to the same signal scored as part 
of a larger complex query including subunits D and E. This is because scores are calculated in 
dependence of the number of proteins per query and the number of proteins observed co-
eluting. Maintaining the subset hypothesis A-B-C will therefore increase the chance to 
successfully recover and quantify the A-B-C complex signal, particularly in the situation 
where subunits D and/or E do not partake in the observed protein complex and co-elution 
signal (for more details also see the appendix on ‘Coelution score calculation and statistical 
FDR control’ in 15). For cases in which both, the A-B-C and A-B-C-D-E complex query point 
to the same protein complex signal in the SEC dimension, these detected features will finally 
be collapsed into one unique signal after the initial peak detection step (see below).  
 
To enable an automated error-estimation of the complex-centric feature finding, CCprofiler 
employs a decoy based FDR estimation strategy. A decoy complex query is generated for 
each target, thus resulting in the same size distribution of protein complex subunits for both 
targets and decoys. Decoys are generated by randomly assigning proteins to a specific decoy 
complex query. To ensure that the randomized protein-to-decoy-complex associations do not 
contain true interactions, we exclude direct interaction partners present in the target protein 
complex queries. This is achieved by selecting a minimum pairwise network distance N, here 
N=2. The target-decoy FDR control strategy of CCprofiler depends on a minimal number of 
target (and decoy) queries. Reasons are that (a) a sufficiently large binary interaction network 
needs to be available to randomly generate decoy complex queries and (b) decoy-based FDR 
estimation is only appropriate for a representative number of detected target and decoy 
queries in order to ensure a stable p- and q-value estimation. We suggest a minimum number 
of 1000 protein complex targets and decoys. 
 
After the target and decoy protein complex queries are defined, complex-centric feature 
finding is performed. Here, protein traces are queried for the presence of local co-elution 
signals of the subunits specified in each of the target and decoy queries. Co-elution scores are 
calculated based on both the local correlation of the detected subunits across the SEC 
fractions as well as the fraction of correlating subunits relative to the total number of queried 
subunits. For the estimation and control of FDR, the most-complete co-elution signal for each 
protein complex query, i.e. the peak with the highest number of co-eluting protein subunits, is 
selected and used to convert co-elution scores into empirical p- and q-values 44. To confirm 
the correct operation of the error estimation and the fidelity of the results, it is important to 
manually inspect the p-value density histogram generated by CCprofiler (Figure 5B/C). There 
should be a high peak close to zero and a uniform distribution across all other p-values (also 
see troubleshooting). To interrogate potential protein complex assembly intermediates or 
other protein complex variants that are observable from a set of query subunit profiles 
additional to the best scoring peak group, secondary peak groups of each complex query are 
subsequently appended to the FDR filtered list of detected protein complex signals. For these 
assignments a less strict minimum local peak-correlation cutoff is selected manually 
specifically for the respective dataset.  
 
The list of confidently detected protein complex features contains information not only about 
the presence and abundance of individual protein complexes, but further entails information 
about proteome modularity such as protein complex assembly intermediates and subunit 
stoichiometry (also see Figure 5D/E and anticipated results section). 
 
Up to this point in the complex-centric analysis workflow, each protein complex signal 
detected by CCprofiler is directly linked to one specific protein complex query provided by 
the prior protein connectivity information. However, some of the subunits in each complex 
query might overlap with other complex queries. This redundancy in complex queries, in 



combination with the possibility to observe subsets/sub-complexes of these queries can result 
in the reporting of multiple protein complex signals based on only one piece of experimental 
evidence (co-elution signal). For example, complex query A consists of subunits WXYZ and 
complex query B consists of subunits VXYZ. If a co-elution signal among XYZ is detected in 
the data, it will, until this point, be reported for both complex query A and B. Therefore, in 
order to retrieve truly unique signals, the co-elution signals need to be collapsed based on a 
strategy that considers (i) subunit composition and (ii) position in the chromatographic 
dimension, i.e. apparent molecular weight of the protein complex. In the example above, 
signal collapsing will merge the redundant report of the XYZ signal derived from the two 
partially overlapping complex queries A and B into one unique reported protein complex 
signal (for more details also see 15). In case that multiple signals with overlapping components 
are detected at the same elution fraction, unique composite signals will be generated, based on 
user-defined parameters on subunit overlap and proximity in elution fraction (e.g. signals 
containing the subunits XYZ, YZK and YZF all with apex fraction 32 will result in one 
unique reported signal XYZKF). It is important to note that the FDR estimation strategy in 
CCprofiler operates at the level of protein complex queries and does not propagate to the 
level of collapsed protein complex signals and the precise error estimations among those 
collapsed results remain de facto unknown and the subject of future work. 

Limitations 
There are several limitations associated with the presented protocol. First, the workflow is 
optimized towards the analysis of soluble, cytosolic protein complexes that are extractable 
under native conditions and that remain stable during the multiple steps of the protocol 
through SEC separation.  
 
Conceptually, the targeted, complex-centric analysis strategy is not designed to identify any 
novel protein complexes. Rather, it focuses on the detection and quantification of protein 
complexes annotated in public protein interaction maps 1,2,41–43. Therefore, the workflow is 
limited by the availability and coverage of such prior protein connectivity information. While 
the quality of the chosen prior interaction network is naturally influencing the results 
obtainable by complex-centric analysis, the co-elution signal detection step and the FDR 
model in CCprofiler provide a good strategy to reduce the negative impact of false or 
inaccurate protein complex assignments represented in the prior network. Overall, the 
targeted approach is more sensitive and selective for protein complex queries with higher 
numbers of (>3) protein subunits, because random co-elution of these subunits becomes less 
likely 15 compared to protein complexes consisting of a lower number of subunits.  
 
One critical consideration is the level of redundancy in the prior protein connectivity 
information used as input for complex-centric analysis. While redundancy, e.g. in the form of 
larger and smaller protein sub-complexes, can significantly boost sensitivity and protein 
complex recovery, it also bears the potential to recover the same protein complex signal 
multiple times from the perspective of different, partially redundant queries. While the signal 
collapsing strategy in CCprofiler in principle removes such redundant complex assignments, 
FDR control does not propagate throughout this step of the workflow and the results should 
be treated with more caution.  
 
Finally, the protocol has the same caveats as most large-scale data analysis approaches. Since 
strict FDR control is necessary to warrant overall high quality results, weaker, yet interesting 
signals might be missed. Therefore, it might still be advisable to manually inspect 
chromatograms of specific candidate proteins and protein complexes of interest. In case you 
can clearly determine the signals manually, an adjustment of the selected parameters for the 
CCprofiler analysis might be necessary in order to obtain optimal results. 



Materials 

Reagents and consumables 
• HEK293 cell line (American Type Culture Collection Cat. No. CRL-1573). 

Unpublished work has shown that the protocol is applicable also to other cell and 
tissue types. 

• Cell culture dishes 15 cm (Corning, Sigma-Aldrich Cat. No. CLS430599-60EA). 
• BCA protein assay kit (Pierce, Fisher Scientific Cat. No. 23225) 
• Injection vials 32×11mm (BGB Analytik Cat. No. PPSV0903K&090304) 
• 96-DeepWell Plates (Nunc, Fisher Scientific Cat. No. 260251) 
• 96-well MacroSpin Plates C-18 (Harvard Apparatus Cat. No. 74-5617) 
• 96-well plate adhesive aluminum seals (VWR Cat. no. 60941-112). 
• DMEM Thermo Fisher (Gibco, Fisher Scientific Cat. No. 670116) 
• Penicillin-Streptomycin-Glutamine 100× (Gibco, Fisher Scientific Cat. No. 

10378016) 
• Fetal bovine serum (Gibco, Fisher Scientific Cat. No. 26140079)  
• Trypsin-EDTA 1× 
• Base and SEC buffer: 
• N-2-Hydroxyethylpiperazine-N-2-Ethane Sulfonic Acid (HEPES) (Gibco, Sigma-

Aldrich Cat. No. 11344041) 
• Sodium Chloride (Sigma-Aldrich Cat. No. S7653) 
• Lysis buffer (Lysis): 
• Sodium Fluoride (Sigma-Aldrich Cat. No. S6776) 
• NP-40 detergent (Nonidet P-40, Sigma-Aldrich IGEPAL-630, Cat. No. I8896). 
• Sodium Pervanadate Na3VO4 (Sigma-Aldrich Cat. No. S6508). 
• PMSF (Sigma-Aldrich Cat. No. 78830) 
• Protease inhibitor cocktail (Sigma-Aldrich Cat. No. P8340) 
• SEC standard proteins (Phenomenex Cat. No. AL0-3042) 
• Tris(2-carboxyethyl)phosphine hydrochloride (TCEP, Sigma-Aldrich Cat. No. 75259) 
• Iodoacetamide (Sigma-Aldrich Cat. No. I6125 
• Trypsin (Promega Sequencing grade, Cat. No. V5111) 
• Trifluoroacetic acid (Sigma-Aldrich Ca. No. T6508). 
• Retention time normalization kit (iRT kit, Biognosys AG Cat. No. Ki-3002-1). 
• Acetonitrile, gradient grade (Sigma-Aldrich Cat. No. 34851) 

Equipment 
• Sterile cell culture work bench. 
• Humidified incubator, 37˚C, 5% CO2. 
• Light microscope for inspection of cell lines. 
• 96-well plate incubator. 
• Tabletop Microcentrifuge (Eppendorf Centrifuge 5418 or similar, capable to spin at 

16,900×g) 
• Tabletop centrifuge (Eppendorf Centrifuge 5810R or similar capable to spin at 

3,220×g) 
• Ultracentrifuge (Beckman Coulter Optima TLX or similar, target: 100,000×g) 
• Ultracentrifuge Rotor (Beckman Coulter TLA-120.2 10×2ml, or equivalent) 
• Thick-wall Polycarbonate tubes for TLA-120.2 (1ml, Beckman Coulter Cat. No. 

