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Summary

A non-linear lumped model of the reed-mouthpiece-lip system of a clarinet is formulated, in which the lumped
parameters are derived from numerical experiments with a finite-difference simulation based on a distributed
reed model. The effective stiffness per unit area is formulated as a function of the pressure signal driving the
reed, in order to simulate the effects of the reed bending against the lay, and mass and damping terms are added
as a first approximation to the dynamic behaviour of the reed. A discrete-time formulation is presented, and its
response is compared to that of the distributed model. In addition, the lumped model is applied in the simulation
of clarinet tones, enabling the analysis of the effects of using a pressure-dependent stiffness per unit area on
sustained oscillations. The analysed effects and features are in qualitative agreement with players’ experiences

and experimental results obtained in prior studies.

PACS no. 43.75.Pq

1. Introduction

This study is aimed at developing a lumped model of
the reed-mouthpiece-lip system of the clarinet, which can
be applied in efficient and realistic simulation and syn-
thesis of clarinet tones. Many authors (see for example
[1,2,3,4,5,6,7]) have modelled the reed-mouthpiece-lip
system as a linear one-mass system (see Figure 1). This
approach stems from the idea that the reed can be consid-
ered as a clamped bar, of which only the lowest resonance
is modelled in the one-mass model. Given the relatively
strong damping of the higher reed resonances, this is a
good first approximation of the dynamics of a freely vi-
brating reed (i.e., no further external forces are involved
except the driving pressure). Moreover, the main com-
ponent of the driving pressure is usually below the first
reed resonance, so that considering a single mode tends
to be sufficient in application to the simulation of clarinet
tones. However, under real playing conditions the reed-
mouthpiece-lip system is more complex than a simple
clamped bar; the reed is supported by the lip, and “beats”
against the mouthpiece lay during oscillation. The interac-
tion with the lip, which provides extra damping but also
shifts the natural reed resonance, is usually accounted for
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within the one-mass model by altering the lumped param-
eters, although reliable methods for experimental determi-
nation of these values appear not to be available. Beating is
often modelled in a crude way, by simply imposing a max-
imum to the reed displacement (e.g., [8, 9]), thus assum-
ing no reed-lay interaction up to that point. Little is known
what the effects of this simplification is on the oscillations
computed with such models. As beating is a strongly non-
linear phenomenon, it can be expected to cause significant
timbral shifts. It is therefore important to gain a better un-
derstanding of the effects of the reed-lay interaction on the
oscillations produced with clarinets, especially with regard
to sound synthesis applications.

Several studies have focussed on attempting to incor-
porate the effects of the non-linear interaction between
the reed and the mouthpiece lay by means of a one-mass
model with non-constant lumped parameters. Adrien et al.
[10] (see [11] for more details) were among the first to take
this approach. In their model, each of the lumped param-
eters is defined as a unique function of the reed opening.
Although the authors claim that this method simulates the
effect of the reed rolling on the mouthpiece lay, no theoret-
ical or experimental method for determining the parameter
functions is given. The first published attempt at devel-
oping a theoretical method for determining the parameter
functions was made by Gazengel [12]. In that study, the
lumped parameters are derived from a (continuous-time)
distributed model of the reed. The main principle is based
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Figure 1. (a): Schematised view of a clarinet reed-mouthpiece-lip
system. The dashed line indicates the profile of the mouthpiece
lay, and p and p,, denote the mouthpiece pressure and the mouth
pressure, respectively. (b): One-mass model of the reed tip vi-
bration, with effective mass M, effective damping R, and stiff-
ness K. The effective external force F exerted on the reed equals
Sa,Ap, where S, is the effective driving surface, and Ap = p,, — p
is the pressure difference across the reed. The reed opening 4 is
related to the reed tip position y; by h = y,, — yr, where y,, is
the vertical position of the mouthpiece lay tip.

on the assumption that at each time instant, the lumped os-
cillator and the bar have equal potential and kinetic ener-
gies. This approach stems directly from Rayleigh’s energy
method for determining the eigenfrequencies of a beam
under flexure such as explained in standard books on vi-
bration theory (see for example [13, 14]), and has been
applied previously in a musical acoustics context to deter-
mine the first resonance of an organ reed [15]. The main
disadvantage of such an analytical approach is that the pa-
rameters can be derived only for idealised geometries of
the reed and the mouthpiece lay. Gazengel [12] provides
such results for a circular shaped mouthpiece lay curvature
with a wedge-shaped reed clamped to it. Although this can
provide some first insights into the global mechanical prin-
ciples and functioning of the reed-mouthpiece-lip system,
accurate parameter estimations that can be applied to real-
istic simulation of the sound production mechanism of an
actual clarinet (as opposed to one with idealised geome-
tries) cannot be obtained. This is because (1) the precise
shape of the reed and the mouthpiece lay have a strong in-
fluence on the sound and the playing characteristics of the
instrument, and (2) it is not clear how to incorporate the
interaction with the lip in a verifiable manner.

An alternative is to use numerical simulations of the
reed-mouthpiece-lip system, which are free from the ge-
ometrical limitations associated with the analytical ap-
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proach. The numerical model can be employed as a “lab-
oratory set-up” with which experiments can be run in a
very controlled manner. This approach has already been
used in a study by de Vries et al. [16] on the vocal folds,
the lumped parameters of which were determined from
numerical calculations with a finite-element model that is
based on a precise set of geometrical and material data.

In the accompanying Part I of this paper [17], the reed-
mouthpiece-lip system was modelled as a clamped bar,
taking into account only transverse vibrations, and includ-
ing the interaction with the lip and the lay. A numerical
model was developed using finite difference methods, and
the geometrical and material parameters were measured
and estimated from a real reed and mouthpiece. The prin-
cipal aim of the present study is to formulate a lumped
model of the reed-mouthpiece-lip system that exhibits a
vibrational behaviour that approximates that of the dis-
tributed model. The paper is structured as follows: in sec-
tion 2, the non-linear lumped model is presented, starting
from a quasi-static formulation. Section 3 then discusses
the estimation of the parameters of the non-linear lumped
model. In section 4, the non-linear lumped model is com-
pared with the distributed model in terms of response to
steady-state and transient driving signals. In section 5,
a discrete-time model for simulation of clarinet tones is
presented, and some of the effects of using a pressure-
dependent stiffness per unit area in a lumped reed model
are analysed. Finally some concluding remarks are pre-
sented in section 6.

