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1 Introduction

Time-domain modeling of musical instruments has been an active area of study for a few decades now. The

objective for developing such predictive models is generally twofold. Right from the first developments [1, 2, 3],

a major aim has been to create a better understanding of how sound is generated with instruments, providing

insights and results that cannot be obtained within a frequency-domain approach due to the non-linearities

involved. While some early models were already used for generating audio output examples [4], the potential

for musical sound synthesis applications has only become significant with the steady increase of commonly

available digital processing power. The two objectives (i.e. ‘understanding’ and ‘physics-based synthesis’)

cannot really be seen as independent; they can be said to ‘converge’ with model precision, i.e. good time-

domain model should also sound realistic. Generally, computational efficiency tends to be a higher priority

when the main objective is sound synthesis, especially if a real-time implementation is required. In comparison

with classical, waveform-oriented sound synthesis methods, such as additive synthesis or FM synthesis, the

physical modeling approach offers the crucial advantage of inherent simulation of natural transients, and in

addition provides a direct link between model parameters and the real-life actions of a player.

The first wind instrument time-domain simulation to appear in the literature is the clarinet model by

Schumacher [2]. In this model, the response of the instrument air column is computed by means of a convolution

with its impulse response. The convolution is part of a non-linear feedback loop that forms the basic structure

of a physical model of a wind instrument (see Figure 1), where the non-linear part corresponds to the reed

excitation mechanism. This type of formulation was later generalized for simulation of a wide variety of self-

sustaining musical oscillators by McIntyre, Schumacher and Woodhouse [3], and has since been adopted and

developed further by a large number of researchers (see for example, [5, 6]). Although remarkably realistic
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sound output can be obtained within this approach, the convolution method is not particularly convenient for

application to musical sound synthesis due to the fact that a different impulse response is required for each

configuration of the instrument bore. For example, in order to simulate the functioning of the valves of a

trumpet, the model would have to switch or interpolate between a large set of impulse responses. In order

to enable precise control of those parts of the instrument that are used for pitch adjustment (i.e., toneholes,

valves, or slides) without having to resort to methods which require large amounts of computational power

and storage space, a spatially modular approach is required. That is, if the instrument is modelled as a series

of interacting modules, these modules can be controlled independently, which tends to allow for a much more

direct, simpler and musically more meaningful form of parameterization. For example, a modular clarinet

model consists of a series of cylindrical bore sections and tonehole units, and in a way analogous to a real

clarinet player, the pitch of the instrument can then be adjusted by opening and closing of the holes.

This paper focuses on modular, wave-based discrete-time modeling of the resonator oscillations. The main

advantage of using a wave-based approach is that it explicitly simulates the way in which waves build up

in a real instrument, and therefore inherently yields a spatial representation. The wave-based approach also

happens to be computationally efficient, mainly due to the fact that lossless traveling of waves in 1D waveguides

can be implemented with very few arithmetic operations. With regard to modeling the excitation mechanism,

we refer to the literature, that provides general overviews (e.g. [7, 8, 9]), as well as many instrument-specific

models (e.g. [10, 11, 12]).

The paper is organized as follows. The main concepts and methods for wave-based modeling of wind

instrument bores, are explained in Section 2. Section 3 explains wave digital modeling of piecewise conical

section in more detail, and section 4 describes a full wave digital model of the trumpet. Finally some concluding

remarks and suggestions for future research are outlined in Section 5.

2 Modular Approaches to Wave-Based Modeling

2.1 Digital Waveguide Modeling

The digital waveguide modeling (DWM) approach is based on spatial-temporal sampling of the traveling-wave

solutions of 1D waveguides [13], and is therefore particularly suited to modeling wave propagation in non-flaring

ducts (i.e. cylindrical and conical duct sections). For example, lossless pressure oscillation in a cylindrical

duct is described by the equation

∂2p

∂x2
=

1

c2

∂2p

∂t2
, (1)

where p denotes pressure as a function of position (x) and time (t). It is well-known that the solutions of

Equation 1 can be written as a sum of two pressure waves traveling in opposite directions, with speed c. At
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any point x = xi in a duct of cross-section S, these waves (p+
i , p−i ) are related to the local pressure pi and

volume velocity ui by

pi = p+
i + p−i and ui =

p+
i − p−i

Z0

, (2)

where Z0 = ρc/S is the characteristic impedance, and ρ is the mean air density. Considering then a cylindrical

duct section of length L (see Figure 2(a)), the relationship between the Fourier transforms of the pressure

waves at either side of the section may be written expressed by the transfer function

