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Abstract—In this paper, we present new methods for con- non-locally reacting wall models used in FD room acoustic
structing and analysing frequency-dependent boundaries in room sjmulations.
acoustic modelling with the use of finite difference time domain ; ;
(FDTD) techniques. Novel FDTD formulations of simple locally Sec. |l presents the numerical .formulatlon of the 2D FD
reacting wall models with complex impedance are proposed and frequency—dependgnt locally reacting wall mOdels' In $H!,C..
analysed in terms of pressure wave reflectance for different wall an analytic evaluation method for the analysis of the nucaéri
impedances and angles of incidence. The analysis is done usingeflectance in 2D/3D acoustic spaces is presented. Thegesul
both numerical experiments and analytic evaluation. of numerical experiments and the numerical boundary aisalys
For the numerical experiments, a compact implicit scheme g6 giscussed in sec. IV and V, respectively. Consideration

of 4th-order accuracy is used for updating the room interior . . .
grid points, the results of which are analysed in both time and here are restricted to 2D modelling; analogous 3D models wil

frequency domains. The simulation results show that the 2D b€ dealt with in a subsequent paper.
frequency-dependent locally reacting wall models adhere well
to their theoretical counterparts, particularly at low frequencies. |- FREQUENCY¥DEPENDENT BOUNDARIES INFD METHOD
Furthermore, they validate the analytic evaluation method, which Sound wave reflection from a wall can be modelled as a
paves _the way for using either method as a tool for analysis of locally reacting wall (LRW), where the normal component of
numerical reflectance. . .
Index Terms—Acoustic reflection, acoustic impedance, acoustic the particle velo_C|ty at the surface of the wall depends @n th
signal processing, FDTD methods, waveguides sound pressure in front of the wall element and not on pressur
in front of neighbouring elements [5]. As such, it provides
. INTRODUCTION a compact model for simulating specular wall reflections. In

Finite Difference (FD) is a modelling technique that cart‘lerms of pressure only this may be stated as [4]

be applied to room acoustic simulations [1]. Recent researc dp  Z Op

- 1)

efforts have been focused on developing accurate FD approxi o~ e oz

mations of realistic boundaries. Most of the boundary m"d%herep denotes acoustic pressure,is the sound velocity
available in the literature are based on a 1D approach [2},q Z/pc is the normalised wall impedance, also known as
[3]. However, this leads to significant errors in the reflac® e gpecific acoustic impedance. The multi-dimensional FD
phase and amplitude [4]. For a physically more corregd,mylation of a locally reacting wall is obtained by comibig
impedance boundary formulation, the boundary should R, giscretised boundary condition (1) with the discretdtimu

included in the medium, which can be obtained by combiningnensional wave equation [4]. The reflectarkds related
the 1D boundary condition with the multi-dimensional (R® 4 tne specific acoustic impedance by [5]

or 3D) wave equation. Since frequency-dependent absarptio

occurs at realistic boundaries, the amplitude and phaskeof t o @
reflected sound wave differ from those of the incident wave Z o6+ 1

[5]. Instead of combining the FD implementation for the room Pe o

interior with filters at boundaries [6], direct incorporatiof Whered denotes the angle of incidence.

the wall impedance in the boundary condition can be used.R€@l acoustic boundaries are generally frequency-
Alternative models rely on modelling the wave propagatiofi€Pendent, even in narrow frequency bands. Among the
in the wall [7]. However, previous studies [1] have sugg@sté'mpleSt of such boundaries, we can distinguish two types.

that there is no significant difference between the locatig a The first one represents a thin absorbing layer stretched on
the much harder boundary; seat, floor and wall coverings are

This research has been supported by the European Social Fund good examples. The second type represents heavy porous