2. Non-linear lumped model

2.1. Quasi-static model

The simplest possible lumped model of the clarinet reed-
mouthpiece-lip system is obtained by regarding it as a sys-
tem with stiffness only, neglecting any inertia or damping
properties. This is often referred to as a quasi-static model,
in which the reed moves in phase with the pressure driving
it [18]. The equation of motion for this model is

K (yr — yo) = SqAp, (1)

where K and S, are the effective stiffness and driving sur-
face, respectively, Ap is the pressure difference across the
reed, yy is the reed tip position, and yj is the equilibrium
value of y;. Because the strongest frequency components
of sustained pressure driving signals in clarinets are usu-
ally well below the resonance frequency of the reed, the
reed-mouthpiece-lip system can be regarded as “stiffness-
dominated”. It can be argued then that for simulation of
sustained notes, the quasi-static reed model already forms
a reasonably good approximation. However for oscilla-
tions in which the reed interacts with the lay, which occurs
at medium and high playing levels, the lumped parame-
ters K and S; cannot be thought of as constant. In order
to address this, the quasi-static model can be re-formulated
with K and S, as functions of Ap, such that it has the same
static behaviour as the distributed model presented in Part
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I. In such a formulation, it is more convenient to write the
equation of motion more compactly as

K. {Ap} (yL —yo) = Ap, ()
where
_ K{Ap}
K.{Ap} = S, (Ap] 3)

is the stiffness per unit area. Nederveen [19] formulated a
similar pressure-dependent reed model, in which the com-
pliance function (the reciprocal of K,) of the reed was de-
termined experimentally. The pressure-dependent quasi-
static formulation enables to model the reed response as
a static non-linearity; this approach has been taken in sev-
eral sound synthesis applications (for example in digital
waveguide models of the clarinet [20, 21, 22]). In prin-
ciple, the “reed-table” employed in these studies can be
adapted to incorporate a measured non-linear dependency
of K, on Ap.

2.2. One-mass dynamic model

Having defined a quasi-static model with equation (2), the
question arises to what extent the dynamic behaviour of
the reed can be approximated with a lumped model. As
mentioned in section 1, various previous studies have used
a one-mass model in which all of the lumped parame-
ters are functions of the reed tip displacement. In this ap-
proach, the reed is assumed to curl up to the mouthpiece
lay in a smooth way; the effective mass can then be thought
of as smoothly varying with the reed opening [10, 12].
However, as was demonstrated in Part I, the distributed
model predicts more complicated dynamic behaviours, in
which an area of the reed touches the lay before the part
of the reed on the instrument-side of that area has come
in contact with the lay (see also Figure 9 in Part I). This
finding was qualitatively confirmed by the experiments on
real reeds by Dalmont et al. [18]. As the reed moves to-
wards closure, the tip of the reed will, at least for some pe-
riod, move in a direction opposite to the point of the reed
that has just been held in place by the inelastic collision
with the mouthpiece lay. This type of motion of a clamped-
free bar inherently involves additional contributions from
one or more higher modes of vibration. Therefore, the re-
sulting reed tip motion is a priori not well described by a
one-mass model. Formulating the mass as a unique func-
tion of the reed tip position does not address this prob-
lem, since the instantaneous output of the model remains
that of a single-mode system; a one-mass model is simply
of the wrong order to simulate what is essentially multi-
mode vibrational behaviour. Hence adding a single mass
and damping term to equation (2) cannot serve the purpose
of simulating all of the complex dynamic behaviour exhib-
ited by the distributed model. Instead, its validity is lim-
ited to approximating the dynamic effects at small ampli-
tudes, in which there is no significant reed-lay interaction.
As will be demonstrated in section 3.2, it is reasonable to
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assume that the effective mass and damping are approx-
imately constant for small-amplitude oscillations. Under
this assumption, the equation of motion becomes

M,y + Ry + Ko {Ap} (yr — yo0) = Ap, “4)

where y; and j; denote reed tip velocity and acceleration,
respectively, M, is the mass per unit area, and R, is the
damping per unit area. Note that

R. = Mg, &)

where g is the reed damping, as used in many previous
studies [2, 23, 5, 24].

2.3. Reed-induced flow

As the reeds oscillates, it is assumed to produce an air flow
into the mouthpiece [4]:

up = S {Ap}yr, (6)

where S, is the flow-related effective surface. Although
S, is formulated starting from a different physical notion
than the effective driving surface .S, in equation (1), and
is indeed often treated as a different parameter [12, 11],
it can be shown that the two formulations are in fact the
same (see Appendix Al).

2.4. Discrete-time formulation

Computing time-domain reed responses with the non-
linear lumped model requires discretising equation (4).
For mathematical convenience, we first change to a vari-
able with zero equilibrium:

