
A refined physical model of the clarinet using a variable air jet height

Chatziioannou, V., & Van Walstijn, M. (2008). A refined physical model of the clarinet using a variable air jet
height. 1297-1301. Paper presented at 3rd IEEE International Symposium on Control, Communications and
Signal Processing (ISCCSP 2008), St Julians, Malta.

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:18. May. 2024

https://pure.qub.ac.uk/en/publications/28ec952e-45fe-493c-8474-0ad304000f8d


A refined physical model of the clarinet using a
variable air jet height.

Vasileios Chatziioannou and Maarten van Walstijn
Sonic Arts Research Centre

School of Electronics Electrical Engineering and Computer Science
Queen’s University Belfast, Northern Ireland
{vchatziioannou01, m.vanwalstijn}@qub.ac.uk

Abstract—A time-domain formulation of a lumped model ap-
proximation of a clarinet reed excitation mechanism is presented.
The lumped model is based on an analytical representation of
the flow within the reed channel, incorporating a contraction
coefficient (vena contracta factor) that is defined as the ratio of
the effective flow over the Bernoulli flow. This coefficient has
been considered to be constant in previous studies focusing on
sound synthesis. In this paper it will be treated as a function
of the reed opening, varying between 0 and 1 as predicted by
boundary layer flow theory. Focussing on a specific mouthpiece
geometry, the effect of modelling a variable air jet height on the
synthesised sound is analysed.

I. INTRODUCTION

Modelling single-reed woodwind instruments using a time-
domain approach has been introduced by Schumacher [1]
and was then extended and built upon by several authors.
Time-domain calculations can deal with non-linear oscillations
and are able to model both the transient and the steady
state behaviour of the system. The oscillation of the reed is
mostly simulated using a one-mass (lumped) model. Originally
formulated as a linear model [1], [2], [3], [4], subsequent
studies introduced models with non-constant parameters [5]
and methods for estimating parameters from distributed mod-
els of the reed [6] such that the vibrational behaviour of the
lumped model is similar to that of the distributed model. In
the present paper an approach similar to [6] has been carried
out, but in this case the parameters have been estimated by
a two-dimensional model for the reed [7]. Thus it has been
possible to inherently take into account any torsional modes
of the reed, that have been proved to affect the sound quality
[8].

Concerning the fluid dynamics of the model, the formulation
of the flow inside the mouthpiece was, in most cases, quite
moderate using either a Bernoulli flow occupying the whole
reed channel [3], [6], [9], [10] or considering the formation of
an air jet in the reed channel with a constant height [4], [11]. In
this paper a more analytical formulation for the flow in the reed
channel is adopted, using a variable air jet height predicted by
Boundary Layer Flow theory. This theory is presented in the
next section, followed by the numerical formulation of the
lumped model and the results obtained from the simulations.

II. FLOW IN THE REED CHANNEL

The Euler equations for inviscid, incompressible flow can
be used to calculate the Bernoulli equation [12]

1

2
ρ|u|2 + p = const. (1)

However, the viscosity near the walls cannot be neglected for
the flow through the reed channel. Frictional forces tend to
retard the flow in a layer of thickness b next to the wall, which
is defined as the boundary layer. This results in the formation
of an air jet inside the reed channel. The height of this air
jet can be described using a non-dimensional parameter α,
the vena contracta factor, defined as α = u/uB , where uB is
the Bernoulli flow and u the effective flow in the channel. If,
furthermore, the height of the channel is taken to be h then

α = 1− b

h
. (2)

This parameter α is very difficult to determine experimen-
tally or to estimate numerically. Most of the earlier studies on
single reed instruments either neglect it or consider it to be
constant. It is claimed though [13] that in order to improve the
sound produced by physical modelling, the aero-acoustics of
the instrument have to be studied thoroughly. The theoretical
description of α by van Zon [14], also adopted in the present
paper, seems to match the experiments he carried out with
a 5% error. The usefulness and reliability of this formulation
have been questioned [13], because the whole study was based
on a quasi-static approach i.e. assuming that the flow in the
mouthpiece with an oscillating reed would be equal to that of
a static reed with the same displacement at each instant. Hence
the experiments verifying its validity were confined to a static
nature. In 2007, using a Lattice-Boltzman method, da Silva
et al. [15] simulated the flow through the reed channel using a
moving boundary for the oscillating reed. The dynamical data
obtained for the vena contracta factor displays a qualitative
resemblance to van Zon’s theory, which suggests that using
a theory-based variable-α formulation might provide a useful
refinement of the lumped reed model. An additional reason
for the current authors to use such a refined model is that they
intend to employ it to inverse modelling of the clarinet reed
system, i.e. estimating its parameters from experimental data.
In that scenario it seems more appropriate to pre-assume that α