343778). 
• (Alternative: Rotor TLA-120.1 14×0.5ml with Tubes 0.5 ml 343776). 
• Amicon Ultra-4 Centrifugal Filter Units (Sigma-Aldrich UFC803008). 
• HPLC system with UV detector, e.g. Agilent 1100 series. Backpressures of ca. 100 

bar are typical (500 ul/min). 



• Yarra 3um SEC-4000 column (300×7.8 mm, pore size 500 Å, particle size 3 µm, 
Phenomenex, Cat. No. 00H-4514-K0) 

• SecurityGuard column guard cartridge holder (Phenomenex, Cat. No. KJ0-4282) 
• Guard column cartridges (Phenomenex Cat. No. AJ0-4489) 
• Water bath (VWR Cat. No. 97055-806). 
• μl-volume UV-Vis Spectrophotometer (e.g. NanoDrop ND-1000, Thermo Fisher 

Scientific) 
• LC-MS/MS System of nano-LC and DIA/SWATH-MS-enabled mass spectrometer 

(Eksigent AS-2/1Dplus and AB SCIEX TripleTOF 5600+) 
• PicoFrit self-pack columns and emitters (New Objective, Cat. No. PF360-75-10-CE-

5) 
• Magic C18 Aq resin (3 μm, 200-Å, Michrom H254) 
• Windows computer for file conversion with following software 

o ProteoWizard (http://proteowizard.sourceforge.net/) 
• Workstation or server computer (any operating system) with ca. 300 gb disk space, 16 

gb RAM and ≥ 8 threads/CPU cores with the following software installed.  
o Docker (e.g. https://docs.docker.com/docker-for-windows/) 
o OpenSwath docker pipeline (See 

http://openswath.org/en/latest/docs/docker.html) 
o R (≥v3.60, https://cran.r-project.org/bin/windows/base/) with packages 

devtools, data.table, ggplot2 and CCprofiler (See setup)) 

Reagents setup 
SEC buffer. The SEC mobile phase is 50 mM HEPES pH 7.5, 150 mM NaCl. 10× stock 
solutions can be stored at 4°C for up to 8 weeks. Per experiment, prepare 1000ml SEC buffer 
per experiment to accommodate for system and column equilibration. Use milli-Q water. 
Before use remove particles by 0.22μm-filtration and store at 4°C. 
HNN buffer. HNN Buffer is equivalent to the SEC mobile phase, supplemented with 50 mM 
NaF for phosphatase inhibition. After 0.22μm-filtration HNN buffer is stable at 4˚C for 8 
weeks. 
HNN Lysis buffer. HNN Lysis buffer is 0.5% (vol/vol) NP40, 50 mM HEPES, pH 7.5, 150 
mM NaCl, 50 mM NaF, 200 µM Na3VO4, 1 mM PMSF, and 1× protease inhibitor cocktail. 
The buffer is to be prepared fresh for each experiment by dilution of stock solutions into 
HNN buffer. Aliquots of stock solutions are prepared and stored as follows. 20 % (vol/vol) 
NP-40 in milli-Q water can be stored at room temperature, in the dark (wrap with aluminum 
foil) for several weeks. 200 mM Na3VO4 in H2O (100×) is aliquoted and stored at -20°C. 1 M 
PMSF in 70% EtOH (100×) is aliquoted and stored at -20°C. Sigma protease inhibitors are 
aliquoted to 20ul and stored at -20°C. Aliquots are stable for at least 3 months. 
C-18 elution buffer C-18 elution buffer is 50% ACN in 0.1 % formic acid. 
Sample resuspension solution Sample resuspension solution is 2% ACN in 0.1% formic acid 
with Biognosys iRT peptides spiked in at a ratio of 1:20. 
NanoLC mobile phase A NanoLC pump mobile phase A is 2% ACN in 0.1% formic acid. 
Mobile phase should be freshly prepared. 
NanoLC mobile phase B NanoLC pump mobile phase B is 90% ACN in 0.1% formic acid. 
Mobile phase should be freshly prepared. 

Equipment Setup 
Off-line complex fractionation by size exclusion chromatography Note that SEC 
reproducibility can be compromised by differences in flow due to leakage or increased 
backpressure from clogged guard column cartridges. Monitor typical overall system 
backpressure and in-run backpressure to spot and solve leaks. We recommend employing two 
guard cartridges in line and replacing the upstream cartridge as soon as the Δp of the guard 
column exceeds 10 bar at 500 μl/min). To avoid damage to the 3 μm bead SEC column, avoid 
sudden pressure changes by adjusting flow rates only in small increments of 100 μl/min and 



allowing ca. 5s for pressures to adjust. The column is equilibrated by 10 column volumes 
(150ml) of SEC buffer. In proteome-wide SEC fractionations, secondary interactions with the 
stationary phase of a subset of analytes and consequent column conditioning and washout 
effects cannot be avoided. Therefore, we recommend to pre-condition the column with a 
lysate similar to the lysate to be analyzed in SEC-SWATH-MS to ensure consistent analyte 
elution volume and recovery in the fractionation. Mild lysates concentrated for SEC column 
conditioning in 1000μg aliquots can be stored at -80°C for several months. Thaw an aliquot, 
spin out precipitates by 5 min of centrifugation of 16,900 ×g (4°C) and run in SEC. After 
column conditioning (ca. 90 min to allow full baseline equilibration of the OD signal), 
analyze the aqueous SEC standard sample to finish setup for analysis of the real sample(s). 
Fractionations are run at 500 μl/min to minimize shear forces and with column temperature 
controlled at ≤ 4°C to minimize dilution-induced complex disassembly. Mobile phases are 
stored at room temperature and cooled by flow through the temperature-controlled 
autosampler module as well as heat exchanger units before entering the guard and analytical 
columns. To accommodate both precolumn and analytical column, we modified the housing 
of the column compartment with a drill. Alternatively, if no modifications are possible or if 
larger capacity SEC columns are to be employed, temperature can be controlled by 
submerging both pre-column and main column in an ice water bath. 
 
On-line nanoLC-MS/MS Peptide samples are loaded onto a self-packed C-18 reversed phase 
column (75 μm ID PicoFrit emitter packed with 20 cm Magic AQ 3μm C-18 resin) at 300 
nl/min and subsequently eluted by a linear gradient of 3-35% mobile phase B in mobile phase 
A over 120 min at 300 nl/min, with direct electrospray into the ion source and mass 
spectrometer. Other comparable C18 phases and nanoLC setups can be employed. The 
TripleTOF 5600+ mass spectrometer is operated in either data-dependent (also termed 
information-dependent) acquisition mode (DDA) or DIA/SWATH™2.0 acquisition mode. 
For detailed acquisition parameters, see Tables 1, 2 and 3. Other mass spectrometric 
platforms, such as e.g. the TripleTOF 6600, have been used successfully to record high 
quality SEC-SWATH-MS datasets. 
 
Windows PC for file conversion For file conversion, a windows computer with a recent 
version of the ProteoWizard suite (≥ Version: 3.0.19228-a2fc6eda4) is required. Download 
and Install ProteoWizard from http://proteowizard.sourceforge.net/, as described45. 
 
Workstation computer for peptide-centric SWATH-MS analysis In this protocol, we 
employ a docker container that provides a stable solution for running peptide-centric scoring 
by OpenSWATH, PyProphet and TRIC on different computing systems. The workflow 
presented here has been tested on Linux, Windows and OSX environments. First, it is 
necessary to install docker (https://docs.docker.com/). Note that it might, depending on the 
dataset and library size, be required to extend the resources allocated to the docker software. 
We recommend to minimally allocate 6 CPUs, ~12000 MB memory and ~12 GB disk image 
size. If a task running within a docker container is suddenly “killed” without a more specific 
error, this usually means that not enough memory was allocated. Settings can be changed 
when clicking on the docker symbol in the taskbar, selecting the settings option and going to 
the advanced tab. To test the successful docker installation open a command line interpreter 
on your computer and type the following command: 
docker run hello-world 
Now install the OpenSWATH docker container: 
docker pull openswath/openswath:0.1.2 
docker run -u 0 -dit --name openswath -v $PWD/:/data openswath/openswath:0.1.2 
Test if the OpenSWATH docker installation worked: 
docker exec openswath echo hi there, openswath container is happy and alive 
 
R environment and CCprofiler installation All data analysis in R can be performed either 
on a local computer or on a cluster system. To install R, download the latest release version of 



R (>=3.6.0) from http://cran.r-project.org/ and install it according to the R installation and 
administration manual https://cran.r-project.org/doc/manuals/R-admin.html. To install the 
CCprofiler package from GitHub, you need to start the R program. For both Windows and 
OSX this means double-clicking on the R application icon. On UNIX-like systems you need 
to type ‘R’ in a shell prompt. Users may also want to consider using the RStudio environment 
(https://rstudio.com/). 
Once in the R environment, run the following commands to first install and then load the 
devtools, data.table and CCprofiler packages: 
install.packages('devtools') 
library('devtools') 
install.packages('data.table') 
library('data.table') 
install_github('CCprofiler/CCprofiler') 
library('CCprofiler') 

Procedure 

Isolation of native proteome, SEC fractionation and preparation for MS 
analysis 

Cell culture and harvest TIMING: ~7 days 
1. Culture cells as applicable to the respective cell type. If using HEK293 cells, culture 

cells in DMEM medium supplemented with 10% FBS and 50 μg/mL 
penicillin/streptomycin in 15 cm cell culture dishes, incubating at 37˚C, 5% CO2. To 
establish a log-linearly growing cell population, split the cells twice at a ratio of 1:2 
using 1× Trypsin-EDTA for 5 min at 37˚C. 
 

2. Harvest the cells at ~80% confluency, as determined by visual inspection under the 
microscope. Harvest cells on ice in ice-cold PBS buffer containing 5nM EDTA using 
pipette flow (sufficient in the case of HEK293 cells) or a plate scraper into a 15 ml 
Falcon tube. Spin at 4°C, 500×g for 5min, remove supernatant using a serological 
pipette, and snap-freeze the cell pellet in liquid nitrogen.  
 

PAUSE POINT: Cell pellets can be stored at -80˚C for several weeks prior to SEC-SWATH-
MS analysis. 