Mad; + Rad’ + K, {Ap}¢ = Ap, @)

where ¢ = yp — o is the reed tip displacement. Given
the variation of K, with Ap, it is wise to choose a discreti-
sation method that is unconditionally stable for any com-
bination of physically feasible values of constant lumped
parameters, so that the model cannot enter numerically
unstable regions. A second important criterion is that the
mapping from the analog to the digital domain is exact at
o = 0, since the input driving pressure usually contains
a strong DC component. Finally, we anticipate the use of
the discrete-time reed oscillator in the full simulation of
clarinet tones, in which it is advantageous to use a formu-
lation with a zero instantaneous response; this way, an in-
computable loop is avoided [25, 26]. Taking these criteria
into account, the impulse invariant method [27] is a good
candidate, with additional amplitude scaling to ensure the
exactness of the mapping at DC. This yields the difference
equation:

d(n+1) = bi{Ap(n)} Ap(n)
—ai{Ap(n)} ¢(n)
—ap(n—1), ®)
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where for a sample period 7', we have
ay =e ¢, )
and where the values of the coefficients a; and b; are ob-

tained for each time step n via interpolation of look-up
tables, the stored values of which are defined as

ar{Ap(n)} = —2¢7¢7% cos (o} {Ap(n)}T)
14+ a {Ap(n)} + a>

bilapon) = SR (10)
where
K, {A 2
w2 {Ap(n)} =\/%—%. (an

For any constant value of K,, we can compute the fre-
quency response of the discrete-time reed model. Fig-
ure 2 compares the discrete-time model to the (ideal)
continuous-time model in terms of amplitude response,
for four different K, values (chosen within the expected
range of variation), using a 44.1 kHz sample rate. In the
computations, M, and R, were set to the values estimated
from the distributed model, as will be described in section
3. The main drawback of the impulse invariant method is
that it causes aliasing effects [27], which is reflected in
Figure 2 in that high frequency components are less ac-
curately modelled than low frequency components. Given
that the reed response is low-pass, and that the reed is
mainly driven at low frequencies, these effects are not sig-
nificant as long as a sufficiently high sample rate is chosen.
Of course in the real system, K, varies during oscillation,
and a frequency response cannot be defined. Nevertheless
the plot provides a first indication that the effects of dis-
cretisation are small at 44.1 kHz sample rate.

Although the impulse invariant method is uncondition-
ally stable for discretisation of linear systems, stability
conditions are not as easily determined for the non-linear
system at hand, especially given that the non-linearity is
not analytically described. However, no stability problems
were encountered during our simulations.

3. Lumped parameter estimation

3.1. Estimation from static simulations

3.1.1. Effective stiffness per unit area

As explained in Part I, the dependence of K, on the reed tip
position can be derived from equation (2), using a series of
static numerical simulations with the distributed model to
provide the values of y; and Ap. As described in section 4
of Part I, the parameters of the numerical simulation were
determined via measurements on a Rico Plasticover reed
(hardness 2) and a Bundy mouthpiece. The parameter K,
was derived in Part I using a finite difference model using
two hundred reed sections. Figure 3 shows K, as a func-
tion of Ap, as derived from a simulation using one thou-
sand reed sections; the higher spatial resolution was cho-
sen in order to reduce the numerical artefacts introduced
by spatial discretisation of the mouthpiece lay shape.
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Figure 2. Reed frequency response, for 4 different values of ef-
fective stiffness. For the curves a, b, c, and d, the respective val-
ues are K, =4, 8, 12, and 16 MN m™>. The solid lines indicate
the analog responses, and the dashed lines indicate the digital re-
sponses. A 44.1kHz sample rate was used. The y-axis displays
the magnitude on a logarithmic scale, that is calculated as 20
logio|H(f)|, where H(f) is the complex frequency response at
frequency f.
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Figure 3. Effective stiffness per unit area as a function of pressure
difference, as derived from static simulations with the distributed
model.

3.1.2. Effective Reed Surface

The static simulations with the distributed model can also
be used to estimate how the effective reed surface varies
with Ap. This is done here using the two different formu-
lations, .S, and .S,.

The full equation of motion for the reed-mouthpiece-
lip system is given by equation (1) in Part I. Under quasi-
static conditions, damping and mass terms are ignored, and
all time-varying variables can be regarded as being unique
functions of Ap. The equation of motion can then be writ-
ten

0? 0

y
E) Yl(x)ﬁ(X,AP)] = Fext(x, Ap)
= +Fj;,(x, Ap)

= +an(x, Ap), (12)
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where F,,, = wAp is the driving force per unit length (w
is the width of the reed), and Fj;, and Fj,, are force terms
representing the interaction with the lip and the lay, re-
spectively. In the following, we will suppress in our nota-
tion the dependence of variables on Ap. For example, the
“reed state” will be written as y(x).

Regarding the lumped model, we can define the volume
of air V' that is displaced by moving from equilibrium state
Yo(x) to y(x):

L
V=w L [y(x) = yo(x)]dx, 13)

where L is the length of the reed. Now combining the fact
that u, = V' with equation (6) allows to deduce that
s(ap) =~ = L. (14)
yio o dyr
Hence the effective surface .S, can be calculated as a func-
tion of Ap by first computing and storing both V' and the
reed tip position yy, for a range of pressure difference val-
ues, and numerically computing the derivative dV/dyy.
The formulation of .S is more elaborate, and is based on
the principle that the potential energies of the distributed
and the lumped model should be equal for all static reed
states. The potential energy of the distributed model is

E,=E, + Ej, + E;,, — Ey, (15)
where
2
E, = %LL YI(x) <%(x)> dx (16)
is the potential energy stored in the reed,
1 Lo,
Eyp = EKlip Jo Ay[ip(x) dx (I7)

is the energy stored in the lip,

1 L
Elay = zKlay L) Aylzay(x) dx (18)

is the energy stored in the lay, and

Eo = |E, + Ejip + Epay| Ay (19)

0
is a term included to ensure that E, = 0 at equilibrium. In
the above equations, Kj;, and K;,, are the effective stiff-
nesses per unit length of the lip and the mouthpiece lay, re-
spectively, associated with the compression terms Ay;;,(x)
and Ay, (x) (see section 2 in Part I for more detailed de-
scriptions). The potential energy of the distributed model
can be calculated from the finite difference simulation re-
sults using numerical versions of equations (16), (17), and
(18).