is non-constant. In addition, the effects of turbulence induce
further uncertainties, especially on the exact location of the
point where the flow reattaches to the walls due to the Coanda
effect [16]. Furthermore, the effect of the lateral slits to the
total flow has not yet been fully examined. So, even though
using a two-dimensional reed model allows the analytical
calculation of the side openings, their exact influence on the
total flow remains unknown. What has been done was an effort
to match the experimental results obtained by Valkering [17]
by scaling down the total opening surface.

Now, limiting our study to long reed channels, which is the
case for the specific geometry of the mouthpiece used [7], an
air jet is formed at the entrance of the reed channel. This air
jet is expected to reattach to the wall after a distance xw (of
the same order with h) from the entrance. Assuming a linear
flow-velocity profile within the boundary layer, integration of
the von Karman equation gives [18]

(L− xw)

h
=

1

6
Re

(
4
b

h
+ 9 ln(1− b

h
) + 5

b

b− h

)
(3)

where L = 0.0014m is the length of the reed channel and
Re the Reynolds number. The geometry of the reed channel
as well as the formation of the boundary layer and the
reattachment to the wall are depicted in Figure 1.
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Fig. 1. Geometrical parameters for the flow in the reed channel during the
reed motion, where y0 denotes the equilibrium point of the reed.

This equation can be solved numerically for b. How-
ever, there is a critical value for b, (that can be calculated
from the conservation of mass and momentum [18]) namely
bc = 0.2688h, above which transition to a fully developed
Poiseuille flow occurs at a distance L1 from the channel
entrance, resulting in [17]

α =
1√

1
(1−bc)2 + 24L−L1

Reh

. (4)

III. NUMERICAL FORMULATION

It can be argued that keeping the effective mass and damp-
ing of the reed constant in a lumped model formulation, still
captures most of the dynamics of the system, at least for small-
amplitude oscillations [6]. Under this assumption, the equation
of motion becomes

m
d2yL
dt2

+ g
dyL
dt

+Kα(∆P )(yL − y0) = ∆P (5)

where yL is the middle point of the free edge of the reed, m
the mass per unit area and g the damping per unit area. The
effective stiffness per unit area, Kα, and the reed effective
surface Sr, have been estimated using a distributed two-
dimensional model for the reed-mouthpiece-lip system [7].
The flow inside the reed channel is given by uf = αuB and
the flow induced by the oscillation of the reed is

ur =
ds

dt
Sr (6)

with s the displacement of the reed tip from its equilibrium
point. The mouthpiece pressure p can be decomposed into a
wave going into (p+) and out (p−) of the bore, which are
related to the total volume flow u = ur + uf by

Z0u = p+ − p−, (7)

where Z0 is the characteristic impedance at the mouthpiece
entry.

Combining equations (1) and (7) yields the non-linear
equation for uf

sign(uf )
ρ

2S2
f

u2
f + Z0uf + (2p− − pm + Z0ur) = 0 (8)

where pm is the blowing pressure. The vena contracta factor
α is included into equation (8) as a scaling factor of the
opening surface Sf . The in-going pressure can be computed
from the total flow u and then effectively convolved with the
reflectance of the aircolumn, as calculated in [19] using the
wave digital modelling method, which completes the feedback
loop. Equation (5) is solved using the impulse invariant
method, as described in [6] and equation (8) can be solved
using Newton’s method, with the previous value of uf as an
initial guess.
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Fig. 2. α as a function of h (top) and a comparison of α predicted by
boundary layer flow and a Lattice-Boltzmann simulation (bottom).



In order not to have to solve equation (3) for b at every
time step and then compare its value with bc, the following
procedure was used. The simulation was run several times with
different blowing pressures in order to get the reed oscillating
at all amplitudes and the values for the vena contracta factor
have been stored (assuming that xw ≈ 2h). Then a least
squares fit was performed on the obtained data (using QR de-
composition to solve the badly conditioned normal equations)
giving α as a function of the reed opening h. The result of
this was

α(h) = 0.39 ln(h+ 16 · 10−6)− 993.92 sin(h) + 4.27 . (9)

This function has been used throughout the simulations to
compute α given the reed opening, and the goodness of this fit
(also confirmed statistically using a gamma distribution) can
be seen at the top of Figure 2. At the bottom of the Figure
the data obtained by the quasi-static formulation is compared
with that of the dynamical simulation carried out in [15].
Even though the values for α are not the same, they exhibit a
similar trend. The two separate branches of the dynamical data
can be explained by the fact that a dynamic model, unlike a
static model, can distinguish between the opening and closing
motion of the reed. Both approaches point towards a non-
constant formulation for α.