H(ω) =
P+

2

P+
1

=
P−1
P−2

= e−jkL, (3)

where k = ω/c is the wave number, and where ω denotes angular frequency. In the case of neglecting the

effects of wall losses, H(ω) is merely the frequency-domain representation of a delay of L/c seconds. This

can be simulated in discrete-time as follows. Given a sample period T = 1/fs, wave propagation from one

end to the other is simulated with a delay-line of integer length N in series with a fractional delay filter

that implements a non-integer delay-length of D samples; the total delay (N + D)T realized by this series

should closely approximate L/c within the lower part of the frequency range. Wave propagation occurs in two

directions, and the pressure at a specific point along the duct axis can be found by summing the forward- and

the backward-traveling waves at that point. For realizing a fractional delay, various types of filters designs can

be applied, amongst which lower-order Thiran all-pass filters and Lagrange FIR interpolation filters are most

commonly used [14].

Accurate modeling of a cylindrical bore however requires incorporating the effects of viscothermal wall losses;

not doing so would lead to incorrect amplitudes and frequencies of the natural resonances of the simulated

instrument. Viscothermal losses can be taken into account by re-writing the transfer function as:

HL(ω) = e−ΓL, (4)

where Γ is a lossy, complex-valued propagation constant [7]. The lossy transfer function HL(ω) contains the

same delay-term as the lossless transfer function. As in the lossless case, this delay can be simulated by means

of a delay-line. What remains is to model the propagation losses, which can be formulated with the transfer

function:

Hloss(ω) =
HL(ω)

H(ω)
=

e−Γ L

e−j ω L/c
. (5)

We can approximate this expression with a digital filter, and implement the complete propagation path by

cascading this “loss-filter” with the delay-line. The resulting lossy digital waveguide structure is depicted in

Figure 2(b). The most straightforward way to approximate the propagation losses is by means of an FIR filter
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[15]. However, for obtaining accurate results the FIR filter needs to be very long and therefore expensive.

Designing accurate lower-order IIR designs has been shown to be possible, using well-known methods such

as Prony, Hankel and output-error designs [16, 17]. The main drawbacks of these techniques are (1) their

complexity involved in computing the filter coefficients and (2) the lack of robustness with variation of the

duct parameters [16]. This makes these techniques unsuitable, for example, for application to modeling a

trombone slide, which requires dynamic variation of the filter. Abel et al. [17] developed a robust, parametric

IIR design, using cascaded first-order shelving filters, which gives very accurate results (deviation within a

fraction of a dB) for the entire audio bandwidth for filter orders as low as 4. The only small drawback of their

approach is, since the design is an ad-hoc fit, it does not converge towards the ideal response with increasing

filter order.

Frequency-dependent termination losses, such as occur at the open end of a duct, are simulated using a

digital filter that is designed to approximate the termination reflectance

RL(ω) =
ZL(ω) − Z0

ZL(ω) + Z0

, (6)

where ZL(ω) is the termination load. For most wind instruments, the radiation impedance of unflanged open

ends as formulated by Levine and Schwinger [18] gives a suitable formulation of the termination load. Scavone

[19] gives a convenient wide-band approximation to these formulas. For discrete-time modeling of an open-

ended cylindrical duct, a reflectance filter RL(z) has to be inserted into the structure in Figure 2(b) such that

it calculates the backward-traveling wave p−2 from forward-traveling wave p+
2 .

• Conical Sections

The main bore of many wind instruments, such as the saxophone or the bassoon, is not cylindrical but conical.

As with the cylindrical duct, the solution to the conical duct wave equation can be written as a sum of a

forward- and a backward- traveling wave [7]. One essential difference is that the pressure waves are now scaled

by the distance r from the cone apex. Hence propagation of spherical pressure waves inside a conical section can

be modelled in the same way as for cylindrical section, using a cascade of a delay-line, a fractional delay filter

and a loss-filter, but with an added scaling term to account for the spreading of the wavefront over a varying

cross-section. A second difference in comparison with a cylindrical section is that the characteristic impedance

is now frequency-dependent [7]. The main consequence is with regard to formulating scattering junctions

between sections. It was shown in [16] that a general junction model, that models a junction between any two

non-flaring sections (see for example the junction between two conical section Figure 3(a)), can be formulated

as depicted schematically in Figure 3(b), where for a given where wavefront ratio B = S2/S1 = (a2/a1)
2, the
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IIM TICM BT

b0

(

−1 + eαT
)

−1 −
e−αT

− 1
αT

α
α + β

b1 0 e−αT + e−αT
− 1

αT
α

α + β

a1 e−αT e−αT α − β
α + β

Table 1: Coefficients of the digital junction filter. β = 2/T is the bilinear operator.

coefficients are

C1 =
2B

B + 1
, C2 =

2

B + 1
, C3 =

B − 1

B + 1
, (7)

and where the element Rj(z) is a digital approximation to the analog junction filter:

Rj(s) =
−α

s + α
, with α =

γ2S2 − γ1S1

S2 + S1

, (8)

where γ1 = c/r1 and γ2 = c/r2. For a cylindrical section, we have γ = 0. Hence if both sections are cylindrical,

α equals zero, and the junction filter becomes inactive, not passing through any signal, and the structure

in Figure 3(b) ‘collapses’ into a standard “Kelly-Lochbaum junction” that implements a wavefront surface

discontinuity.