In the lumped model, the infinitesimal variation of po-
tential energy dE, is the product of the effective elastic
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Figure 4. Effective surface as a function of pressure difference, as
derived from static simulations with the distributed model. Note
that the curves of S, (solid) and .S, (dashed) almost entirely over-
lap.

force KAp(yr — yo) and the infinitesimal displacement
dyr, hence we have

dE
d—" = K{Ap} (yz — y10).- (20)
yL

Combining equations (20), (2), and (3) gives

(5:)
Su(ap) = 222 @21)
p
Thus S, can be estimated by first computing the poten-
tial energy for a set of reed states (using the distributed
model), numerically calculating the derivative with respect
to y;, and then dividing by Ap.

Figure 4 shows S, and S; as a functions of Ap. The
plots confirm the equality of the two effective reed sur-
face formulations (see Appendix A1 for an analytic proof).
The curves in Figure 4 exhibit a sudden jump at about
Ap = 1550N m~2, and at the same point the curve in Fig-
ure 3 undergoes a jump in its first derivative; these dis-
continuities coincide with the jump in “separation point”
explained in section 5.3. of Part I. The staircase-like shape
of the plot in Figure 4 for large values of Ap is due to
the discretisation of the mouthpiece lay. That is, in the nu-
merical model, the lay does not present a smooth curving
boundary, but rather a stepped one, which results in small
step-wise variations of the variables used in the derivation
of S, and S,. This numerical artefact is neglible for small
values of Ap, and can be generally reduced by choosing a
higher spatial resolution in the numerical implementation
of the distributed model.

3.2. Estimation from dynamic simulations

The main advantage of including a mass and a damping
term is that it allows more realistic simulation of tran-
sients, in which there is often some excitation of the reed
resonance. In addition, damping and inertia play a key role
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in the transition to the clarion register [3, 4]. The effec-
tive mass per unit area for small-amplitude oscillations can
be derived from dynamic simulations with the distributed
model. For this purpose, the distributed model was excited
with ten different transient signals of the form of a con-
stant pressure Ap, plus a short, small-amplitude impulsive
signal in the shape of a Hanning window of 0.5 ms. For
each simulation, first the constant pressure value was ap-
plied. The Hanning pulse was then applied after the ini-
tial transient had decayed. The ten different constant pres-
sure values were chosen in the area around the predicted
threshold blowing pressure of approximately 1000 N m~2,
The added constant pressure values allow to investigate the
inertia effects in the pressure range in which the reed res-
onance is most likely to be excited under normal playing
conditions. For each simulation, the output signals result-
ing from the Hanning pulse excitation were analysed in
terms of resonance frequency and reed damping; this was
done by fitting the frequency-domain response of an an-
alytic harmonic oscillator model to that of the measured
data. Figure 5 shows the resulting estimated values. As
can be seen from the plots, both the resonance frequency
and the damping coefficient vary only marginally with
Ap within the pressure range around threshold. Hence for
small oscillations, we may define an angular resonance
frequency w, = 2xf,, that is related to the lumped pa-
rameters by

&

W? = (22)

=

Since the variation of K, with Ap is extremely small for
small driving oscillations around 1000 N m~2 (see Figure
3), it follows from equation (22) that the effective mass
per unit area M, does not vary significantly in this range
either, and approximately takes on the value

M, = K,(1000)/@? ~ 0.05 Kg m~2, (23)

where @, is the mean value over the measured reso-
nance values. Note that our estimate of M, is about twice
the value of 0.0231 Kgm™2 estimated by Worman [2].
Worman’s estimate of K, was effectively about 1.24 x
10’ Nm~3, so within the same range as the function plot-
ted in Figure 3, but higher than the value near threshold
or equilibrium. Of course, the estimated lumped parame-
ter values depend on the particular reed and lay shapes, as
well as the embouchure, so some discrepancies are to be
expected.

The damping parameter R, is not estimated here; in Part
I, the damping parameters of the distributed model were
fine-tuned such that the numerical simulation results ex-
hibited a small-amplitude damping behaviour that matches
with g ~ 2900s~! at its first resonance, similar to the
value found empirically by Worman. Hence for the lumped
model, we simply set R, = 2900M,.
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Figure 5. Estimation of the reed resonance frequency (top) and
reed damping (bottom), from ten transient simulations with the
distributed model. For each simulation, the driving pressure sig-
nal consisted of a constant value plus a Hanning pulse.

4. Response Comparisons

4.1. Steady-state response

In order to compare the non-linear one-mass dynamic reed
model and the distributed model for steady-state input sig-
nals, both were driven with a pressure difference signal of
the form:

Ap(t) = Ag[1 +sin(r fa1)], (24)

where A, and f; are the driving amplitude and frequency,
respectively. The DC-offset is included so that the signal
more closely resembles pressure difference signals typi-
cally observed in real clarinets. In order to get insight into
the effects of using a pressure-dependent K, the same sig-
nal was also applied to a lumped model with a constant
stiffness per unit area (set to the equilibrium value) and
“abrupt” inelastic beating, such as in [8, 9]. In other words,
the second lumped model is described by

if  yL<ym:
M,y + Ryyr + Ko (o — yo) = Ap,
otherwise:

YL=Ym V=0, (25)
where y,, is the maximum reed tip position. This formu-
lation can be discretised in the same way as equation (4),
but in this case results in a difference equation with con-
stant coefficients. Figure 6 shows the respective outputs
for a set of driving signals with different combinations of
amplitude (4, = 500, 1500, 3000, 4500 N m~2) and fre-
quency (f; = 200, 1000, 1600 Hz). As can be seen from
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Figure 6. Steady-state comparison between the distributed model, the lumped model with pressure-dependent K, [lumped (1)], and the
lumped model with abrupt beating [lumped(2)], for different driving frequencies and amplitudes. For each driving frequency, exactly

one period is plotted.

the plots, the results produced with the lumped model with
pressure dependent K, are very similar to the outputs of
the distributed model. The main discrepancies occur with
fa = 1000Hz, when driven at medium amplitude lev-
els (see Figures 6b and 6e). The distributed model then
exhibits a more complex behaviour in which the reed tip
temporarily swings back in the opposite direction, as dis-
cussed in the introduction.