Z cosf — 1
pc



TABLE |

layers such as curtains or light non stiff walls. More comple COMPLEX IMPEDANCE PARAMETERS
boundaries can be formulated as a superposition of these two
types [1]. Parameter Description
A. Mass boundary a1 = % Specific resistance
The first boundary type, representing a nonporous layer ¢, = TJVPIC Specific mass divided by T
hung in front of the rigid wall [5], d(_afmes an .|mpedance S L= TK Specific spring constant multiplied by half of T
Z = R+ Ms, where R denotes resistancéy/ is the mass pe :
per unit area, and is the Laplace variable. Inserting such ap %4 = %1 + a2 + a3 Sum of the previous parameters
impedance into Eqg. (1) yields the mass boundary condition
2 .
9 _ e R Oop M Op (3) B. Spring boundary
ot pc Ox  pc Otdx

_ _ _ o The second absorbing boundary type, representing material
The FD discrete boundary is obtained by approximating tkgch as a thin porous layer of fabric hung on a rigid wall [5],
first-order derivatives in time and space domains with gedte has the following impedancg = R+ K/s, whereK denotes

FD operators. In order to keep the boundary formula expligiie spring constant. The continuous spring boundary condit
the mixed second-order derivative in Eq. (3) can be approx given by

mated with the backward Euler method ¢

dp R 0p K dp
9pn _ 9pn—1 — =—c|— —+ — —dt | . 8
9%p _ oz oz ot C(pc aerpc oo O ®
otox 1 T All first-order derivatives in Eq. (8) are approximated with

(Pl1m = Pi1m — Plm + P 1m)> (4)  centered FD operators. As for a numerical integration nektho
we propose the use of a composite trapezoidal rule with

the pressure update variableand m denote spatial in deXessublntervals equal to time steps because of the method’s

and n is a time index, respectively. Such an asymmetricﬁfgugggm;‘é ?Eou?Sr F??I?;era?i?r?ewﬁiséhcv?/g\s/e;Selﬁ'e ctjh?nua? of
approximation in the time domain is the weakest point 0 9 ' PP '

. o o ould result in a less correct reflectance phase and amelitud
the FD discretisation of a mass boundary condition and w; . . . . .
. rapezoidal integration is mathematically equivalent be t
lead to small phase errors in the reflectance. Neverthel

S, _ 21—zt . _ .
the numerical error is less severe than for an asymmetriegéh?l'hear transforms = 713%=r applied toy = z/s, which

approximation in the space domain, which has been propogé%]ds o 4 gl
in [1]. If we write out the discrete version of Eq. (3) for the Yt =Ty 9)

point lying outside of the modelled space, also referredsto % " ical i t2 tion is ai b
a ‘ghost point’, the following formula results onsequently, numerical integration 1S given by

T TX
where X denotes grid spacingl’ is a time step,p is

t n
1 1 +1 K / (0 _ TK ( 7 i*l)
n _ n I O _ — p mdt—i Pl D m |- (10)
pl+1,m pl—l,m + )\(al ¥ a2) (pl,m pl,m ) pc ] o l, 2pC e l, l,
a . . . . -
+ ﬁ(p;:l{m - p?:ll’m), (5) Finally, the discrete version of the spring boundary caadit

) for a ghost point becomes
where\ = ¢I'/X is the Courant number and the parameters

ay anday are given in Table I. Next, the update formula for  p;’; ., =p/" ., + N

( n—1 n+1)
the boundary node is obtained by substituting for the ghost a1 + as)

pl,m - pl,m,

. . . ! as n—1 n—1 as n—1
oint in a discrete 2D wave equation — + S 11
p 1 i q a1 + a3 (pszm le’m) a1 + a3 (11)
it = X0 F P Pl P 1) where the parameters, and a; are given in Table I. The
+ 201 —22\H)pp,, — p?;ll’ (6) new variableS™~! is introduced for storage of the result of

summation ‘up to now’ according to the formula
with the boundary condition given by Eg. (5), which yields ) 1p , 1g , ,
S = D — Pl — Pl e TS (12)

71,—‘,-1:[)\2271 +n +n
Prim (P 1 + Pl s Plima) Substituting for the ghost point in the respective discredge
_1)pn—1 equation (6) with the boundary condition (11), the update
)pl m . .
’ formula for the spring boundary node yields