IV. RESULTS

The lumped model was excited using a blowing pressure
that rapidly increased from 0 to p1 and then slowly and linearly
increased from p1 to p2 for the duration of the sound until
it quickly faded out at the end. The obtained results for the
pressure in the mouthpiece are compared for the cases of a
constant and a varying α. For the case of a constant α, the
value chosen was α = 0.86, calibrated in such a way as for
the pressure in the mouthpiece to have the same amplitude
during the steady state with that of the case of α varying as
a function of h.
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Fig. 3. Mouthpiece pressure with a constant and variable α (top) and a
zoom-in to observe the “shift” (bottom).

At the steady state of the sound the difference of the two
methods is only confined to a slight pitch bending, almost
inaudible, but visible by zooming in the pressure plot (see
Figure 3).

However, during the transient behaviour, the difference
between the two cases becomes more significant. Using a
constant value for α introduces audible low frequency com-
ponents caused by some form of autonomous reed oscillation.
An interesting observation is that these frequencies do not
match the reeds resonance frequency, but are visible around
half of this value. Such a phenomenon has been attributed
to period doubling [20] for free organ reeds. However, in
this case it may be described best as reed inertia effects.
The phase space of the pressure signal during part of the
transient, depicted in Figure 4, shows the effect of inertia
forces to the system. The two small circles observed at the
peaks of the motion can be responsible for the increase of
the oscillation period, giving similar results to those of period
doubling. This can be compared with the phase space at
the steady state (see Figure 5), where this effect becomes
negligible, as the bore natural frequencies become dominant.
On the other hand, using a variable α causes the reed induced
frequencies to become less significant and almost inaudible.
The spectrograms of the two signals can be compared in
Figure 6.

p(t)

p(t+4dt)

p(t+8dt)

Fig. 4. Phase space trajectory of the pressure signal during the transient, in
the case of constant α.
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Fig. 5. Phase space trajectory of the pressure signal at the steady state.
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Fig. 6. Spectrograms of the mouthpiece pressure computed with p1 = 1100,
p2 = 2000 and a 44.1 kHz sample rate.

Furthermore, for a signal produced with a constant blowing
pressure, different values of a constant α have been used, in
order to compare its influence on the frequency spectrum. The
differences between the odd harmonics are not easily seen
in Figure 7, so the results for the first 5 odd harmonics are
stated in Table I. It can be observed that there is a strong
influence of the variation of α on the third harmonic. The first
harmonic remains almost constant, whereas the fifth seems
to be changing with no proportionality to α. For the higher
harmonics we revert to a proportional behaviour especially for
low values of α.

Another difference when using a variable air jet height
instead of a constant one can be observed on the threshold
blowing pressure needed to get the reed oscillating. Using a
constant α, this pressure was around 1070 Pa, whereas in the
case of varying the height of the air jet the threshold blowing
pressure was reduced to 1015 Pa.

V. CONCLUSION

A method has been proposed to incorporate an analytical
flow model into a lumped model approximation of the reed-
mouthpiece system. It has been shown that the resulting sound
is different compared to the sound produced by the previously

TABLE I
MAGNITUDE (IN dB SOUND PRESSURE LEVEL) OF THE FIRST FIVE ODD

HARMONICS FOR DIFFERENT VALUES OF α.

harmonic α = 0.58 α = 0.72 α = 0.86 α = 1

1 64.62 65.10 64.71 64.64
3 49.40 51.29 52.40 53.31
5 44.34 43.94 46.56 46.07
7 37.86 40.23 40.45 43.04
9 29.30 34.56 36.91 36.92
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Fig. 7. Frequency spectrum for different values of the air jet height for a
ten second long signal.

used flow models. In particular, there is a significant difference
during the transient. A small variation can also be observed at
the steady state of the sound.

Unfortunately, concerning modelling the flow in the reed
channel, there are no known dynamical experimental results
that confirm the variable-α formulation. Indeed, the motivation
for including a variable air jet height originates from the
authors’ intention to use the lumped model in an inverse-
modelling procedure based on data obtained under real playing
conditions. Such data are expected to behave in a more
complex way than that predicted by a simple model with a
constant α. Hence the variable-α formulation is a suitable
starting point for developing the inverse approach.
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