Various different methods can be used to discretize the analog junction reflection filter. Välimäki [20] applied

the impulse invariance method (IIM), whereas Scavone [19] and Amir [21] obtain a discrete-time version of the

junction filter via the bilinear transform. A third method can be found in the work by Mart́ınez et al. [22], who

obtain the reflected wave by means of a recursive formulation of time-interpolated convolution of the junction

filter impulse response with the incident pressure wave. We will refer to this method as the “time-interpolated

convolution method” (TICM). It can easily be shown that all three methods are equivalent to passing the

incident pressure wave through a first-order digital filter:

Rj(z) =
b0 + b1z

−1

1 + a1z−1
. (9)

Table 1 summarizes the coefficients as derived with these methods. For all three, the digital junction filter

is exact at DC, and exhibits an increase in the deviation from the ideal filter with frequency. The responses

obtained with the TICM and the BT are usually extremely similar, except for extreme values of α that

correspond to modeling extreme taper discontinuities.

All three discretization methods mentioned above convert stable analog filters into stable digital filters.

Hence if the analog junction filter Rj(s) is stable, then its discrete-time counterpart Rj(z) is also stable.

Unfortunately, Rj(s) is not stable for all physically feasible cases [20, 19]. From Equation 8 we can see that
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the analog filter is only stable if α > 0. This is true if

1

r2

>
B

r1

. (10)

The use of an unstable filter element is generally seen as problematic, since its impulse response exhibits

unstable growth. However, the continuous-time model of a bore with conical sections has been shown to be

stable despite the existence of local unstable elements [23, 24]. Although no proof has been found, numerous

tests with conical bore systems have indicated that the discrete-time model also remains stable under certain

circumstances. That is, no evidence of unstable growth have been found whenever (1) using the bilinear

transform or the TICM to discretize the junction filter, and (2) not including any loss-filters in the conical

sections of the bore model. Instability due to round-off errors only appears to take hold in implementations

where low number precision is used. However, including losses in conical sections generally causes instability

problems [16], and therefore specific solutions are required to implement such models (see Section 3.3).

2.2 Wave Digital Modeling

Wave digital modeling (WDM) is a technique that combines DWM with wave digital filter (WDF) techniques

[25]. The latter were designed for discretization of analog networks [26]. The resulting digital networks are

called wave digital filters (WDFs). The classical analogy between electric and acoustic systems raises the

possibility of employing WDF techniques for the discretization of lumped elements in a model of an acoustic

system. WDF techniques are similar to DWM techniques in the sense that they both digitize continuous-time

models using wave variables. This section summarizes the modeling principles of this approach with respect

to time-domain modeling of wind instrument bores.

Wave digital models are derived from a transmission-line description of a wind instrument bore. The

approach thus requires that a transmission-line description or “equivalent network” is found for each individual

bore component. The procedure for the derivation of the wave digital model of an individual bore component

is similar to the derivation of a wave digital filter, and consists of three steps:

(1) decomposition of the acoustic (Kirchhoff) variables into wave variables.

(2) discretization of frequency-dependent elements.

(3) satisfaction of the computability condition.

Step (1) is accomplished by using the following relationships:

pi = p+
i + p−i and ui =

p+
i − p−i

Ri
, (11)



7

where for port i, pi is the pressure and ui is the volume velocity, while p+
i and p−i are the wave variables. The

quantity Ri has the dimension of resistance and, following WDF theory, is referred to as the port-resistance.

In the case of simulating a distributed acoustic element (such as a cylindrical or conical section), the port-

resistance is set equal to the local characteristic impedance, and the wave variables represent actual pressure

waves traveling through a duct. The formulation is then exactly the same as with digital waveguide modeling

(see Equation 2). In the case of a lumped acoustic element, the wave variables do not represent waves that

actually travel any distance; the decomposition is in this case merely a matter of mathematical description,

and from an acoustical point of view the port-resistance may then be considered arbitrary. As in the derivation

of WDFs, this freedom of choice is exploited to avoid delay-free loops in the final modeling structure. The

decomposition of acoustic variables has to be carried out at each port of the system. Figure 4 depicts a single

port (a) and its corresponding signal flow after decomposition (b).