For small-amplitude driving signals, the second lumped
model also produces results similar to those produced
with the distributed model. This could be expected, since
there is no significant reed-lay interaction in that case.
However for medium-amplitude driving signals, the sec-
ond lumped model consistently yields significantly dif-
ferent waveforms. At low driving frequencies, the second
lumped model also exhibits significant discrepancies for
large-amplitude driving signals (see Figures 6a and 6g).
That is, “fully beating” is also a regime that is not well
described with the second lumped model.

4.2. Transient response

The transient response of the lumped model can be tested
in a similar way as with the analysis of resonance and

T T
—— distributed | |
— — lumped

0.015 \

©
=}
=

0.005

reed tip displacement (mm)

-0.005

4 245 25 255 26 26.5 27 275 28 28.5 29
time (ms)

-0.01
2

Figure 7. Response of the reed to a short pulse.

damping properties in section 3.2, i.e., using a short Han-
ning pulse excitation, but in this case without an added
constant value. Figure 7 compares the Hanning pulse re-
sponse of the lumped model to that of the distributed
model; the close match indicates the correctness of the ef-
fective mass estimate. We note that, as discussed in the
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introduction, the lumped model only approximates the
dynamic behaviour of the distributed model for small-
amplitude oscillations.

5. Simulation of clarinet tones

5.1. Modelling the coupled system

A simplified clarinet -in the form of an open-ended, 40cm
long cylindrical main duct with a radius of 6.5mm, con-
nected to a conical and a cylindrical section that model
the mouthpiece -was simulated in the discrete-time do-
main using the wave digital modelling (WDM) approach
outlined in [28]. The wave digital model performs an op-
eration that is equivalent to calculating the in-going wave
p~ via linear convolution of the out-going wave p* with an
approximation r s of the aircolumn reflection function:

P =ry * pt. (26)

When the aircolumn is coupled to the reed, the system can
be driven into periodic sustained oscillations at frequen-
cies near the aircolumn resonance frequencies, in which
case there is an oscillating volume flow uy through the
reed channel. Following the studies in [7, 29, 9], this flow
is assumed to obey:

Ap=pu—p =signup) -2 (L) @
D = Pm — p = s1g0luy s \wn/)

where h = y,,—y; is the reed opening. The sign of the vol-
ume flow is included such that the flow can become both
positive and negative. The total flow into the mouthpiece
is calculated as the sum of the flow u entering through the
reed channel and the flow u, that is induced by the motion
of the reed (see equation (6)):

u=uys+u, (28)

and the pressure and volume flow at the reed are assumed
to be a superposition of the in-going and out-going waves:

p=p+p. (29)
Zou=p*—p, (30)

where Z is the characteristic impedance at the mouth-
piece entry. In combination with equations (6) and (4), the
above equations describe the complete coupled system. A
numerical formulation of this system is given in Appendix
A2.

5.2. Properties of the simplified clarinet

The simplified clarinet described above contains two non-
linearities, namely the fluid-dynamical non-linear relation
between uy, p, and & in equation (27), plus a second,
purely mechanical non-linearity that is introduced with
the use of a pressure-dependent stiffness per unit area.
The simulation of the simplified clarinet can be used in
order to investigate various effects that the mechanical
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Figure 8. Volume flow versus pressure difference, as calculated
for the lumped model under quasi-static conditions, using a for-
mulation with pressure-dependent stiffness per unit area [lumped
(1)], and a formulation with constant stiffness per unit area and
abrupt beating [lumped(2)].

non-linearity has on the production of sustained oscilla-
tions. Three specific features are addressed here. First,
the flow versus pressure difference behaviour is analysed.
This provides some initial clues about the basic properties
such as threshold pressure [30]. The second feature that
is analysed is the dependency of the playing frequency on
the mouth pressure. Finally, the spectral evolution of the
mouthpiece pressure waveform for an increasing mouth
pressure is calculated. This gives insight to how the me-
chanical non-linearity influences the timbre of the sound
produced by the simplified clarinet.

5.2.1. Volume flow versus pressure difference

The flow versus pressure difference curve is usually ob-
tained by measuring or calculating the amount of flow
through the reed channel under static conditions (i.e.,
without reed oscillation), for a range of pressure differ-
ences. The relation between pressure difference and flow
obtained this way also holds for quasi-static conditions
(i.e., when the reed is assumed to move exactly in phase
with the pressure difference) [7]. For the simplified clar-
inet model, the curve can be computed directly, by first in-
verting equation (27), and then combining with equation
(2) to eliminate y;,, which for Ap > 0 yields

Ap

2Ap
Kq(Ap)

)

Up =W |ym—yo— D

Figure 8 compares the computed curves for the two lum-
ped models (one with pressure-dependent stiffness per unit
area and one with abrupt beating). The shape of the curve
depends heavily on the stiffness of the reed [31], as well as
on the interaction with the lip and the lay. Hence we stress
that there is by no means a “definitive” curve, but rather a
set of curves that depend on the properties of the reed, the
player’s embouchure, and the mouthpiece lay. With regard
to comparing the two lumped models, the curve maxima
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Figure 9. Playing frequency as a function of mouth pressure. All
data-points were calculated using FFT-analysis of the waveforms
obtained by running the simulation with a constant mouth pres-
sure. Plotted are the results obtained with the lumped model with
pressure-dependent stiffness per unit area [lumped(1)], and with
the lumped model with abrupt beating [lumped(2)].

are very close, thus it can be expected that the values of
the threshold pressure differences (which lie closely near
the maxima, on the right side [31]) are very similar. On the
other hand, the pressure difference at which the reed fully
closes (i.e., uy = 0) is much larger for the first lumped
model. In other words, when using a pressure-dependent
stiffness per unit area, there is a much wider mouth pres-
sure range for which sustained oscillations can be pro-
duced; this finding is in qualitative agreement with mea-
surements by Dalmont et al. [18].