Native lysis and fractionation by size exclusion chromatography 
3. Lyse cells or tissue amount sufficient to extract at least 1 mg of total protein (in the 

case of HEK293 cell line, 7e7 cells). Lyse cell pellets snap-frozen in step 2 by freeze-
thawing into 1 ml of HNN lysis buffer. Thaw and dissolve the frozen pellet by 
pipetting up and down 20 times. Incubate on ice for 5 min. Other cell or tissue types 
may be used, whereas input amounts need to be adapted based on cell size or protein 
yield with a minimal pure protein amount of 600μg required as input to SEC 
fractionation, with concentration determined colorimetrically (e.g. using the Pierce 
BCA protein assay kit). This corresponds to ~2mg when protein concentration is 
estimated by OD280 measurements which are confounded by other molecules in the 
sample but used here for the sake of processing speed. 

 
4. Fill the lysate to a volume of two milliliters with HNN lysis buffer and distribute two 

Ultracentrifuge tubes. Balance weight on a fine balance with HNN Lysis buffer. 
 

5. Transfer to the pre-cooled centrifuge rotor and clarify by 15 minutes of 
ultracentrifugation (100,000×g, 4°C, 55,000rpm on TLA120.2 rotor). 

 



6. Pre-cool two Amicon Ultra-4 Centrifugal Filter Units on ice. Transfer 300 μl of the 
cleared lysate to each Amicon device and exchange buffer to HNN buffer as follows. 
 

CAUTION: Avoid transfer of lipids from the top layer of the supernatant by aspirating the 
cleared lysate from 1 cm below the liquid surface.  

 
7. Exchange buffer to HNN buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 50 mM 

NaF) at a final ratio of 1:50 in three dilution and re-concentration steps to avoid large 
dilution steps in the interest of complex integrity. Centrifugation is performed at 
3220×g, 4°C. 
 

CRITICAL: Local precipitation occurs at and blocks the filtration membrane. It is therefore 
important to flush the membrane with the dilution buffer and using a 200µl pipette tip to 
achieve thorough rinsing of the membrane. 

 
7.1. Centrifuge for 5’ (final volume above filter ca. 200µl) 
7.2. Dilute 1:5 in HNN (add 800 µl), flush membrane 
7.3. Centrifuge for 10’ (final vol. ~250µl) 
7.4. Dilute 1:5 in HNN (add 1000 µl), flush membrane 
7.5. Centrifuge for 10’ (final vol. ~250µl) 

7.6. Dilute 1:2 in HNN (add 250μl), flush membrane 
7.7. Centrifuge 5’ (vol. ~150µl), flush membrane 
7.8. Centrifuge 5’  
7.9. Final volume per tube: ca. 50-80µl. 
7.10. Remove precipitates by centrifugation at 16,900 ×g, 4°C, for 5min, 

transferring the supernatant, leaving 10μl, to a pre-cooled injection vial. 
 

8. Measure the concentration of the lysate by UV/Vis photospectrometry (Nanodrop 
Spectrophotometer) against a reference sample of HNN Lysis buffer in HNN buffer 
(1:50), approximating 1 OD280 = 1μg/μl protein concentration. The measured 
concentration should typically be between 20 and 30 μg/μl. 
 

CAUTION: The concentration read by UV/Vis photospectrometry is confounded by other 
compounds with absorbance at 280nm. Based on colorimetric methods (BCA assay) the 
protein loading is ca. 3-4-fold lower than approximated by UV-Vis (Figure 2A). We suggest 
the fast UV-Vis reading to be sufficient to align sample loading amounts and preferable over 
BCA or similar quantitative assays with significant incubation times that may affect complex 
stability. 

 
9. Subject 1000μg of the concentrated lysate to SEC fractionation at 500 μl/min. Ensure 

that the chromatographic system and column show reproducible and expectable 
performance in the fractionation of the protein standard mix prior to and after the 
analysis. Collect fractions in the expectable elution range from 10-28min at 0.19 min 
per fraction into a cooled 1ml 96-DeepWell plate. 
 

10. Repeat step 9 while collecting fractions in a new 96-well plate. 
 

11. Interrogate the UV/Vis profiles of the two SEC runs of the same lysate and if in 
agreement, pool the collected fractions across the two replicate injections to obtain 
one set of fractions.  
 

CRITICAL: It is important to sample chromatographic fractions also of the void volume 
peak, even if the information of contained analyte size is reduced. This is especially important 



for quality control measures of the overall global proteome assembly state of the investigated 
cell system (observed total MS signal in assembled vs. monomeric SEC range). Additionally, 
the peak detection algorithms employed in downstream protein and protein complex detection 
benefit from complete elution profiles including shoulder regions of detectable peaks. The 
right boundary of the relevant protein elution range can be established empirically by SDS 
PAGE analysis of the late fractions (> F70). We suggest to use the elution volume of the 
small molecule uridine contained in the SEC standard sample. We recommend sampling until 
inclusive of uridine peak elution as a subset of proteins and complexes may display secondary 
interactions with the stationary phase and thus delayed elution in this fraction range. 

 
12. To monitor SEC stability and to calibrate the apparent molecular weight per SEC 

fraction, analyze 5μl of the SEC column performance check standard after the SEC 
experiment. 
 

13. Transfer an aliquot of the unfractionated sample to the collection plate. Pipette 1/40th 
of the volume injected for SEC (25μg by OD280) into wells H11&H12 and fill to 
200μl with SEC buffer to align digest conditions with the individual SEC fractions. 
 

CRITICAL STEP: Include an aliquot of the unfractionated sample in the proteomic analysis 
to ensure comparable digest conditions as for the chromatographic fractions. The data 
acquired from the unfractionated mild proteome is used in the PyProphet machine learning 
step in peptide-centric analysis, generating one scoring function applied across all 
chromatographic fractions to ensure aligned scoring and consistent quantification of peptides 
across all chromatographic fractions. 
 
PAUSE POINT: Undigested SEC fractions can be stored at -80˚C for several weeks. 
Optionally, if extended storage is desired, it is recommended to denature proteins by boiling 
in sodium deoxy-cholate (next step) before freezing for storage. 
 

Tryptic digest and C-18 cleanup of chromatographic fractions for MS analysis. TIMING: 
4+12h 

14. Denature proteins by adding sodium deoxy-cholate to 1 % v/v (20μl from 10% stock 
solution) and incubate 5min in a hot water-bath (95˚C). 
 

CAUTION: Ensure that the plate is properly sealed before incubation in the water bath to 
avoid sample loss or contamination. 

 
15. Let plate cool to room temperature and centrifuge at 500×g to collect liquid at the 

base of the plate. 
 

16. Reduce proteins by adding TCEP to 5 mM (22 μlfrom 50 mM solution, 1:10 dilution 
of 500 mM stock in Ammonium bicarbonate 50mM pH 8.8). Incubate 30min at room 
temperature. 
 

CRITICAL STEP: Ensure that the TCEP stock solution is titrated to pH 8.8 to avoid 
acidification of the samples and premature precipitation of sodium deoxy-cholate. 
 

17. Alkylate proteins by adding iodo-acetamide (IAA) to 10 mM (24 μlfrom 100 mM 
stock. Incubate 20min at room temperature, in the dark. 

 
CAUTION: Work in reduced light conditions and incubate in the dark due to IAA light 
sensitivity. 

 



CRITICAL STEP: Ensure that the pH is ≥ 8.0 to avoid gel formation or partial precipitation 
of deoxy-cholate during the digest. Test the samples for gel formation using a pipette tip and 
if very high viscosity or formation of a gel are observed, adjust the pH by adding NaOH (In 
steps of 5 μlof 2M stock solution until the samples display low viscosity and pH 8.0 - 8.5). 
 

18. Add 0.2 µg trypsin (Promega) per fraction (2 µl of 0.1 µg/µl stock in Trypsin buffer). 
Re-seal plate, shake, spin down for 1 min at 2,000×g & incubate over night at 37 °C. 
 

19. Stop the digest and precipitate deoxycholic acid by adding TFA to 1 %, ACN to 1 % 
(26μl of 10% TFA / 10% ACN stock). Close and mix the plate thoroughly using a 
new plate seal and 10 inversions. Spin down for 1 min at 2,000×g. 
 

20. Prepare MacroSpin plate for C-18 cleanup. Tap plate to loosen resin material and spin 
down for 1 min at 1000 ×g. Activate resin by adding 200 μlACN per well and 
centrifuging at 1,000×g for 1 min. Equilibrate the resin by 3 washes with 150ul 5 % 
ACN/0.1 % FA spinning at 1,000×g for 2 min. Discard washing solution from the 
collection plate. 

 
21. Directly before loading the samples for C-18 cleanup, pellet the precipitated 

deoxycholic acid for 10 min at 3,220×g. Transfer 80 % (220 ul) of the cleared 
supernatant onto the equilibrated C-18 resin. 
 

CAUTION: Ensure minimal transfer of precipitate onto the C18 resin to avoid sample 
contamination. 
 

22. Load samples at 1000×g for 2 min. To maximize recovery, re-load the flow-through 
onto the C-18 resin a second time. Keep the flow-through for potential trouble-
shooting. 
 

23. Wash the C-18 resin by 3×200μl 5% ACN/0.1% FA, spinning at 1,000×g for 1 min 
each. 
 

24. Elute the samples into a fresh collection plate with 2×150μl 50%ACN/0.1% FA. 
 

25. Dry samples in a speed-vac equipped with a plate rotor and adequate tara plate filled 
with the same volume of C-18 elution buffer (45˚C, 0.2 atm, ca. 4h). 

 
PAUSE POINT: Dried peptide samples can be stored for several weeks at -20 or -80˚C. 

MS analysis: TIMING: 12h (QC) + 14 days (DIA only) OR 28 days (DIA + DDA) 
26. Re-suspend dried peptide samples in 18μl 2% ACN/0.1% FA, supplemented with 

internal retention time calibration peptides (iRT kit, Biognosys, CH, 1:20 dilution as 
opposed to manufacturer's instruction of 1:10 to accommodate larger injection 
volumes). The spiked in iRT peptides allow the normalization of retention times 
across different LCMS runs and enable the streamlined generation of spectral 
libraries and queries of peptides from repository-scale spectral libraries in the 
DIA/SWATH data maps 26,31. Re-suspend the samples by 5 min sonication in an ice-
cooled water bath to avoid sample heating and evaporation. 