Step (2) concerns the approximation in the digital domain of linear, frequency-dependent, continuous domain

phenomena, by means of digital filters. One category of these comprise lumped elements, such as inertances

and compliances, which are mathematically described by a rational polynomial transfer function of the Laplace

variable s. As is customary in WDF theory, such elements are discretized via the bilinear transform (BT):

s =
2

T

(

1 − z−1

1 + z−1

)

, (12)

Other frequency-dependent phenomena, including viscothermal losses, fractional delays, and open-end re-

flectances, are treated in the same way as with DWM. Due to the frequency warping effect caused by the BT,

wave digital models are accurate only at the lower frequencies. This works well for modeling wind instruments,

because the internal bore oscillations are always dominated by low-frequency components.

Step (3) is concerned with the computability of the resulting digital structure. Like a digital filter, a

wave digital model is described mathematically by a system of difference equations. Such a system is called

computable if the arithmetic operations prescribed by these equations can be ordered sequentially at each

discrete-time instant [26]. In practice this condition is satisfied if the system contains no delay-free loops. In

a wave digital model, such delay-free loops may arise in the discretization of a lumped element. One possible

way to solve this problem is to insert a fictitious delay into the loop. However, such an approach leads to

significant errors, unless a very high sample rate is used. Following WDF theory, these loops can be ensured

to have at least one delay by choosing the appropriate port-resistance of that loop. For example, consider the

loop in Figure 4(c), in which H(z) represents the digital transfer function of the loop. In a wave digital model,

this transfer function can always be written in the form:

H(z) =
b0 + b1 z−1 + . . . + bN z−N

1 + a1 z−1 + . . . + aN z−N
, (13)
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where the coefficients bk, ak depend on the port-resistance of the loop. The coefficient b0 represents the

instantaneous reflection. Hence in order for this loop to be computable, this factor must be zero. If H(z)

represents a lumped element, the port-resistance must then be chosen such that b0 = 0.

2.3 Related Approaches

• The Multiconvolution Approach

Some decades ago, Mart́ınez et al. [22] developed methods for time-domain modeling of woodwind bores. In

their original “multiconvolution algorithm”, the spacing between discontinuities is constrained to be a multiple

of the spatial sampling interval. This limitation was later removed by Barjau et al. [27]. There are strong

similarities between the wave digital modeling approach and the multiconvolution approach. Firstly, the

approaches employ the same modeling framework. That is, the response of a woodwind bore is computed

by explicitly simulating the transmission and reflection of pressure waves in the bore. Secondly, many of the

typical bore discontinuities (such as toneholes and taper changes) are based on equivalent continuous-time

models.

The main difference with the WDM method is the way in which frequency-dependent elements are dis-

cretized. The junction filter is modelled in discrete-time using the time-interpolated convolution method

(TICM), and viscothermal losses and fractional delays are modelled directly via convolution (the equivalent

of using an FIR filter). Interestingly, the TICM effectively provides a method for designing FIR loss-filters for

high-precision applications, giving excellent results especially if high sample rates and filter orders can be used.

However it is not very suited to real-time simulation on standard processors, due to the high computational

cost involved. A more detailed comparison between the multiconvolution approach and the WDM approach

can be found in [16].

• Ducasse’s Method

Ducasse [28] uses the same underlying transmission-line model of the bore. In discrete-time, each tubular

element is represented by a two-port system calculated through its transmission and reflection functions.

Because the input and output waves of each system are defined as plane-wave pressure waves, no unstable

elements arise in any of the elements. However, this approach results into incomputable loops whenever

a tapered section is coupled to a lumped element or another tapered section. To overcome this problem,

Ducasse applies the same simplification as originally used by Schumacher [2] in the use of the reflection

function method, which is to assume that the first element of any reflection function in the system equals

zero. The main advantage of this method is that it is unconditionally stable. The main disadvantage is that

it is inaccurate for certain tubular geometries, especially in cases where there is a significant discontinuity
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in cross-section and/or taper, for which the effects of the assumption of a zero instantaneous reflection are

not negligible. It is worth noting that this is the case in many wind instrument mouthpieces, and that very

small perturbations near the air column entry can have very strong effects on the resonance properties of

the instrument. It is also true though that the effect of the assumption decreases with sampling frequency,

i.e. one can always choose the sample rate sufficiently high such that the effect of the simplification becomes

negligible. In summary this method is computationally expensive, due to (1) the many large filters to be used,

and (2) the need to choose high sample rates in order to achieve accuracy. It is therefore more suited to off-line

applications than real-time synthesis.