5.2.2. Playing frequency versus mouth pressure

Experiments with a mechanically blown clarinet by Bak
and Dgmler [32] have shown that in real clarinets, the
playing frequency is positively correlated to the mouth
pressure. Although for small-amplitude oscillations, this
dependence can to some extent also be explained in terms
of hydrodynamic effects [7], most of the dependence is
due to the changing flexibility of the reed [32, 7]. In order
to investigate this dependence for the reed-mouthpiece-
lip system simulated in the current study, the two lumped
models were applied in simulations with feedback from
the bore, and subsequently the fundamental frequency of
each the resulting sustained oscillations was estimated us-
ing an FFT in combination with a second-order interpo-
lation routine in order to obtain a higher frequency reso-
lution. The resulting data is plotted in Figure 9. Using a
pressure-dependent stiffness per unit area, the playing fre-
quency gradually increases with mouth pressure, whereas
the use of a constant stiffness per unit area and abrupt beat-
ing results in a noticeable dip in frequency. A small grad-
ual rise with mouth pressure of about 20 cents over a pres-
sure range of 1600 N m~!, as found with the first lumped
model, is in fact quantitatively similar to the experimental
results obtained by Bak and Dgmler.
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5.2.3. Spectral Evolution

The mechanical non-linearity of the reed may also be ex-
pected to have considerable effects on the spectral evolu-
tion of the radiated sound. In order to investigate these ef-
fects, a slowly increasing mouth pressure was applied in
the simulation. Figure 10 depicts the resulting mouthpiece
pressure spectrograms. After a short period of constant
mouth pressure, it was linearly increased from 1100 to
4000 N m~2 over a period of 4.5 seconds, and then quickly
reduced to the starting value.

When a constant stiffness per unit area is used, the spec-
trum does, apart from the dip in pitch, not show much
change after the reed has started beating (at about ¢ =
0.25s). That is, at the point where the reed starts to beat,
many partials are immediately produced, and thereafter the
spectrum is only very marginally slightly affected by the
gradual increase in mouth pressure. On the other hand,
when employing a pressure-dependent stiffness per unit
area there is clearly a gradual rise of higher harmonics
during the period of increasing mouth pressure, i.e., the
spectral content is a smooth function of the mouth pres-
sure. The latter finding is in qualitative agreement with the
experience of clarinettists that with a given embouchure,
blowing softer produces a “mellow” tone while blowing
harder produces a “bright” tone. Such timbral shifts in real
clarinets can also explained by non-linear propagation ef-
fects in the air column [33], but these can be expected only
to become significant at high playing levels. Hence the re-
sults indicate that the reed-lay interaction can be a signifi-
cant factor in the correlation between mouthpiece pressure
and timbre.

6. Conclusions

In this paper we have proposed a method for inclusion of
the effects of the reed-lay interaction in a lumped oscilla-
tor model of the reed-mouthpiece-lip system. A non-linear
lumped model was presented, in which the stiffness per
unit area is a pressure-dependent parameter. This way, the
lumped model can be defined to have exactly the same
static behaviour as the distributed model presented in the
accompanying paper [17]. Methods for estimating the pa-
rameters of the non-linear lumped model were presented,
using both static and dynamic simulations with the dis-
tributed model.

A discrete-time formulation of the non-linear lumped
model was developed and used to demonstrate that it
closely approximates the vibrational behaviour of the dis-
tributed model, with exception to cases in which the dis-
tributed model exhibits oscillations that involve signifi-
cant contributions from the higher modes of the reed. In
many previous studies, the lumped model is formulated
using a constant stiffness per unit area, and reed beating is
modelled as an “abrupt cap” on the reed position. Time-
domain simulations with this second lumped model shows
that it only approximates the distributed model for small-
amplitude regimes, in which there is no significant reed-
lay interaction.
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Figure 10. Spectrograms of the mouthpiece pressure, as computed with the fully coupled system, using a lumped model with a pressure
dependent stiffness per unit area [lumped(1)], and with constant parameters and abrupt beating [lumped(2)]. The mouth pressure was
linearly increased from 1100 N/m? to 4000 N/m?, and then quickly reduced to 1100 N/m”. An 44.1 kHz sample rate was used.

The non-linear lumped model of the reed-mouthpiece-
lip system enables us to investigate the influence that the
phenomenon of the reed bending against the lay has on
the sound and playing characteristics of a clarinet. Using a
simplified model of the air column (that is, an open-ended
cylindrical duct with a mouthpiece), a time-domain simu-
lation of a clarinet-like instrument that produces sustained
oscillations was formulated. This simulation was run with
the two different lumped models mentioned above. The re-
sults show that the formulation with pressure-dependent
stiffness unit per area exhibits (1) a positive correlation
between playing frequency and mouth pressure that is of
the same order as previously found via experiments by
Bak and Dgmler [32], and (2) a smooth growth of higher
partials with increasing mouth pressure, which is in qual-
itative agreement with players’ experiences. Moreover,
the sustained oscillations resulting when using a lumped
model with “abrupt beating” are significantly different.

It must be noted that our results are based only on a
numerical simulation of a clarinet-like system, and more
definite conclusions concerning the effects of the reed-
lay interaction can only be made after thorough compar-
ison between simulations and experiments with real clar-
inets. Moreover, all simulations use a particular mouth-
piece, reed, and “embouchure”. Hence drawing more gen-
eral conclusions would require to apply numerical exper-
iments to a wider variety of system and parameter con-
figurations. Another improvement would be to use a 2D
rather than a 1D distributed model, so that the influence of
the first torsional mode — that has recently been related to
musical quality [34] — can be taken into account. We envis-
age that such laboratory and numerical experiments would
form the logical next steps to undertake in future work on
this subject.
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Finally, we would like to point out that the work pre-
sented here has direct implications for musical sound syn-
thesis. As shown in section 5.2, varying the mouth pressure
corresponds to changing the amplitudes of the higher har-
monics of the generated oscillations. This feature is typi-
cally aimed for in the context of sound synthesis via phys-
ical modelling; it allows for the same kind of natural and
intuitive timbre control that is exerted by the player of a
real woodwind instrument. Development of a full, musi-
cally useful sound synthesis model will however require
more research, since it would inevitably involve the pa-
rameterisation of embouchure changes.