 
27. Collect liquid and remove potential residual deoxy-cholate by centrifugation at 

3,220×g for 5min. Transfer 16μl of the sample to MS injection vials.  
 

CAUTION: Transfer the peptide samples pipetting at an angle and leaving ca. 2μl in order to 
avoid transfer of potential residual deoxy-cholate precipitate from the lowest points of the 
wells. 

 
28. Before analyzing the full set of fractions, test sample set quality by analyzing 2ul of 

the unfractionated sample and the two fractions with highest absorbance at OD280 as 
monitored during SEC fractionation (In our chromatographic setup, fractions 5 and 
50). 
 
Judge sample quality based on the following criteria: 

• no increase of chromatographic backpressure 

• TIC signal intensity in SWATH64vw mode is ≥ 2e7 (120min gradient) 
(Figure 2B) 

• The m/z map is well-populated with isotopic envelopes 
 
To acquire the full dataset, maximize sample injection volumes to target 1e8 in the 
highest-abundant SEC fraction (In the HEK293 case, fraction 50 and an injection 
volume of 4 μl). 

 
TROUBLESHOOTING 

 
29. If a project-specific spectral library should be generated, each fraction should be 

analyzed in both data-independent SWATH and data-dependent acquisition mode. 
 

CAUTION: Datasets acquired exclusively in SWATH acquisition mode can typically be 
interpreted using spectral libraries from public repositories. Note that the library employed for 
interpretation needs to be representative for the tissue type that is being analyzed. Depending 
on the availability of such libraries and the research question at hand it might further be 
preferable to generate a project-specific spectral library by DDA acquisition of a subset of or 
the full sample set analyzed by SEC-SWATH-MS. 

Peptide-centric SWATH-MS analysis: TIMING: 3 days 
Here, we employ a docker container (see installation and initialization in Equipment Setup) 
that provides a stable solution for running peptide-centric scoring by OpenSWATH, 
PyProphet and TRIC on any computing system. Example files and a script including all 
processing steps are provided in our GitHub repository 
(https://github.com/CCprofiler/SECSWATH_PeptideCentricAnalysis.git). 

30. Create a data analysis folder 
i. Open a command line interpreter 

ii. Clone and enter our analysis folder template from GitHub: 
git clone https://github.com/CCprofiler/SECSWATH_PeptideCentricAnalysis.git 
cd SECSWATH_PeptideCentricAnalysis 

31. Prepare all required input data for peptide-centric analysis 
i. MS file conversion and centroiding 

On the conversion computer, use MSconvert to convert and centroid .wiff 
raw files into .mzML or mzXML format 45.  



i. Open MSconvertGUI 
ii. Under Files/browse, select the .wiff files. 

iii. Under Options, leave the defaults and activate in addition 'Package in 
gzip'. 

iv. Under 'Filters', select 'Peak Picking'. 
v. Under 'Algorithm', select 'Vendor'. 

vi. Under 'MS Levels', enter '1-2'. 
vii. Hit 'Add'. 

viii. Start the conversion (Button in the lower right). 
ix. Once the conversion is finished, move the.gz file(s) to the peptide 

centric analysis computer and into the folder 
1. SECSWATH_PeptideCentricAnalysis/data_dia/ 
2. Then, move the .gz files generated from the unfractionated 

sample into the subfolder 
3. SECSWATH_PeptideCentricAnalysis/data_dia/unfractionated_secin

put/ 
NOTE: The centroiding significantly reduces file size and processing time and is highly 
recommended, in particular if peptide-centric analysis is to be performed on a personal or 
laptop computer.  

ii. Information on retention time calibration peptides (iRT spike-in or ciRT 
peptide set) 
Example iRT and ciRT libraries are provided in the data_library folder in the 
cloned GitHub repository. 

iii. Prepare a file specifying the SWATH window settings 
An example file with SWATH window settings is provided in the 
data_library folder in the cloned GitHub repository (also see Table 3). 

iv. Prepare a spectral library 
a. Create a sample-specific spectral library according to the 

previously published protocol by Schubert et al. 26  
b. Download a public library such as the combined human assay 

library that we used for our analysis here 31 
wget -O data_library\spectrast2tsv.tsv 
https://db.systemsbiology.net/sbeams/cgi/downloadFile.cgi?name=phl0
04_canonical_s64_osw.csv;format=tsv;tmp_file=8becf7ae782dd305c0eade
59f282bcd1;raw_download=1 

32. Initialize the OpenSWATH docker container (see installation in Equipment Setup or 
follow instructions in 
https://github.com/CCprofiler/SECSWATH_PeptideCentricAnalysis/blob/master/SE
CSWATH_PeptideCentricAnalysis.sh) 
docker attach openswath 

33. Prepare the spectral library for OpenSWATH and PyProphet analysis 
i. Convert library to .pqp file format recommended for OpenSWATH 

TargetedFileConverter -in /data/data_library/spectrast2tsv.tsv \ 
-out /data/data_library/spectrast2tsv.pqp 

ii. Generate decoys for scoring and FDR estimation in PyProphet 
OpenSwathDecoyGenerator -in /data/data_library/spectrast2tsv.pqp \ 
-out /data/data_library/spectrast2tsv_td.pqp 

34. Peptide-centric signal detection with OpenSWATH 
i. Run OpenSwath on unfractionated input sample(s) 

for file in /data/data_dia/unfractionated_secinput/*ML.gz; do \ 
bname=$(echo ${file##*/} | cut -f 1 -d '.'); \ 
OpenSwathWorkflow \ 
-in /data/data_dia/$bname.*ML.gz \ 
-tr /data/data_library/spectrast2tsv_td.pqp \ 
-tr_irt /data/data_library/irtkit.TraML \ 
-min_upper_edge_dist 1 \ 
-batchSize 1000 \ 
-out_osw /data/results/$bname.osw \ 
-Scoring:stop_report_after_feature 5 \ 
-rt_extraction_window 600 \ 
-mz_extraction_window 30 \ 



-ppm \ 
-threads 6 \ 
-use_ms1_traces \ 
-Scoring:Scores:use_ms1_mi \ 
-Scoring:Scores:use_mi_score ; done 

ii. Run OpenSWATH on fractionated samples 
for file in /data/data_dia/*ML.gz; do \ 
bname=$(echo ${file##*/} | cut -f 1 -d '.'); \ 
OpenSwathWorkflow \ 
-in /data/data_dia/$bname.*ML.gz \ 
-tr /data/data_library/spectrast2tsv_td.pqp \ 
-tr_irt /data/data_library/irtkit.TraML \ 
-min_upper_edge_dist 1 \ 
-batchSize 1000 \ 
-out_osw /data/results/$bname.osw \ 
-Scoring:stop_report_after_feature 5 \ 
-rt_extraction_window 600 \ 
-mz_extraction_window 30 \ 
-ppm \ 
-threads 6 \ 
-use_ms1_traces \ 
-Scoring:Scores:use_ms1_mi \ 
-Scoring:Scores:use_mi_score ; done 
NOTE: OpenSWATH creates several warnings and errors that can be ignored 
when analyzing SEC-SWATH-MS datasets, including: 

• Warning “windows were sparce” and/or “empty chromatogram”: 
Sparsity of certain windows is expected for some fractions, 
especially in the beginning and end of the SEC. 

• Error “Transition does not have a corresponding chromatogram” 
35. Peptide-centric scoring with PyProphet 

a. Train Model: pyProphet analysis of unfractionated sample 
pyprophet score  
--threads 6  
--in=/data/results/unfractionated_secinput/unfractionated_secinput.osw \ 
--out=/data/results/unfractionated_secinput/model.osw  
--level=ms1ms2 

b. Apply global model to score peak groups in all runs evenly 
i. Scoring and plotting 

for file in /data/results/*.osw; do \ 
bname=$(echo ${file##*/} | cut -f 1 -d '.'); \ 
pyprophet score --in=/data/results/$bname.osw \ 
--apply_weights=/data/results/unfractionated_secinput/model.osw \ 
--level=ms1ms2; done 

ii. Exporting of output files 
for file in /data/results/*.osw; do \ 
bname=$(echo ${file##*/} | cut -f 1 -d '.'); \ 
pyprophet export --in=/data/results/$bname.osw \ 
--out=/data/results/$bname.tsv \ 
--max_rs_peakgroup_qvalue=0.1 \ 
--no-transition_quantification \ 
--format=legacy_merged; done 
NOTE: We advise to manually check if .tsv output files are actually 
written for all runs.  

iii. Plotting of all score distributions 
for file in /data/results/*.osw; do \ 
bname=$(echo ${file##*/} | cut -f 1 -d '.'); \ 
pyprophet export --in=/data/results/$bname.osw \ 
--format=score_plots; done 

36. TRIC based feature alignment across all SEC fractions 
feature_alignment.py \ 
--in /data/results/*.tsv \ 
--out /data/results/feature_alignment.tsv \ 
--out_matrix /data/results/feature_alignment_matrix.tsv \ 
--method LocalMST \ 
--realign_method lowess \ 
--max_rt_diff 60 \ 
--mst:useRTCorrection True \ 
--mst:Stdev_multiplier 3.0 \ 



--target_fdr -1 \ 
--fdr_cutoff 0.05 \ 
--max_fdr_quality 0.1 \ 
--alignment_score 0.05 

 
SEC-SWATH-MS data processing and complex-centric analysis in CCprofiler: TIMING 2 days 
CRITICAL STEP: Part 3 of the PROCEDURE describes how to use the open-source 
CCprofiler R-package to extract information about the global proteome assembly state and 
specific protein complexes from co-fractionation MS experiments, here generated by SEC-
SWATH-MS. The analysis includes: data import and pre-processing (Steps 34-37), automated 
parameter selection (Step 38), protein-centric analysis (Step 39) and complex-centric analysis 
(Step 40). All CCprofiler analysis steps are also provided as a supplementary R-script that 
performs the presented analysis based on the exemplary HEK293 SEC-SWATH-MS dataset. 
The R-script can easily be adapted to other datasets by changing the input files (Step 34-35). 
All exemplary data and the script are available on GitHub: 
https://github.com/CCprofiler/SECSWATH_ComplexCentricAnalysis (also see the 
Supplementary Manual).  
To set up your work environment you can clone the GitHub repository by:  
git clone https://github.com/CCprofiler/SECSWATH_ComplexCentricAnalysis.git 
cd SECSWATH_ComplexCentricAnalysis 

NOTE: Due to parallelization of some of the CCprofiler processing steps and involved 
random number generation that is beyond our control, the results of the workflow are subject 
to minor variation despite setting a seed value. If fully reproducible results are desired, only a 
single processing core should be selected. This is however connected to much longer 
processing times. 