3 Piecewise Conical Sections

A woodwind bore may be considered as a succession of conical and cylindrical bore sections with a set of open

or closed holes in their sides [22]. Similarly, a brass instrument usually contains various conical and cylindrical

sections. This section presents methods for simulation of piecewise conical bores with the WDM method.

3.1 Transmission-Line Model of a Conical Section

It is well known that a conical section may be formulated as a transmission-line model, consisting of a pair of

inertances, a transformer, and a non-tapered duct [29]. This equivalent network is depicted in Figure 5. The

values of the inertances are M0 = ρr0/S0, and Me = ρre/Se, where r0 and re are the distances from the cone

apex and S0 and Se the wavefront areas at the left-hand and right-hand side of the cone, respectively. The

distance from the cone apex is defined as negative if the apex is positioned on the right-hand side of the cone.

The WDM method can be used to derive a digital simulation of the equivalent circuit; a shunt inertance is

modelled as a three-port junction with a single delay attached to one of its ports, and a bi-directional delay-

line simulates the uniform line, with added filters for time-interpolation and inclusion of viscothermal losses.

The transformer represents the decrease in pressure with increasing wavefront area, and can be modelled by

adding a scaling factor to each delay-line. However, these scaling factors may be removed from the system

without changing the overall reflectance at the input-end of the model. In such a scenario, one must apply

them “extrinsically” when calculating the actual pressure at any point in the cone [16].

3.2 Wave Digital Junctions

An equivalent network of two successive conical sections can be constructed by attaching two networks of the

kind depicted in Figure 5. A junction of two conical sections is thus described with a network which has the

right-hand inertance M1 = −(ρr1)/S1 of the first cone in parallel with the left-hand inertance M2 = (ρr2)/S2

of the second cone. As pointed out by Benade [29], this arrangement of the junction network is equivalent to
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a single shunt inertance (see Figure 6a)

Mj =
M1 M2

M1 + M2

=
ρ r1 r2

r1 S2 − r2 S1

. (14)

This is a three-port network to which Kirchhoff’s laws apply, i.e. p1 = p2 = p3 and U1 = U2 + U3. The shunt

inertance defines the Laplace-domain relationship p3 = sMj U3. The first step in the derivation of the wave

digital junction is to decompose all the Kirchhoff variables into wave variables, which yields the signal flow

structure depicted in Figure 6b. The three-port scattering equations are

p−1 = p−2 + W, p+
2 = p+

1 + W, p+
3 = p+

1 + p−2 − p−3 + W, (15)

where W = k1

[

p+
1 − p−3

]

+ k2

[

p−2 − p−3

]

, with the coefficients

k1 =
R2 R3 − R1 R3 − R1 R2

R2 R3 + R1 R3 + R1 R2

, k2 =
R1 R3 − R2 R3 − R1 R2

R2 R3 + R1 R3 + R1 R2

. (16)

In the continuous domain, the waves p+
3 and p−3 are related through the frequency-dependent wave reflectance

R(s) =
Mjs − R3

Mjs + R3

. (17)

Now applying the BT yields the digitized wave reflectance

R(z) =
α − z−1

1 − αz−1
with α =

βM − R3

βM + R3

, (18)

where β = 2/T is the bilinear operator. In order to avoid an incomputable loop, we must set R3 = βMj ,

so that α = 0 and R(z) = −z−1. Hence p−3 can be computed by simply negating the value of p+
3 at the

previous time instant. This model is mathematically equivalent to the digital waveguide junction depicted in

Figure 3(b) when using the bilinear transform to discretize the junction filter. However this realization has

the advantage of requiring only two multipliers, k1 and k2.

Now consider the network in Figure 7a. This network is the electrical equivalent of a conical section that is

terminated by a load ZL(ω). This load could for example represent the open-end radiation impedance. The

value of the shunt inertance at the termination is Mj = −(ρr)/S, where r is the distance from the cone apex

to the end of the cone, and S is the wave area at the cone end. Figure 7b shows the wave digital model of this

system. The term RL(z) indicates a digital filter approximation of the wave reflectance

RL(ω) =
ZL(ω) − R2

ZL(ω) + R2

, (19)
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where R2 is the port-resistance as defined for the wave variables p+
2 and p−2 . If the taper junction modelled in

discrete-time without taking special care concerning the wave reflectances (i.e. if R2 is set equal to the local

characteristic impedance), then the system would exhibit a delay-free loop, because in that scenario both the

junction and the lumped element have a non-zero instantaneous reflection. In order to avoid such a delay-free

loop, the junction near the lumped element is designed in such a way that it has no immediate reflection of

the wave incident coming from the right. It will therefore be referred to as a “WD-r junction”, where the

letter r indicates that the junction has a zero instantaneous reflection in right-going direction. This is achieved

by setting R2 = (R1R3)/(R1 + R3), where R1 equals the local (planar wave) characteristic impedance and

R3 = βMj is the port-resistance associated with the junction shunt inertance. Similarly, one may derive a

“WD-l junction”, that has a zero instantaneous reflection on its left side [16].