+2(1 = 2X%)p}",, +
( )pl, (a1 T ay

)‘QGQ n—1 n—1 A
a; + as (pl+1=m o plflvm)} / <1 + a; + ag)'(7) Pffnl = P\Q(zp?fl,m +p;fm+1 +p2m71) +2(1 - 2)‘2)p2m
This boundary formulation requires updating the boundary n A ) Nag (prl —prol
node and the ghost point at each time step according to Eq. ay + as bm " gy az o bm LM

(7) and Eq. (5), respectively. Only one past value needs to be Naz . 4 A
stored at the ghost point. +m5 } / (1 + +a3)- (13)




This boundary formulation requires the update of the boundeding both incident and reflected sound pressure values and
ary node, the ghost point and the sum up to now at each tigettingz = 0, which in the discrete space-time domain takes
step according to Eq. (13), Eq. (11) and Eq. (12), respdgtivethe following form

However, only one previous value needs to be stored for both,

) — P JjwnT —jkmX sin6 (  —jklX cos 6 ﬁ JklX cos 6 )
the ghost point and the sum value. Ptm 0 ¢ (e e (18)
C. Combined impedance boundary Eqg. (18) can be used as a basis for deriving other discrete

- . . . . JLessure values in the respective boundary equation. Some
Some realistic acoustic boundaries might require a more

: ] ; example expressions are given below

complex impedance; parquet is a good example. Anothér

example is a porous layer of fabric stretched in front of the pﬁf{f =T pi = Pl =2 D', (19)
rigid wall, to which the second layer of nonporous material
hung immediately in front of the first layer is added [5]. ) o
The resulting boundary condition for a combined impedance : (eﬂk(lfl)x co3f 4 R KI-DX COSQ) . (20)

Z = R+ Ms+ K/s amounts to

n _ jwnT _—jkmX sin 0
Pi—1m = FPo e’ e’

Next, we substitute such discrete pressure values in the

op Rop M o> K [P op discrete boundary equation and $et 0, which corresponds

- ¢ (pc O E Oz 0y + % . &vdt) o ( to 2 = 0 at a boundary. Finally, the analytic evaluation method
relies on solving for the numerical reflectan®&e In case of

The derivation relies on the combination of the previouskf,e combined impedance boundary condition given by Eq. (15)
presented boundary models. Hence, the node at the boundggy following formula results

is updated according to

= A
7 n n n n R ,9 - - 1 - - 2)\214 A2 B B_1
pz,jnl = {)\2(210171,771 + Pl + Plm—1) +2(1 — 2)‘2)pl,m (2,0) {( * a4>z { +A(B + )
A n—1 )‘2(a3 — (12) n—1 n—1 2 A )\2662 1
(o~ Dbl + = 0 — Pi) +o2(1-2A )} + [1 SR AT
A2(13 A 2
757171 1 o 15 A as _ 2 _
+ ay :|/( +CL4)7 ( ) + a4 (Al_A)l_Z,1:|Z !

and the update formula for the ghost point is given by

A
n n 1 n—1 n+1 / {(1+ 7>2_ |:2A2A_1 +)\2(B+B_1)
pl;kl,m = pl—Lm + T(pl,m _pl,m ) + a4

a4
I agz — a2( n—1 _ n-—1 )+ %Sn71 (16) + 2(1 _ 2/\2)} + [1 _ i 4 )\2a2 (A—l _ A)
a4 pl—l,m pl-l—l,m ay ’ aq ay
. . 2
where the pargme_teni, as, az anday are given in Table_l, 4 A as (A— A1 71}2—1 7 1)
and the sumS is given by Eq. (12). Similarly to the spring ay 1—=2
boundary, Eqg. (15), Eq. (16) and Eq. (12) need to be compute 4 ‘ X s
undary, Eq. (15), Eq. (16) a-(12) puWﬁereA = e/kXcost and B = /KX sinf Eq. (21) can be used
at each time step. . .
to predict accurately the numerical reflectance for anyevalu
[1l. A NALYTIC EVALUATION METHOD of the impedance and angle of incidence. This formula igivali