PAUSE POINT: The following computational analysis can essentially be paused at any point 
when a certain function is completed. Before closing R it is important to save the environment 
in order to resume the analysis at a later stage. For this, use the following commands:  
save.image(file='CCprofiler_analysis.RData') 
To resume your analysis, you can load the previous status of your R environment with the 
following command:  
load(file='CCprofiler_analysis.RData') 

34. Prepare data for CCprofiler import  
Prepare all necessary data that needs to be loaded into R for the CCprofiler analysis. 
For convenience we recommend saving all input data in the same directory where you 
want to perform the analysis. All data necessary and used for this protocol are 
provided in the GitHub repository and will be available in the 
SECSWATH_ComplexCentricAnalysis folder after you cloned it (see above). 

i. Prepare quantitative peptide-level data 
A. Quantitative peptide matrix generated by OpenSWATH (as 

described in Part 2) 
i. The output table from TRIC can directly be imported into 

CCprofiler (see ‘feature_alignment.tsv’ or 
‘quantData_OpenSWATH.rds’ (already in R data format)) 

B. Quantitative peptide matrix generated by any software tool 
i. Remove decoys 

CAUTION: Decoys might be valuable for certain processing 
steps downstream (e.g. selecting a sibling peptide correlation 
based FDR cutoff). We have specifically tested the 
propagation of decoys for datasets processed by an 
OpenSWATH-based workflow. If other data processing tools 
have been used, the decoys should be treated with caution. 
To be on the conservative side, we would generally 



recommend removing the decoys. 
ii. Remove non-proteotypic peptides 
iii. Bring data in either long or wide format: 

a. Required column names for long format: protein_id, 
peptide_id, filename and intensity (see 
‘examplePCPdataLong.tsv’) 

b. Required column names for wide format: protein_id, 
peptide_id, <filename1>, <filename2>, …, 
<filenameX> 
(see ‘examplePCPdataWide.tsv’) 

ii. In addition to the quantitative peptide matrices, CCprofiler requires a fraction 
annotation table that maps each filename to a given chromatographic fraction 
number. The required column names are: filename and fraction_number (see 
‘exampleFractionAnnotation.tsv‘).  
CAUTION: The filenames used in the fraction annotation table need to match 
the filenames in the quantitative matrix exactly. Further, the fraction_number 
entries need to start with 1 and continuously increase in integer steps of 1 
until the last sampled fraction.  

iii. For native complex separation via SEC, a molecular weight (MW) calibration 
table can be generated by measuring the apex fractions of an external 
standard set of reference proteins fractionated on the same SEC setup. By 
providing such a MW calibration table, CCprofiler can establish a 
transformation function based on the log-linear relationship between elution 
fractions and apparent MWs inherent to SEC, thus enabling the annotation of 
all sampled fractions with an apparent MW. The required column names in 
the calibration table are: std_weights_kDa and std_elu_fractions (see 
‘exampleCalibrationTable.tsv’). 

iv. CCprofiler can further annotate protein traces with additional information 
provided in a trace annotation table, e.g. adding the gene names or 
monomeric MW from UniProt (https://www.uniprot.org/) (see 
‘exampleTraceAnnotation.tsv’). Adding information on monomeric MWs of 
the analyzed proteins is critical for the assignment of proteins to monomeric 
or complex-assembled state from SEC datasets with calibrated apparent MW 
and is required for the assessment of global proteome assembly states.  
CAUTION: The protein_id column in the quantitative matrix needs to match 
one of the column entries in the annotation table. Typically, the common 
entry are the UniProt identifiers. 

v. Finally, a necessary component for downstream detection of protein 
complexes by complex-centric analysis (Step 40), is the selection of prior 
protein connectivity information which can be provided either in the form of 
defined protein complexes, e.g. as annotated in CORUM 41,46, or binary 
interaction networks generated by various approaches, as for example the 
BioPlex 1,2 or StringDB 42,43 networks. 

A. Defined complex hypotheses 
A table with defined complexes should contain the following 
columns: complex_id, complex_name and protein_id (see 
‘corumComplexHypothesesRedundant.csv’). 

B. Binary protein-protein interaction network 
The format for a binary interaction network is a table with two 
columns: a and b. Both columns contain protein identifiers and 
each row represents a binary connection (an ‘edge’) in the 
interaction network (see ‘BioPlexPPIs.tsv’). 

CAUTION: The protein_id / a & b entries need to correspond to the 
protein_id in the quantitative matrix, e.g. UniProt identifiers. 



35. Load input tables into R and inspect 
i. Load libraries in R 

library(data.table) 
library('CCprofiler') 

ii. Set working directory to the location where all files are stored. 
setwd("SECSWATH_ComplexCentricAnalysis") 

iii. Load and inspect the quantitative peptide matrix 
i. Quantitative peptide-level data generated by OpenSWATH (as 

described in Part 2) 
quantData_OpenSWATH <- readRDS("quantData_OpenSWATH.rds") 

ii. Quantitative peptide matrix generated by any software tool 
a. Long format 

quantData_long <- 
fread("examplePCPdataLong.tsv") 
head(quantData_long) 

b. Wide format 
quantData_wide <- 
fread("examplePCPdataWide.tsv") 
head(quantData_wide[,1:5]) 

iv. Load and inspect fraction annotation table 
fractionAnnotation <- fread("exampleFractionAnnotation.tsv") 
head(fractionAnnotation) 

v. Load and inspect calibration table 
calibrationTable <- fread("exampleCalibrationTable.tsv") 
calibrationTable 

vi. Load and inspect trace annotation table 
uniprotAnnotation <- fread("exampleTraceAnnotation.tsv") 
head(uniprotAnnotation) 

vii. Load and inspect protein connectivity information 
i. Defined complex hypotheses from the Corum database 

corumComplexes <- fread("corumComplexHypothesesRedundant.csv") 
head(corumComplexes) 

ii. Binary protein-protein interaction network from BioPlex (v1.0 1, 
http://bioplex.hms.harvard.edu ) 
BioPlexPPIs <- fread("BioPlexPPIs.tsv") 
head(BioPlexPPIs) 
 

36. Import peptide level data into CCprofiler traces format and annotate  
i. Import quantitative peptide matrix as traces object 

The traces object is the main data class used in the CCprofiler package. It 
stores the quantitative profiles (‘traces’) of peptide or protein intensities 
across the analyzed chromatographic fractions. Additionally, a traces object 
can store specific information about each of the peptides, proteins and 
chromatographic fractions. As the analysis proceeds more information will be 
added to the traces object. 

i. Quantitative peptide level data generated by OpenSWATH 
pepTraces <- importFromOpenSWATH(data = quantData_OpenSWATH,  
annotation_table = fractionAnnotation,  
verbose = FALSE) 

ii. Quantitative peptide matrix generated by any software tool 
NOTE: CCprofiler will automatically detect if peptide tables are in 
long or wide format. 

a) Long format 
pepTraces_exampleSubset_long < 
importPCPdata(input_data = quantData_long,  
fraction_annotation = fractionAnnotation,  
rm_decoys = FALSE) 

b) Wide format 
pepTraces_exampleSubset_wide <- importPCPdata 
(input_data = quantData_wide,  



fraction_annotation = fractionAnnotation,  
rm_decoys = FALSE ) 

 
ii. Perform molecular weight calibration and annotation 

i. Perform molecular weight calibration based on a provided 
calibration_table (Figure 3A): 
calibration = calibrateMW(calibration_table = 
calibrationTable,  
PDF = plotPDF) 

ii. Annotate traces with the apparent molecular weight associated with 
each SEC fraction as extrapolated from the standard protein 
molecular weights and associated elution fraction numbers: 
pepTraces <- annotateMolecularWeight( 
traces = pepTraces,  
calibration = calibration) 

CAUTION: Apparent molecular weight calibration is of limited accuracy as, 
inherent to the analytical procedure wherein analyte shape and propensity for 
unintended secondary interaction with the stationary phase affect elution 
volumes/fraction number and inferred apparent molecular weight. 
Predictions, especially those outside the range of standard protein elution, 
should be interpreted with caution. 

 
iii. Annotate traces with information from UniProt 

pepTraces <- annotateTraces(traces = pepTraces, 
                            trace_annotation = uniprotAnnotation, 
                            traces_id_column = "protein_id",  
                            trace_annotation_id_column = "Entry") 
 

37. Pre-process traces object to increase data quality 
i. Optional: Detect and impute missing values 

In most proteomics pipelines, zero intensity values indicate either that the 
signal is missing at random (no detection due to technical reasons such as 
interferences from other peptides) or missing not at random (no detection due 
to cellular concentrations below the detection limit). We suggest that a zero 
value is likely missing at random in case a quantitative (non-zero) signal has 
been detected in both the previous and following fraction. The detected 
missing at random values are subsequently imputed by a spline fit across the 
fractionation dimension. 