3.3 Stable Implementation using Switched Bore Instances

For a normal wave digital junction (inertance given by Equation 14), the inertance remains positive only

if S2/r2 > S1/r1. Hence for certain, physically feasible junction configurations, the junction inertance Mj is

negative. This amounts to using a negative port-resistance, which normally leads to an unstable filter structure

[26]. The unstable regions are exactly those defined by Equation 10. As mentioned in Section 2.1, including

viscothermal losses in conical sections leads to instability problems. Simulation tests with the WDM method

indicate that although the simulation becomes unstable when loss-filters are inserted in the conical sections,

the output can still be computed without significant side-effects for long simulation times [16]. Hence the

output can generally be calculated for a length of the order of the impulse response, without suffering from

the effects due to inherent instabilities. In practice we found that this may not always hold for very narrow

conical sections with high losses, in which case the undesired effects of unstable growth within a certain finite

time frame can be reduced to manageable proportions by reducing the amount of losses somewhat.

The computability of finite-length outputs longer than the effective impulse response allows a stable im-

plementation that employs two instances of the same wave digital model of the bore, running in parallel. At

any time, only one of the two instances is actively computing the output, while the other is merely ‘warming

up’. After a period of N samples, the active instance becomes inactive, and the inactive instance becomes

active, i.e. they are ‘switched’. At the moment of switching, the new inactive instance is ‘reset’. That is,

all its memory values are set to zero; this includes all filter memories as well as all delay-lines of the model.

The switching period N has to be chosen larger than the effective length of the impulse response of the bore

model (typically shorter than 1 second). This way the switching does not cause significant discontinuities in

the output signal. The effective impulse response of the switched system is of finite length 2N , and the system

is guaranteed to be stable, thus making it suitable for application to musical sound synthesis.
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4 Application to the Trumpet

In this section, a full wave digital model of the trumpet is presented. It is possible to estimate all geometrical

bore parameters from acoustic measurements on a real instrument. Figure 8 shows the internal bore profile of

a Boosey & Hawkes trumpet, as reconstructed from acoustic pulse reflectometry data using the layer-peeling

method [16]. As can be seen from the bore profile, the main bore is essentially cylindrical, with an initial

taper widening. This initial tapered section, which is usually referred to as the lead-pipe, is approximately

conical. With the mouthpiece inserted, this part communicates with the backbore of the mouthpiece. Thus,

an accurate model of the trumpet can be derived by approximating the bore profile data with a cylindrical

bore, plus a conical section to model the lead-pipe, and modeling the remaining part of the reconstruction

as the bell reflectance RL(ω). What remains is (1) to model the mouthpiece, and (2) to formulate a suitable

digital filter approximation of the bell reflectance.

4.1 Wave Digital Brass Mouthpiece Model

In the low-frequency limit, a small volume acts as a shunt compliance C = V/(ρc2) [7]. Hence we suggest a

mouthpiece model, in which the cup volume is modelled as a lumped element (a pure compliance), and the

backbore is modelled as a distributed element (a conical section). Figure 9(a) shows the equivalent network

of this arrangement. This model has been shown to be in good agreement with impedance measurements of

brass instruments [30, 16], and is more suited to sound synthesis application than the “cylinder-cone model”

suggested in [10], which causes spurious extra “multiplier regions” in the higher frequency range [16]. The

mouthpiece model can be simulated in discrete-time by employing wave digital modeling techniques. The final

“wave digital brass mouthpiece model” takes the form depicted in Figure 9(b). In a full instrument model (one

that includes lip excitation), the left port of the system communicates directly with the unit that computes

the non-linear flow through the lips. Because the lips will have an instantaneous reflection, the “cup volume

unit” will have to have a zero instantaneous reflection towards the left, which can be realized by choosing

the appropriate value for the port-resistance on that side of the unit. This results in using a WD-l volume

structure, as shown in Figure 9c. The conical backbore can be modelled in the usual way. The WD-l volume

unit has a non-zero instantaneous reflection towards the right, thus in order to avoid a delay-free loop, the

left junction of the conical section needs to be modelled as a WD-l junction. The other junction (between the

backbore and the lead-pipe) must be modelled with a normal WD junction, as described in Section 3.