In this section, a novel method for analytic evaluation dPf UP to @ quarter of the sample rate because the discretised
the numerical reflection of multi-dimensional boundaries ?D wave equation has a cut-off 825f; in axial dlre_ctlo_ns .
presented. Due to the limited space, this paper outlinesiypri (I-€- there are no resonances for the wave propagation & axi
the concept behind the numerical boundary analysis (NB,g)rectmns 'for the 2D rectilinear §cheme). The ampl!tude of
and presents the final formula for the numerical reflectarice 9 analytically evaluated numerical reflectance (solitd)
the combined impedance model. in the frequency domain for the boundary models derived in

Consider a wall normal to the rectangular coordinate systéms paper is presented _in figures 3, 4, af‘d 5, respectively. .
in the -y plane, where the wall is located at — 0. An Note that the evaluation method requires the same multi-
incident wave propagating at any oblique angle of incidengérmans'onal FD scheme for the boundary and the medium

# in a positivez-direction in such a system can be expressé'as'de ,Of the modelled space. Consequently, this meth_od IS
as [5] not suitable for the evaluation of the 1D boundaries in a

p = Dy ¥ ¢~ k(cosbysind) 17) 2D/3D cpntext. The great advantage of the analytic_ evalnati
method is that it produces results which are deprived of the
where P, is the incident wave amplitude arid denotes the numerical artefacts associated with the numerical expaTim
wave number. As for the reflected wave, the sign is reversdde to dispersion and wave truncation errors. Consequently
and the pressure amplitude is multiplied by the reflectidthe NBA method can be successfully used to evaluate the nu-
factor. Hence the total sound pressure in the standing wawerical reflectance instead of undertaking numerous ngaderi
in the plane of the locally reacting wall can be obtained bgxperiments.



IV. NUMERICAL EXPERIMENTS 5
A. Test setup 4

A number of simulations were carried out to analyse the
performance of the three types of frequency-dependentdoun 2
ary conditions of a locally reacting wall derived in section
Il. A fourth-order accurate compact implicit scheme [8] lwit
1800x1400 junctions was used for the implementation of the
interior of the room in order to obtain the wavefront that was
as flat as possible. The size of the room and the simulation
time (2000 samples at the sample rate of 4kHz) were set in ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
such a way that only the reflections from the investigated  *2° % 0 20 100 eq 110 100 o a0
boundary could reach a receiver position. Furthermore, the
simulation time had to be sufficiently long so that the whol&ig. 1. Reflected signal (solid line) plotted against theotitical reflection
wavelet could reach a receiver position. Each test comkis :nzlo(od a;ﬂi?;g‘f):fogr ?fdzﬁ S:pr'lng boundary model at tigeeant incidence
of two simulations, in which a sharp impulse was injected ' o
into a mesh point. In each test, the source position was 10"
chosen so that (1) a constant distance of 400 grid points ‘
from the centre of the investigated wall was preserved, and
(2) the incident waves at the following angles of incidence
0 = 0°,15°,30°,45°,60°, 75°, resulted. In the first simulation,
the reflected signak; was measured at a receiver position
located at the same distance from the centre of the wall as
a sourcey ¢ inevitably included the ‘direct sound’. The wall
was removed in the second simulation and two signals were
measured: the direct sound, at the same receiver position
and the freefield signal; at the mirror location of the receiver. » ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
The isolated reflected S|gnﬁ1 was Obtained bSCr _ l'f*l'd- 1120 1130 1140 1150 1160Tlme1[;;2ples]1180 1190 1200 1210 1220

For the time domain analysis, the ideal time domain signal
was obtained as a time domain convolution of the freeﬁeﬁig. 2. Reflectgd signal (solid line) p_Iotted against theotk@cal reflection
signal z; and the signal obtained from the inverse Laplac?#;’gnlz| c()??rfgggnlgg):fogf’ewzhzrnglngfj ;?zeg’agﬁgaiou:ngf’g}emahe
transform of the theoretical reflectance given by Eq. (2).