Appendix
Al. Equality of S, and S,

The effective surface formulations S, and S, are given
in equations (14) and (21), respectively. These equations
hold under quasi-static conditions, and the equation of mo-
tion for the distributed model is then given by equation
(12). There are no losses and the kinetic energy is zero at
all times, hence all the energy in the system consists of
potential energy. Of the forces acting on the reed, Fy;, and
Fj,4y are passive restoring forces, while Foy, = wA,, is the
external driving force that supplies energy into the system.
It follows that the work done through F,,; must equal the
change in potential energy.

Consider now that due to the supplied driving force per
unit length, the reed moves a small amount from y(x) —
dy(x) to y(x). The work per unit length done at position x
is thus

W (x) = Fexi(x) dy(x) = w Apdy(x). (AD)
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The infinitesimal change in potential energy of the system
is
L

L
dE, = J Wi(x)dx = J wApdy(x)dx
0 0

L
= Ap [w J dy(x) dx] = ApdV, (A2)
0
where
L
dVv =w J dy(x)dx (A3)
0

is the infinitesimal amount of volume displaced by mov-
ing the reed by dy(x). Equation (A2) can be rewritten to

Obtain:
—

Ap  dyr

(A4)

Now substituting equation (21) at the left-hand side and
equation (14) at the right-hand side gives

Sa{Ap} = S, {Ap}. (AS)

A2. Numerical formulation of the coupled
system

The objective is to solve the system of equations

Ap(t) = Myg(1) + R.(D),
= +K, [Ap(D)} (), (A6)
L) = () + v (A7)
h(t) = ym = 100, (A8)
u () = S{Ap(H)) yr. (A9)
P = (rp*p%) (@), (A10)

2

pm(0) = p(t) = signlu; (0] 2 [;fh((’t))] (A1)
u(t) = us(t) +u,(t), (A12)
p(t) = p*(1) + (D), (A13)
Zou(t) = p*(H) = p(0), (Al4)
Ap(t) = pu() — p(0) (A15)

at the “new” discrete-time instant t = (n+1)T', knowing all
the variables at the previous time instants. As explained in
section 2.4, equation (A6) is discretised using a scaled ver-
sion of the impulse invariant method, which yields equa-
tion (8) that enables the new reed displacement ¢(n + 1)
to be computed from the pressure difference Ap(n) at the
previous time-instant. The new reed position y; (n+ 1) and
opening A(n + 1) are then computed using equation (A7)
and (A8). If A(n + 1) becomes negative, it is set to a value
close to zero. The new reed-induced flow is now obtained
by discretising equation (A9) using the backward Euler
rule,

yr(n+1)—yr(n)
T

un+1)=S8 (A16)
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where the effective surface .S is now taken as a constant
equal to the value estimated for .S, near equilibrium. This
simplification has only a marginal effect on the solution
of the system; this was checked by comparing the reed-
induced flow output of the lumped model to that of the
distributed model, which gave very similar results. Next,
we seek to obtain us(n + 1). Combining equations (A11),
(A12), (A13) and (A14) yields

p uf(n +1) 2 _
Pm(n+1) = Zous(n+1) = Zou,(n+1) =2p (n+ 1),
where o(n+ 1) =signfus(n+ 1)]. (A18)

This is a non-linear equation in us(n + 1) that can be writ-
ten

Dio [us(n+ D]+ Dyus(n+ 1)+ D3 =0, (A19)

where Dy, D, and D3 are temporarily considered as con-
stants within each time step,

p
= T O (A20)
Dy = Z, (A21)
Dy = 2p (n+1) = pu(n+1)

+ Zou(n+ 1), (A22)

Because the wave digital model of the simplified clarinet
employs a bidirectional delay-line to model the cylindri-
cal entry section of the mouthpiece [28], the new value of
the reflected wave p~(n + 1) can be obtained simply from
the lower delay-line of the model. Equation (A19) is now
solved using the Newton-Raphson method. The function
for which the root is solved is monotonic under all circum-
stances, thus equation (A19) always has a single, unique
solution. Using the previous value u s (#) as the initial value
for the iteration, it was found that nine iterations are typ-
ically sufficient for an accurate solution of the non-linear
equation. The new volume flow u(n + 1) into the instru-
ment is now obtained via equation (A12), and is used to
calculate the current in-going wave via equation (A14),

prm+ 1) =p (n+ 1)+ Zoun+1). (A23)

Finally, we compute the new mouthpiece pressure and
pressure difference with equations (A13) and (A15). After
this, the time index is incremented, and the process is re-
peated. We note that our numerical formulation is similar
to the one proposed in previous studies [5, 9]. However, as
pointed out in [24], these formulations amounts to adding
a fictitious delay to the system. This artefact is avoided in
our formulation; the key-point is to employ a reed oscilla-
tor difference equation (equation 8) with a zero instanta-
neous response.

References

[1] J. Backus: Small-vibration theory of the clarinet. J. Acoust.
Soc. Am. 35 (1963) 305-313.

445



ACTA ACUSTICA UNITED WITH ACUSTICA

Vol. 93 (2007)

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

446

W. E. Worman: Self-sustained nonlinear oscillations of
medium amplitude in clarinet-like systems. Dissertation.
Case Western Reserve University, 1971.

T. A. Wilson, G. S. Beavers: Operating modes of the clar-
inet. J. Acoust. Soc. Am. 56 (1974) 653-658.

S. C. Thompson: The effect of the reed resonance on wood-
wind tone production. J. Acoust. Soc. Am. 66 (1979) 1299—
1307.