For determination of the values of the port-resistances of each unit in Figure 9(b), one has to work from right

to left, since the values of the distributed elements (R3, R4, R5) must equal the local characteristic impedance.

The values of R1 and R2 are arbitrary from a physical point of view but must be set to a specific value in order

to ensure the realizability of the system. Applying the appropriate steps for deriving a wave digital model
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of the shunt compliance part of the equivalent network in Figure 9(a) yields the WD-l volume is depicted in

Figure 10 [16], where the values of the junction multiplier and the port-resistances are

kj = −

βCR2

1 + βCR2

, R2 =
βM1R3

R3 + βM1

, R1 =
R2

1 + βCR2

, (20)

where M1 is the junction inertance associated with the WD-l junction.

4.2 The Bell Reflectance Filter

A brass bell functions as a reflector of waves, trapping energy inside the instrument in such a way that

standing waves of precisely defined frequencies can be build up [31]. Since the bell has a fixed, time-invariant

reflectance, it may be modelled as a lumped reflectance filter. A typical brass bell reflectance can be divided

up in two stages: a slowly, quasi-exponentially rising build-up followed by a more oscillatory decay. The latter

is generally readily approximated digitally by means of an IIR filter. However the first, rising part is something

that classic IIR design techniques, such as output-error methods, generally tend to have problems with [32].

The simplest alternative is therefore to model the rising part as an FIR filter. The complete filter model

then consists of an N -tap FIR in parallel to an IIR filter that is delayed by N samples. This approach is

still considerably more efficient than using a single FIR filter. A very efficient alternative is to use truncated

infinite impulse response (TIIR) filter elements to model the exponentially rising part [32]. With TIIR filters,

one may implement exponentially rising responses using unstable one-pole elements; the filter stability can be

guaranteed by using a “switched” version of the TIIR filter [33, 32]. A typical brass bell reflectance build-up

only requires two first-order TIIR elements.

The complete wave digital model of the trumpet then takes the form depicted in Figure 11. In our im-

plementation, fourth-order IIR filters were used for approximation of viscothermal losses in the main bore,

and fractional delays were simulated by means of third-order Lagrange interpolators. A wave digital model

is not stable if viscothermal losses are included in the conical sections (i.e., the lead-pipe and the backbore).

Therefore this model has to be implemented in “switched” form, using two instances that run in parallel, as

explained in Section 3.3. Figure 12(a) shows the Green’s function (or impulse response) of the trumpet bore,

as calculated with the transmission-line model and with the WDM method. The effects of simplifications and

discretization are clearly extremely small in the first 35 ms of the response. More deviations occur in the latter

part of the Green’s function, which mainly has an effect on the lower frequency range. This can be observed

in the comparison between the input impedances (the Fourier transforms of the respective Green’s Functions)

plotted in Figure 12(b). The WDM deviates from the ideal response particularly at the lowest resonance of

the trumpet, mainly due to very small differences between the theoretical viscothermal losses and the digital

approximation thereof. Fortunately, this discrepancy is not of that much relevance to musical sound synthesis,
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as the lowest resonance of a trumpet is actually out of tune anyway and very seldom used as a fundamental

in musical practice.

Sound output can be modelled using a transmittance filter TL(z) as schematically depicted in Figure 11.

The power-response of this filter is complementary to that of the reflectance filter. The sound pressure prad, as

obtained as the output of the transmittance filter, forms a first approximation to the radiated sound as would

be heard by a listener, where we may expect that low-frequency components are more accurately modelled than

high-frequency components, due to various simplifications used in the derivation of the wave digital model.

In a trumpet, the effective length of the bore is controlled by the player through valves. It would be

straightforward to add this to the wave digital model, by modeling all tubular sections of a real trumpet, and

inserting valve junctions that simply implement the appropriate amplitude weighting of tube input and output

waves. Another, simpler approach would be to only adapt the length of the main cylindrical bore.

Finally, a realistic brass synthesis model requires the simulation of the effects of non-linear wave propagation,

which causes the typical ‘brassy’ sound [34]. An efficient and robust method to achieve this was developed

by Vergez and Rodet [35]; it can be directly applied within a wave-based modeling approach, and has already

been built into “BRASS”, the commercial brass synthesis software developed recently by IRCAM and Arturia

[36].