The choice of the Laplace transform was made to avoid the

characteristic ripples due to the inverse Fourier tramsfoin  for an incident angled = 60° and the combined impedance
order to reduce truncation, the resulting signal was camel poyndary witha; = 9, as = 8, a3 = 0.5 for incident

with a 41-tap low pass FIR filter with a normalised cut-ofgngle 9 = 45°; respectively. As depicted in Fig. 1, the
frequency of 0.25. _ _ spring boundary model preserves the phase perfectly and the

For the frequency domain plots, the numerical reflectanggnpjitude is well matched. Such a correct phase charatiteris
was defined as the deconvolution of and x; and the is gown to the trapezoidal integration method which has
theoretical reflectance given by Eq. (2) was used as a re&ferensycellent phase properties. Consequently, even at vety hig
Furthermore, all the measured signals were windowed wéh thgles of incidence the phase is correct, which is not the cas

use of the right half of the Hanning window to reduce signgh; 1p houndary models [4]. Fig. 2 confirms that in the case of

truncation errors. . _ the combined impedance boundary the phase is also preserved
The values of parameters related to specific resistances mgs high angles of incidence, however the amplitude is rathe

and spring were chosen to illustrate the numerical perfam®a orestimated. Slight misadjustments at high incidenteang

of the boundary models presented in this paper; they were pedy occur due to the use of the backward Euler method in

intended to represent realistic boundaries. the time domain approximation of the mixed derivative.

Amplitude

3L 4

Amplitude

B. Time domain analysis

A reflected sound wave has both phase and amplitude whEh
differ from those of an incident wave if the boundary has In this section, the frequency-dependent reflectance ampli
a complex impedance. In this section, the phase of numaude is analysed in the frequency domain. The reflectance
ical boundary models is analysed through the time domaimagnitudes of the three types of boundary conditions derive
comparison of the reflected signals obtained from numeridal section |l are illustrated in figures 3, 4, and 5, for a
experiments with the ideal reflection signals. variety of parameters and incident angles. All figures plot

Two representative results are illustrated in Fig. 1 and Fithe reflectance obtained from numerical experiments (dhshe
2, namely the spring boundary with, = 9 andas = 1 lines), the reflectance predicted with the use of the aralyti

Reflectance magnitude analysis
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of the reflection coefficient, and grey solid lines represamnerical reflectance obtained from the analytic evaluatiethod.

evaluation method (solid lines) and the theoretical reftect axial direction. Furthermore, the numerical reflectandecagls
(dotted lines). well at low frequencies for all models, which is a desirable
The theoretical reflection coefficient is matched well ifeature of FD models of rooms. The discrepancy near DC
general for up to a quarter of the sample rate for all tHer = 0), particularly visible at very high angles of incidence,
boundary models; in particular for a spring model as show® due to truncation error and the waves being not perfectly
in Fig. 4. The numerical reflectance differs the most at nbrmplane at the point of reflection. It should be stressed that
incidences, which coincides with the fact that the numéricthe theoretical reflection coefficient was derived for plane
dispersion of the 2D rectilinear scheme is the strongest Waves, whereas in the experiments a spherical wave was used
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for the excitation. Even though the curvature of a spherichbundaries that can be applied in FD simulations of acoustic

wavefront after traveling a long distance before hitting #all spaces.

can be neglected, a minor discrepancy remains. The analytiédn addition, an analytic evaluation method has been pre-

evaluation plots confirm that a sudden outstrip near DC dossnted which can be used to predict the numerical reflectance

not really occur for these boundary models. for any impedance and angle of incidence in a fast and reliabl

way. As such, it provides a valuable tool for numerical re-

flectance analysis since the reflectance is deprived ofeattef
The correctness of the NBA is confirmed by the perfegjhich result from numerical experiments.

match of the measured and evaluated reflectance in figures
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