1. Convert zeros in missing at random value locations to NA: 
pepTracesMV <- findMissingValues(traces = pepTraces, 
bound_left = 2, 
bound_right = 2, 
consider_borders = FALSE) 

2. Impute NA values by fitting a spline: 
pepTracesImp <- imputeMissingVals( 
traces = pepTracesMV,  
method = "spline") 

3. Plot imputation summary: 
plotImputationSummary( 
traces = pepTracesMV,  
tracesImp = pepTracesImp, 
max_n_traces = 5, 
PDF = plotPDF) 

NOTE: In the original complex-centric study of the HEK293 proteome 15 no 
missing values were imputed. Generally, quantitative matrices from 
SWATH-MS, particularly with TRIC alignment, display only few missing 
values and imputation thus has little influence in such datasets. However, 
imputation improves overall workflow robustness and flexibility for different 
input data types. For example, loss of data from an entire SEC fraction due to 



failed MS acquisition can robustly be compensated by imputation rather than 
re-analysis of the fraction or repeat of the entire experiment. Further, missing 
value imputation should improve the interpretability of datasets affected by 
more missing values, e.g. when acquired via classical data-dependent mass 
spectrometry.  
 

ii. Filter peptides by consecutive peptide detection 
Peptides that have never been detected in more than N consecutive fractions, here 
N=2, are removed from the traces object. This effectively removes false positive 
peptide detections from the dataset. 
pepTracesConsIds <- filterConsecutiveIdStretches( 
traces = pepTracesImp, 
min_stretch_length = 3, 
remove_empty = TRUE) 
 

iii. Select high-quality proteins based on their average sibling peptide 
correlation 

i. Calculate the average sibling peptide correlation (SPC) for 
each peptide 
For each peptide, the average pairwise correlation with the 
quantitative traces of its sibling peptides, i.e. peptides derived from 
the same protein, is calculated (Figure 3B). 
pepTracesSibPepCorr <- calculateSibPepCorr( 
traces = pepTracesConsIds, 
PDF = plotPDF) 

ii. Filter by SPC 
Peptides below a minimum average SPC cutoff are removed. The 
rational is that outlier peptides as well as proteins with very 
heterogeneous quantitative peptide traces are excluded from further 
analysis. The filtering cutoff can either be automatically 
determined by a target-decoy based FDR estimation approach (a), 
or a fixed cutoff can be applied (b): 

a. SPC based FDR cutoff (Figure 3C) 
A conservative FFT can be estimated from the 
unfractionated SEC input sample that was also used to train 
the PyProphet model for peptide-centric analysis. This is 
conservative, because we expect to see cumulatively more 
proteins in the SEC fractions than in the single 
unfractionated input sample. The estimated pi0 ~ FFT is 
reported in the protein-level pdf report. For this dataset the 
FFT was estimated to be 0.491. 
estimatedFFT <- 0.491 
Filter by FDR cutoff using the estimated FFT: 
pepTraces_filtered_FDR <- filterBySibPepCorr( 
traces = pepTracesSibPepCorr, 
fdr_cutoff = 0.01, 
FFT = estimatedFFT, 
rm_decoys = TRUE, 
PDF = plotPDF) 
CAUTION: This option is only valid if you have 
continuously kept decoys in your analysis. The most 
conservative strategy is to then apply a FFT of 1. However, 
if you have a FFT estimation available this will significantly 
boost your sensitivity and result in a higher number of 
remaining proteins for the downstream analysis. We have 
specifically tested this option for datasets processed by an 
OpenSWATH-based workflow. If other data processing 



tools have been used, the decoy based FDR estimation on 
SEC level should be treated with caution.  

b. Absolut sibling peptide correlation cutoff 
pepTraces_filtered_absoluteCutoff <- 
filterBySibPepCorr( 
traces = pepTracesSibPepCorr, 
fdr_cutoff = NULL, 
absolute_spcCutoff = 0.25, 
rm_decoys = TRUE, 
PDF = plotPDF) 
 

iv. Inspect resulting peptide-level traces object 
i. Summary statistics 

summary(pepTraces_filtered_FDR) 
ii. Plot some example traces, here the exemplary visualization of the 

Proteasome subunit alpha type-1 (UniProt ID = P25786, Figure 3E) 
test_protein <- c("P25786") 
test_peptide_traces <- subset( 
traces = pepTraces_filtered_FDR, 
trace_subset_ids = test_protein,  
trace_subset_type = "protein_id") 
plot(test_peptide_traces, 
PDF = plotPDF, 
name = paste0("pepTraces_",test_protein)) 
 

v. Protein quantification 
i. Perform protein quantification by selecting the top N, here N=2, 

peptides based on their global intensity across all fractions.  
protTraces <- proteinQuantification(pepTraces_filtered_FDR, 
topN = 2, 
keep_less = FALSE) 

ii. Inspect summary statistics of the resulting protein traces  
summary(protTraces) 
CRITICAL STEP: Compare the number of remaining proteins to the 
number of proteins on the peptide level traces. If the number of 
proteins is dramatically reduced during the protein quantification 
step, many proteins might have been detected by a single peptide 
only. Careful consideration is necessary to decide whether you want 
to trust such single peptide hits and include them in your downstream 
analysis by reducing the quantification criteria. 

iii. Visualize and inspect example protein traces 
Exemplary visualization of the Proteasome subunit alpha type-1 
(UniProt ID = P25786) 
test_protein_traces <- subset( 
traces = protTraces, 
trace_subset_ids = test_protein, 
trace_subset_type = "protein_id") 
plot(test_protein_traces, 
colour_by = "Entry_name", 
PDF = plotPDF, 
name = paste0("protTraces_",test_protein)) 
 

vi. Overall workflow QC to evaluate the global proteome assembly state 
The protein-level profiles can then be used to estimate the overall complex 
assembly state observed in the sample as a quality control to ensure the 
successful extraction and profiling of largely intact complexes. Here, we 
evaluate the total MS signal in assembled vs. monomeric range (Figure 3D). 
summarizeMassDistribution(protTraces, 
PDF = plotPDF) 
 



38. Automatically identify optimal processing parameters based on a protein-level 
parameter grid search  
A grid search can be performed to determine an optimal set of parameters for the 
protein- and/or complex-centric proteome profiling workflow. This optimal parameter 
set depends mostly on the co-fractionation characteristics and MS setup. 

i. Randomly select a subset of proteins for the grid search 
The selected subset of proteins should be representative of the proteome, thereby 
providing a trade-off between coverage and computational run-time. From our 
experience, selecting < 100 proteins suffers in regard to robustness, while >500 
proteins will require a lot of processing time. We therefore propose a random 
selection of ~500 proteins. 
all_proteins <- 
unique(pepTraces_filtered_absoluteCutoff$trace_annotation$protein_id)  
testProtein_idx <- sample(1:length(all_proteins), 500) 
testProteins = all_proteins[testProtein_idx] 
peptideTracesSubset = subset( 
traces = pepTraces_filtered_FDR, 
trace_subset_ids = testProteins,  
trace_subset_type = "protein_id") 

ii. Perform parameter grid search 
The grid search performs a peptide co-elution peak group finding for a selected 
combination of parameters with the goal to determine a good parameter set for the 
following analyses. Please note that the selection of suitable parameters is for the grid 
seach is critical 
gridFeatures <- performProteinGridSearch( 
traces = peptideTracesSubset, 
corrs = c(0.9,0.95), 
windows = c(8,10), 
smoothing = c(7,9), 
rt_heights = c(1,3), 
n_cores = 3) 
CRITICAL The selection of parameters for the grid search is critical. 
Guidelines for the selection of reasonable parameters are discussed in Box 2.  

iii. Score protein features across all grid search parameters and select the 
best parameter set  
gridFeatures_scored <- lapply(gridFeatures,  
calculateCoelutionScore) 
gridFeatures_qvalues <- lapply(gridFeatures_scored,  
calculateQvalue, 
plot = FALSE) 
gridFeatures_stats <- qvaluePositivesPlotGrid( 
featuresGrid = gridFeatures_qvalues, 
colour_parameter = "corr", 
PDF = plotPDF) 
bestParameters <- getBestQvalueParameters( 
stats = gridFeatures_stats,  
FDR_cutoff = 0.05) 
bestParameters 
write.table(bestParameters, 
"bestParameters.tsv", 
sep = "\t", 
quote = FALSE, 
row.names = FALSE) 
CRITICAL Inspect the pseudo ROC curves generated by the grid search 
(Figure 4A). Optimal parameters are at the upper left corner of the observed 
distribution. Parameters that are consistently in the upper left corner are 
especially important.  
  

39. Perform protein-centric analysis 
Protein-centric analysis detects peptide co-elution peak groups along the chromatographic 



dimension. Each detected peak (‘protein feature’) represents the protein in a specific assembly 
state, i.e. monomeric or bound to different protein complexes. 
i. Perform protein feature finding 

proteinFeatures <- findProteinFeatures( 
traces = pepTraces_filtered_FDR, 
corr_cutoff = bestParameters$corr, 
window_size = bestParameters$window, 
rt_height = bestParameters$rt_height, 
smoothing_length = bestParameters$smoothing_length, 
collapse_method = "apex_only", 
perturb_cutoff = "5%", 
parallelized = TRUE, 
useRandomDecoyModel = TRUE) 

ii. Score detected protein features and estimate FDR  
proteinFeatures_scored <- scoreFeatures( 
features = proteinFeatures, 
FDR = 0.05, 
PDF = plotPDF) 
write.table(proteinFeatures_scored, 
"proteinFeatures_scored.tsv", 
sep = "\t", 
quote = FALSE, 
row.names = FALSE) 
CRITICAL STEP: Inspect the p-value density histogram (Figure 4B/C). 
There should be a high peak close to zero and a uniform distribution across 
all other p-values.  
TROUBLESHOOTING  

iii. Inspect summary statistics on resulting protein features 
The resulting figures provide information about the number of unique 
assembly states detected for all the proteins as well as about the number of 
proteins with at least one assembled protein signal (MW ≥ 2x monomeric 
MW in SEC) (Figure 4D). 
summarizeFeatures(feature_table = proteinFeatures_scored, 
PDF = plotPDF,name = "proteinFeatures_summary") 

iv. Visualize and inspect protein features (Figure 4E) 
plotFeatures(feature_table = proteinFeatures_scored, 
traces = pepTraces_filtered_FDR, 
calibration = calibration, 
feature_id = test_protein, 
annotation_label = "Entry_name", 
onlyBest = FALSE, 
peak_area = TRUE, 
monomer_MW = TRUE, 
PDF = plotPDF, 
name = paste0("protFeatures_",test_protein)) 
Plot all detected proteins 
allDetectedProteins <- unique(proteinFeatures_scored$protein_id) 
pdf("allDetectedProteins.pdf", height = 6, width = 8) 
for (protein in allDetectedProteins) { 
plotFeatures(feature_table = proteinFeatures_scored, 
traces = pepTraces_filtered_FDR, 
calibration = calibration, 
feature_id = protein, 
annotation_label = "Entry_name", 
onlyBest = FALSE, 
peak_area = TRUE, 
monomer_MW = TRUE, 
PDF = FALSE) 
} 
dev.off() 
CRITICAL STEP: Inspect some detected protein features and evaluate if the 
detected peak groups correspond to what you would have also selected as 



peak groups during manual inspection. 
TROUBLESHOOTING 

40. Complex-centric analysis 
Complex feature finding represents the central step of complex-centric analysis using 
CCprofiler. Based on prior protein interaction data and quantitative fractionation profiles, 
CCprofiler detects groups or subgroups of locally co-eluting proteins, indicating the presence 
of protein-protein complexes in the biological sample. Target complex queries are 
supplemented with decoy complex queries to support error control of the reported results. The 
result is a table summarizing the presence and composition of protein-protein complexes in 
the biological sample analyzed. 