R. T. Schumacher: Ab Initio calculations of the oscillations
of a clarinet. Acustica 48 (1981) 71-85.

J. Gilbert, J. Kergomard, E. Ngoya: Calculation of the
steady state oscillations of a clarinet using the harmonic
balance technique. J. Acoust. Soc. Am. 86 (1989) 35-41.

A. Hirschberg, R. W. A. van de Laar, J. P. Marrou-Mau-
rieres, A. P. J. Wijnands, H. J. Dane, S. G. Kruijswijk,
A.J. M. Houtsma: A Quasi-stationary Model of Air Flow
in the Reed Channel of Single-reed Woodwind Instruments.
Acta Acustica 70 (1990) 146-154.

D. Rocchesso, F. Turra: A generalized excitator for real-
time sound synthesis by physical model. Proceedings of
the Stockholm Musical Acoustics Conference, 1993, 584—
588.

B. Gazengel, J. Gilbert, N. Amir: Time domain simulation
of single reed wind instrument. From the measured input
impedance to the synthesis signal. Where are the traps?
Acta Acustica 3 (1995) 445-472.

J. M. Adrien, R. Caussé, E. Ducasse: Dynamic modeling of
stringed and wind instruments, sound synthesis by physical
models. Proceedings of the 1988 International Computer
Music Conference, Koln, 1988, Computer Music Associa-
tion, 265-276.

E. Ducasse: A physical model of a single-reed wind in-
strument, including actions of the player. Computer Music
Journal 27 (2003) 59-70.

B. Gazengel: Caractérisation objective de la qualité de
justesse, de timbre et d’émission des instruments a vent a
anche simple. Dissertation. Université du Maine, Le Mans,
France, 1994.

M. Roseau: Vibrations in mechanical systems : analytical
methods and applications. Springer-Verlag, Berlin, 1987.

W. T. Thomson: Theory of vibration with applications.
Stanley Thornes Ltd, Cheltenham, UK, New York, 1972.

R. Stuifmeel: Vibration modes of a metal reed of a reed
organ pipe: Theory and experiment. Tech. Rept. Eindhoven
University of Technology, 1989.

M. P. de Vries, H. K. Schutt, G. J. Verkerke: Determination
of parameters for lumped parameter models of the vocal
folds using a finite-difference method approach. J. Acoust.
Soc. Am. 106 (1999) 3620-3628.

F. Avanzini, M. van Walstijn: Modelling the mechanical
response of the reed-mouthpiece-lip system of a clarinet.
Part I. a one-dimensional distributed model. Acta Acustica
united with Acustica 90 (2004) 537-547.

J.-P. Dalmont, G. Gilbert, S. Ollivier: Nonlinear charac-
teristics of single-reed instruments: quasistatic volume flow

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

van Walstijn, Avanzini: A Lumped Model of the Clarinet Reed

and reed opening measurements. J. Acoust. Soc. Am. 114
(2003) 2253-2262.

C. J. Nederveen: Acoustical aspects of woodwind instru-
ments. Frits Knuf, Amsterdam, The Netherlands, 1969.
Revised 1998 Nortern Illinois University Press.

J. O. Smith: Efficient simulation of the reed-bore and bow-
string mechanisms. Proceedings of the 1986 International
Computer Music Conference, The Hague, Netherlands,
1986, Computer Music Association, 275-280.

P. R. Cook: Non-linear periodic prediction for on-line
identification of oscillator characteristics in woodwind in-
struments. Proceedings of the 1991 International Com-
puter Music Conference, Montreal, Canada, 1991, Com-
puter Music Association, 157-160.

J. O. Smith: Discrete-time modeling of acoustic systems
with applications to sound synthesis of musical instru-
ments. Proceedings of the Nordic Acoustical Meeting,
Helsinki, 1996, 21-32. Plenary paper.

R. T. Schumacher: Self-sustained oscillations of the clar-
inet: An Integral Equation Approach. Acustica 40 (1978)
298-309.

F. Avanzini, D. Rocchesso: Efficiency, accuracy, and stbil-
ity issues in discrete-time simulations of single reed wind
instruments. J. Acoust. Soc. Am. 111 (2002).

M. O. van Walstijn: Discrete-time modelling of brass and
reed woodwind instruments with application to musical
sound synthesis. Dissertation. Faculty of Music, University
of Edinburgh, 2002. http://www.ph.ed.ac.uk/~maarten/.

P. Guillemain: A digital synthesis model of double-reed
wind instruments. EURASIP Journal on Applied Signal
Processing 7 (2004) 990-1000.

J. Proakis, D. Manolakis: Digital signal processing. Princi-
ples, algorithms, and applications. MacMillan Publishing
Company, New York, 1992.

M. O. van Walstijn, D. Campbell: Discrete-time modelling
of woodwind instrument bores using wave variables. J.
Acoust. Soc. Am. 113 (2003) 575-585.

J. Kergomard: Elementary considerations on reed-instru-
ment oscillations. — In: The Mechanics of Musical Instru-
ments. A. Hirschberg, J. Kergomard, G. Weinreich (eds.).
Springer-Verlag, New York, 1995.

A. H. Benade: Fundamentals of musical acoustics. Oxford
University Press, New York, 1976.

S. E. Stewart, W. J. Strong: Functional model of a simpli-
fied clarinet. J. Acoust. Soc. Am. 68 (1980) 109-120.

N. Bak, P. Dgmler: The relation between blowing pressure
and blowing frequency in clarinet playing. Acta Acustica
63 (1987) 238-241.

A. Hirschberg, J. Gilbert, A. P. J. Wijnands, A. M. C.
Valkering: Musical aero-acoustics of the clarinet. Journal
de Physique IV, Toulouse, France, 1994, 559-568. Third
French Conference on Acoustics.

F. Pinard, B. Laine, H. Vach: Musical quality assessment
of clarinet reeds using optical holography. J. Acoust. Soc.
Am. 113 (2003) 1736-1742.