5 Summary

Vibrations in musical wind instrument resonators can be efficiently synthesized digitally using wave-based

methods, that explicitly simulate the transmission and reflectance of 1D waves in the instrument. Maintaining

a spatially modular structure allows direct control of the musically important bore parameters such slide length

or tonehole state. Unlike with the method of convolution with the full bore impulse response method, any

change in such a parameters does not require the whole of this response to be re-calculated, but instead only

a local parameter and it associated filter functions are changed. As such, modular wave-based methods are

particularly suited to sound synthesis applications, in which the way in which parameters can be controlled is

a crucial criterion [37].

Within the domain of modular wave-based approaches, the wave digital modeling (WDM) method provides

a solid framework for deriving algorithmic modules for all relevant parts of wind instrument bores, including

cylindrical and conical sections, mouthpieces, and flaring bells. In this approach, distributed elements are

discretized using digital waveguide modeling techniques, and lumped elements are discretized using wave dig-

ital filter techniques. One of the key advantages of the WDM method is that delay-free loops can always be

avoided without having to resort to simplifications or inserting artificial delays. It therefore allows accurate

implementations at relatively low sample rates (e.g., 44.1 or 22.05 kHz) that can be run in real-time. The
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WDM method requires considerably less computations than the multiconvolution algorithm and Ducasse’s

approach, that are both based on calculating all reflectances and transmittances via convolution. Although

instability problems arise with bore models that include conical sections with loss-filters, a stable implemen-

tation is possible by using two switching instances of the same WDM bore model. A wave digital model of a

complete trumpet bore was presented, which closely approximates all the important resonance qualities of the

instrument. As shown in [25], the WDM can also be applied to synthesis of woodwind oscillations, including

dynamical control of tonehole states. Future research in this area will include investigating whether instability

problems associated with conical bore sections can be more directly addressed by preserving consistency in

the use of the propagation constant; in the current formulations, the junctions are formulated using a lossless

version of the propagation constant, which is a possible cause of instability problems [16]. Other issues that

need further investigation are (1) the numerical artifacts that can occur when dynamically updating tonehole

states, and (2) a better formulation of a resistive tonehole model, which would pave the way for improving the

sound output with woodwind instruments.
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Figure 1: General structure of a physical model of a wind instrument. The air column functions as a passive resonating
element that is ‘blown’ by the player via an excitation mechanism (for example a reed or the lips).
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Figure 2: (a) Pressure waves at either side of a cylindrical duct section. (b) Digital waveguide model of lossy wave
propagation in the cylindrical duct section. Hloss(z) and HFD(z) denote a loss-filter and a fractional delay filter,
respectively, and z−N represents an N -sample long delay-line.
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Figure 3: (a) A junction of two conical bore sections. (b) A digital waveguide junction in one-filter form.
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Figure 4: (a) A port and its associated acoustic variables. (b) The corresponding signal flow diagram after decomposition
of the acoustic variables into wave variables. (c) A computational loop with transfer function H(z) and port-resistance
R.



19

0M eMtrans-
former

uniform
line

0p

eu0:rre

ep

0u

Figure 5: Equivalent circuit of a conical waveguide constructed of a uniform line, two shunt inertances, and transformer
(after Benade [29]).
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flow.
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flow diagram of a wave digital model. Each of the “line” units indicates a cascade of a digital delay-line, a fractional
delay filter, and a loss-filter. The “WD J” unit represents a wave digital junction, and the “WD-r J” unit represents a
wave digital junction with zero instantaneous reflection in right-going direction.
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Figure 8: Trumpet bore profile reconstruction. The dashed lines indicate the division of the trumpet bore into a tapered
section (the lead-pipe), a cylindrical section (the main bore), and a flared section (the bell).
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Figure 9: (a) Equivalent network of a brass mouthpiece. (b) Corresponding wave digital model. Each line unit indicates
a cascade of delay-line, a fractional delay filter and a loss-filter. The WD-l V unit models the cup volume as a shunt
compliance, and the WD-l J and WD J units model the junctions of the conical backbore with the cup volume and the
lead-pipe, respectively. R1, R2, R4, R5, R6 are the local port-resistances.
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Figure 11: Wave digital model of the trumpet. The WD-l V unit indicates the wave digital volume structure that
models the mouthpiece cup. The WD-l J unit indicates a wave digital junction that models the scattering of waves at
the boundary between the mouthcup and the backbore. The WD J units indicate normal wave digital junctions, which
model the taper and cross-sectional discontinuities at either end of the lead-pipe. The line units implement lossy wave
propagation. R is the port-resistance at the input-end.
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Figure 12: (a) Discrete-time Green’s function of the Boosey and Hawkes trumpet bore. (b) Input impedance of the
Boosey and Hawkes trumpet. The sample rate is 44.1 kHz.