i. Prepare target complex queries  
There are two options for protein complex target generation in CCprofiler: 
(a) use defined protein complex models for direct use as queries (2 or more 
subunits, e.g. from CORUM) or (b) use a protein-protein interaction 
network from which target complex queries can be extracted. 
a) Inspect the coverage of pre-defined protein complex queries from 

the previously loaded CORUM database (Figure 5A) 
plotSummarizedMScoverage(hypotheses = corumComplexes, 
protTraces = protTraces, 
PDF = plotPDF, 
name_suffix = "CORUM") 

b) Generate and inspect protein complex queries from binary PPI 
networks, here based on BioPlex 
Decoy complex queries are generated based on the target complex query set 
and its underlying network structure. The minimum distance specifies the 
minimal number of edges between any two proteins within any generated 
decoy complex query. It is important that the interaction network based on the 
targets is large enough to generate a random decoy set that does not overlap 
with the target complex queries. We recommend complex query sets of at least 
1000 targets for the decoy based approach. 
i. Calculate pairwise distances between any two proteins in the 

interaction network 
pathLengthBioPlexPPIs <- 
calculatePathlength(BioPlexPPIs) 

ii. Generate protein complex targets by grouping proteins based 
on a user-defined distance cutoff. Here we consider only direct 
neighbours of each protein.  
networkTargetsBioPlexPPIs <- 
generateComplexTargets(dist_info = 
pathLengthBioPlexPPIs, 
max_distance = 1,  
redundancy_cutoff = 0) 

iii. Inspect newly generated protein complex queries 
head(networkTargetsBioPlexPPIs) 
plotSummarizedMScoverage( 
hypotheses = networkTargetsBioPlexPPIs,  
protTraces = protTraces, 
PDF = plotPDF, 
name_suffix = "BioPlex") 

CRITICAL:  
• It is essential that the chosen protein complex queries match the 

experimental dataset. Therefore, inspect the protein and complex 
coverage pie charts (Figure 5A). We recommend that at least half 
of the proteins and protein complexes represented in the complex 
query set should be (partially) detected in the experiment. 

• One critical question during complex query generation is how to 
handle redundancies, i.e. protein complex queries that partially or 
fully overlap. Due to the complex-centric scoring functions in 
CCprofiler, we recommend to also keep protein complex subsets 



in the target queries. Instead of merging / removing overlapping 
queries at this stage we recommend to collapse detected complex 
signals at Step 40vi.  

• If you are especially interested in some protein complexes that are 
not present in any available database, you can manually append 
these complexes to a generated target query list. It is important to 
keep in mind that the target query list should always contain at 
least around 1000 complexes in order to ensure robust decoy 
based FDR estimation and sensitive detection rates. If less 
complex queries are selected, feature finding can still be 
performed, but decoy generation and FDR estimation are not 
applicable.  

TROUBLESHOOTING 
ii. Prepare decoy complex queries 

binaryCorumComplexes <- generateBinaryNetwork(corumComplexes) 
pathLengthCorumComplexes <- 
calculatePathlength(binaryCorumComplexes) 
corumComplexesPlusDecoys <- generateComplexDecoys( 
target_hypotheses = corumComplexes, 
dist_info = pathLengthCorumComplexes, 
min_distance = 2, 
append = TRUE) 
TROUBLESHOOTING 
CRITICAL: Decoy complex queries are generated based on the target 
complex query set and its underlying network structure. The minimum 
distance specifies the minimal number of edges between any two proteins 
within any generated decoy complex query. It is important that the 
interaction network based on the targets is large enough to generate a 
random decoy set that does not overlap with the target complex queries. We 
recommend complex query sets of at least 1000 targets for the decoy based 
approach. 

iii. Perform complex feature finding 
Protein complex features are determined similar to the protein features 
described above. First, a sliding window strategy is applied, where all 
proteins of a protein complex hypothesis are tested for local profile 
correlation. If a subset of the proteins within a protein complex hypothesis 
correlate better then the specified cutoff, a protein complex feature is 
initiated, followed by peak detection within the regions of high correlation. 
complexFeatures <- findComplexFeatures( 
traces = protTraces, 
complex_hypothesis = corumComplexesPlusDecoys, 
corr_cutoff = bestParameters$corr, 
window_size = bestParameters$window, 
rt_height = bestParameters$rt_height, 
smoothing_length = bestParameters$smoothing_length, 
collapse_method = "apex_network", 
perturb_cutoff = "5%", 
parallelized = TRUE, 
n_cores = 3) 
CRITICAL: If no parameter selection was performed on the protein-centric 
level you can also do a complex level grid search 15.  
i. Filter complex features according to their apparent molecular 

weight, removing protein complex features that elute at an 
apparent molecular weight lower than any of the monomeric 
molecular weights of its subunits. 
complexFeaturesFilteredMW <- filterFeatures( 
feature_table = complexFeatures, 
min_monomer_distance_factor = 2) 



ii. Select only the best complex feature, i.e. the complex signal with 
most subunits and highest correlation. This step is necessary 
prior to the statistical scoring, because individual elution peaks 
are not independent. 
complexFeaturesBest <- getBestFeatures( 
feature_table = complexFeaturesFilteredMW) 
complexFeaturesBest_scored <- scoreFeatures( 
features = complexFeaturesBest, 
FDR = 0.05, 
PDF = plotPDF, 
name = "complex_qvalueStats") 
summarizeFeatures(complexFeaturesBest_scored, 
PDF = plotPDF, 
name = "complexFeaturesBest_feature_summary") 
CRITICAL STEP: Inspect the p-value density histogram (Figure 
5B/C). There should be a high peak close to zero and a uniform 
distribution across all other p-values.  
TROUBLESHOOTING 

iii. Append secondary features based on a user defined local 
subunit correlation cutoff, here 0.5. 
complexFeaturesAll <- appendSecondaryComplexFeatures( 
scoredPrimaryFeatures = complexFeaturesBest_scored,  
allFeatures = complexFeaturesFilteredMW,  
peakCorr_cutoff = 0.5) 
write.table(complexFeaturesAll, 
"complexFeaturesAll.tsv", 
sep = "\t", 
quote = FALSE, 
row.names = FALSE) 

iv. Inspect summary statistics on resulting protein features (Figure 
5D) 
summarizeFeatures(complexFeaturesAll, 
PDF = plotPDF, 
name = "complexFeaturesAll_feature_summary") 
plotSummarizedComplexes( 
complexFeatures = complexFeaturesAll, 
hypotheses = corumComplexes,  
protTraces = protTraces, 
PDF = plotPDF) 

v. Visualize and inspect detected complex features (Figure 5E) 
testComplex <- "181"  
plotFeatures(feature_table = complexFeaturesAll, 
traces = protTraces, 
calibration = calibration, 
feature_id = testComplex, 
annotation_label = "Entry_name", 
onlyBest = FALSE, 
peak_area = TRUE, 
monomer_MW = TRUE, 
PDF = plotPDF, 
name = paste("complexFeatures_",testComplex)) 
Plot all detected complexes 
allDetectedComplexes <- unique(complexFeaturesAll$complex_id) 
pdf("allDetectedComplexes.pdf", height = 6, width = 8) 
for (complex in allDetectedComplexes) { 
plotFeatures(feature_table = complexFeaturesAll, 
traces = protTraces, 
calibration = calibration, 
feature_id = complex, 
annotation_label = "Entry_name", 
onlyBest = FALSE, 
peak_area = TRUE, 
monomer_MW = TRUE, 



PDF = FALSE) 
} 
dev.off() 
CRITICAL STEP: Inspect some detected complex features and 
evaluate if the detected peak groups correspond to what you would 
have also selected as peak groups during manual inspection. 
TROUBLESHOOTING 

vi. Collapse overlapping and redundant co-elution evidence to 
delineate complexes and complex families with defined co-
elution of subunits in SEC 
complexFeaturesUnique <- getUniqueFeatureGroups( 
feature_table = complexFeaturesBest_scored, 
rt_height = 0, 
distance_cutoff = 1.25) 
complexFeaturesCollapsed <- callapseByUniqueFeatureGroups( 
feature_table = complexFeaturesUnique, 
rm_decoys = TRUE) 
write.table(complexFeaturesCollapsed, 
"complexFeaturesCollapsed.tsv", 
sep = "\t", 
quote = FALSE, 
row.names = FALSE) 
CRITICAL STEP: To retrieve unique , non-redundant protein 
complex signals, the reported complex signals need to be collapsed 
based on a strategy that considers (i) subunit composition and (ii) 
resolution in the chromatographic dimension. 

vii. Visualize and inspect all collapsed complex features 
allCollapsedComplexes <- 
unique(complexFeaturesCollapsed$complex_id) 
pdf("allCollapsedComplexes.pdf", height = 6, width = 8) 
for (complex in allCollapsedComplexes) { 
plotFeatures(feature_table = complexFeaturesCollapsed, 
traces = protTraces, 
calibration = calibration, 
feature_id = complex, 
annotation_label = "Entry_name", 
onlyBest = FALSE, 
peak_area = TRUE, 
monomer_MW = TRUE, 
PDF = FALSE) 
} 
dev.off() 

  



Troubleshooting 
 
Step problem possible reason solution
28 Missing or poor 

quality MS data 
of an isolated 
chromatographic 
fraction. 

Problems in 
sample workup, 
NanoLC failure, 
data corruption  

• The (re-) analysis of the fraction can 
be skipped and intensities 
extrapolated from adjacent fractions 
that were analyzed successfully. 
This can be achieved by using the 
function imputeMissingValues of 
CCprofiler (see Step 37i). It is 
important that missing runs are still 
included in the traces import to 
ensure consecutive fraction numbers 
prior to imputation. 

39ii p-value 
histogram for 
protein signals 
does not show a 
uniform 
distribution 

• Too few queries 
were tested 

• inappropriate 
parameters for 
peak detection 

• Check if the number of proteins 
with ≥ 2 peptides is ≥ 500 

• Refer to Box 2 for guidelines on 
parameter selection and parameter 
screening (grid-search) 

39iv & 
40v 

Detected protein 
/ protein 
complex signal 
apex and 
boundaries do 
not look 
reasonable 

• Parameters for 
the feature 
finding were not 
selected 
appropriately 

• Check automated parameter grid 
search again 

• Manually evaluate if selected 
parameters are reasonable (also see 
Box 2) 

• Maybe try a parameter selection on 
protein complex level 

40i & ii Error in target or 
decoy complex 
query generation 

• Selected binary 
interaction 
network is too 
small or not 
connected 

• Use matching interaction network 
for your sample 

40ii p-value 
histogram for 
protein complex 
signals does not 
show a uniform 
distribution 

• Too few queries 
were tested 

• Too few queries 
are observable 
in your dataset 

• Error in protein 
complex decoy 
generation 

• Increase the number of protein 
complex queries (> 1000 queries) 

• Manually plot the protein profiles of 
a few standard complexes (e.g. 
proteasome, CTT complex) to test if 
any good signals can be observed  

• Check if the selected parameters are 
sensible 

• Check if decoys are present 

 
 

  



Anticipated results 
We used the presented protocol to study the proteome assembly state of a population of 
exponentially growing HEK293 cells 15. In this study, we observed 5124 proteins at 1% 
protein FDR (Figure 3C), using the SEC-informed filtering approaches as presented above. 
We could show that 64% of the proteins are present in at least one assembled state according 
to the molecular weight distribution along the SEC and that 27% of proteins distribute into 
multiple distinct assembly states, as evidenced by unique elution peaks (Figure 4D). Using 
CORUM as prior information for complex-centric analysis, we could observe evidence for 
574 protein complexes at 5% FDR (Figure 5E), boiling down to 195 unique protein complex 
signals after feature collapsing. We further demonstrated improved coverage of observable 
protein complexes by combining prior connectivity information from multiple sources. 
Furthermore, we demonstrated the sub-complex resolution of protein complex information 
retrievable by complex-centric proteome profiling. Specifically, the study identified a novel 
sub-complex of the COP9 signalosome complex (holo-CSN) which, due to the absence of the 
catalytically active subunit CSN5 and presence of subunits involved in substrate recruitment, 
may be able to attenuate holo-CSN de-neddylation activities by competitive binding to and 
sequestration of Cullin-Ring ligase substrate complexes. Second, complex-centric profiling 
revealed the specific composition and relative abundance of an unexpected, late stage 
intermediate of 20S proteasome assembly, the composition of which suggests an alternative 
sequence of subunit assembly when compared to the canonical model of 20S assembly 47,48. 
Further, the quantitative distribution of proteins across these and other instances of SEC-
resolvable protein complexes was assessed. 
 
It can generally be anticipated that complex-centric proteome profiling of human cell lines 
results in the detection of at least 50,000 proteotypic peptides and 4000 uniquely detectable 
proteins (at 1% protein FDR). More than 50% of the protein mass (estimated from total MS 
signal) are expected to be detectable in likely complex-assembled state (appearing with ≥ 2x 
the monomeric MW in SEC). Protein-centric detection of co-elution signals from peptide 
level chromatograms should yield ~1-6 high-quality protein elution peaks for at least 80% of 
the detected proteins (q-value cutoff = 0.05, equivalent to 5% FDR). In our experience with 
human cell lines, ca. 25 % of the proteins distribute into multiple distinct assembly states, as 
evidenced by multiple resolved protein elution peaks along the fractionation dimension. Two 
thirds of the proteins are observed at least once eluting in assembled state (peak apex at a MW 
≥ 2x the monomeric MW in SEC). Using the CORUM protein complex database 41 as prior 
connectivity information for complex-centric analysis in CCprofiler, human SEC-SWATH-
MS data analysis can yield evidence for approximately 400 protein complexes at 5% FDR, 
boiling down to evidence for ~200 unique protein complex signals after feature collapsing. 
Explanations of the result tables exported by CCprofiler are provided in Table 5 (protein-
centric analysis results), Table 6 (complex-centric analysis results) and Table 7 (results of 
complex feature collapsing).   
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Figure captions 
 
Figure 1. Schematic overview of the complex-centric proteome profiling workflow. The 
workflow consists of three main modules: (1) Extraction of protein complexes from a 
biological sample and fractionation by size exclusion chromatography (SEC), (2) bottom-up 
proteomics analysis of all sampled fractions by data-independent acquisition mass 



spectrometry and targeted, peptide-centric analysis (SWATH-MS), and (3) Inference of 
proteome assembly state and detection of specific protein complexes by targeted, complex-
centric analysis within the R software package CCprofiler. The protocol takes as input a 
biological sample, requires some standard proteins for MW calibration, a spectral library for 
peptide-centric SWATH-MS data analysis and prior protein connectivity information. Output 
of the workflow are: (i) a quantitative assessment of the overall global proteome assembly 
state of the proteome analyzed, (ii) a quantitative assessment how each protein partitions into 
a certain number of SEC-resolvable distinct protein assembly states as well as (iii) a 
quantitative assessment on the protein complexes and sub-complexes in the given proteome at 
its current biological state.  
 
Figure 2. QC plots for SEC fractionation and SWATH-MS data acquisition. (A) The 
OD280 profile along the sampled SEC fractions for two replicates R1 and R2. Fractions 
collected from two consecutive, well reproducible separations (injections 1 and 2) of 1000 ug 
mild lysate each were pooled for downstream analyses. The first fraction that was measured 
by mass spectrometry for replicate R1 was labeled as fraction 1. Any prior fractions are 
labeled ≤0. (B) The total ion current (TIC) profiles of the DIA/SWATH-MS runs. 
 
Figure 3. Data preprocessing plots. (A) Molecular weight calibration based on measured 
standard proteins and their molecular weights were: Thyroglobulin tetramer, 1398 kDa; 
Thyroglobulin dimer, 699 kDa; IgA, 300 kDa; IgG, 150 kDa; Ovalbumin, 44 kDa; and 
Myoglobin, 17 kDa. (B) Distribution of sibling-peptide correlations for both target proteins 
(solid line) and decoy proteins (dashed line). (C) Pseudo-ROC curves illustrating the effect of 
using the sibling-peptide correlation to perform FDR filtering. (D) Global statistics of protein 
signal attribution to assembled or monomeric state. The majority of detected protein mass 
(55%), as estimated by the total MS signal intensity, appears in assembled state in SEC-
SWATH-MS. (E) Elution profiles of all peptides detected for the proteasome subunit alpha 
type-1 (PSA1) protein. The red vertically dashed line indicates the expected monomer MW. 
The salmon colored line indicates the selected cutoff for diving the elution range in assembled 
vs. monomeric, lying at twice the expected monomer MW. 
 
Figure 4. Parameter selection and protein-centric analysis. (A) Pseudo-ROC curves 
showing the number of estimated true positive protein features over increasing q-value (~ 
FDR) cutoffs for all tested parameter combinations. Here, each parameter set is colored 
according to the tested correlation cutoff. (B) P-value histogram for the protein-centric signal 
detection. (C) Pseudo-ROC curve showing the number of estimated true positive protein 
features over increasing q-value (~ FDR) cutoffs. (D) Histogram showing the number of 
proteins detected to elute in between one and seven distinct elution peaks. The pie chart 
illustrates that the majority of detected protein elution signals elute in the assembled MW 
range. (E) Elution profiles of all peptides detected for the proteasome subunit alpha type-1 
(PSA1) protein. The protein elution signals determined by CCprofiler are highlighted in grey 
shading; peak apexes (solid) and boundaries (dashed) are shown as grey vertical lines. The 
red vertically dashed line indicates the expected monomer MW. 
 
Figure 5. Exemplary CCprofiler plots for complex-centric data analysis. (A) Pie chat 
illustrating the number of proteins that are annotated in the CORUM protein complex 
database (2’532) and which fraction was confidently detected in the SEC-SWATH-MS data 
(1479). (B) P-value histogram for the complex-centric signal detection. (C) Pseudo-ROC 
curve showing the number of estimated true positive protein complex features over increasing 
q-value (~ FDR) cutoffs. (D) Histogram illustrating a summary of how many sub-complex 
signals were detected per protein complex query. The pie chart summarizes how many protein 
complexes annotated in the CORUM protein complex database have been detected by 
CCprofiler in the SEC-SWATH-MS data. (E) Protein elution profiles of the 22 protein 
subunits annotated to belong to the 26S proteasome complex. The protein-complex signals 
determined by CCprofiler are highlighted in grey shading; peak apex (solid) and boundaries 



(dashed) are shown as grey vertical lines. Small triangles along the MW axis indicate the 
expected position of each of the subunits monomers.  
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