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Summary

A method is discussed for measuring the acoustic impedance of tubular objects that gives accurate results for a
wide range of frequencies. The apparatus that is employed is similar to that used in many previously developed
methods; it consists of a cylindrical measurement duct fitted with several microphones, of which two are active
in each measurement session, and a driver at one of its ends. The object under study is fitted at the other end. The
impedance of the object is determined from the microphone signals obtained during excitation of the air inside the
duct by the driver, and from three coefficients that are pre-determined using four calibration measurements with
closed cylindrical tubes. The calibration procedure is based on the simple mathematical relationships between the
impedances of the calibration tubes, and does not require knowledge of the propagation constant. Measurements
with a cylindrical tube yield an estimate of the attenuation constant for plane waves, which is found to differ from
the theoretical prediction by less than 1.4% in the frequency range 1 kHz—20 kHz. Impedance measurements of

objects with abrupt changes in diameter are found to be in good agreement with multimodal theory.

PACS no. 43.58.Bh, 43.75.Yy

1. Introduction

It is well known that the linear acoustic behaviour of tubu-
lar objects, such as pipes, horns, and cavities can be char-
acterised by the acoustic response at the input end. Various
methods have been devised to measure the response, usu-
ally defined in terms of planar mode acoustic impedance.
Most of these methods involve the use of microphones, al-
though other types of sensors have also been employed.
A comprehensive review of techniques for measuring the
acoustical response can be found in reference [1].

Besides experimental methods, the impedance can also
be determined from theory, using a model that relates the
geometry of the inner bore of a tubular object to its input
impedance. In recent years, the experimental and theoreti-
cal approaches have been combined, with the objective of
reconstructing bore profiles from measured response data.
Development of this approach has resulted in accurate re-
constructions of the bore profiles of a variety of tubular
objects, including complex shapes such as musical wind
instrument bores. Up to the present, such bore reconstruc-
tions have been achieved either by using the experimen-
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tal time-domain technique of pulse reflectometry in com-
bination with a fully inverted model [2, 3, 4], or with a
frequency-domain method for measurement of the acous-
tic impedance in combination with a method for indirect
inversion (i.e. optimisation) [5]. In both approaches, the
geometry is derived from measured response data using a
piecewise cylindrical section model in which only the pla-
nar mode of propagation is taken into account.

A major difficulty with either approach is to obtain a
high axial resolution in the reconstructed profile. The ax-
ial resolution is largely determined by the frequency band-
width used in the experimental determination of the acous-
tic response. In that respect, the problem of reconstruction
of an internal bore profile from band-limited acoustic data
is similar to the problem of reconstruction of a non-smooth
time-domain signal from a truncated set of Fourier com-
ponents. This limitation does not affect the reconstruction
of smooth bore profile objects, but presents a significant
problem when reconstructing any abrupt changes and dis-
continuities in diameter.

A second difficulty arises when attempting to recon-
struct a tubular object in which the higher propagation
modes are excited. Because the algorithms for bore re-
construction take into account only the planar mode, they
are unreliable when applied to the reconstruction of an ob-

© S. Hirzel Verlag - EAA



van Walstijn et al.: Wideband impedance measurement

ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 91 (2005)

ject in which the higher modes have a significant effect.
This problem is in fact related to the bandwidth prob-
lem, because the higher modes are typically influential
for short wavelengths. In addition, the higher modes are
generally strongly excited at abrupt changes in the bore
profile. Even though these modes may not be propagat-
ing throughout most of the air column, inter-mode cou-
pling can still have significant effects on the planar mode
response. In order to improve the precision of reconstruc-
tions of tubes with abrupt changes, the problems related to
measurement bandwidth and those related to the higher-
mode effects need to be addressed concurrently.

The aim of the present study is to develop techniques
for accurate measurement of the impedance at higher fre-
quencies than previously achieved, and to investigate to
what extent the results obtained for objects with abrupt di-
ameter changes are in agreement with multi-modal theory.
A good match between theory and experiment is a pre-
requisite for the development of accurate reconstruction
methods of such objects. The development of inverse mod-
elling taking into account the higher-mode effects will be
discussed in a future paper.

The method that is presented in this paper employs two
microphones that monitor the air pressure in a cylindri-
cal measurement duct (see Figure 1). The measurement
duct is connected to a driver at one end and to the ob-
ject under study at the other. The experiments are carried
out at low amplitudes, such that the microphone signals
are linear functions of pressure and volume velocity. The
impedance of the object under study is derived from the ra-
tio of the microphone signals, sometimes referred to as the
“transfer-function” or the “standing-wave ratio”. This is a
well-known approach that has been applied to test impe-
dances and reflection coefficients since the 1970s (see for
example, [6, 7, 8,9, 10, 11, 12, 13, 14, 15]). The relation-
ship between the impedance and the microphone signal ra-
tio can be expressed with a minimum of three complex
coefficients. The majority of these methods are designed
to measure of the absorption coefficient of materials, in
which case sufficiently accurate results can be obtained us-
ing coefficients that are approximated by theory. However
in application to measuring tubular objects, which typi-
cally have strong resonances and anti-resonances, it is nec-
essary to determine these coefficients at each frequency
via calibration [16].

As discussed by Dalmont [1], it is important to have an
accurate analytical expression for the response of a cali-
bration object, and for this reason closed tubes are often
employed, rather than cavities or open-ended tubes. For
a full calibration, three closed tubes of different lengths
can be employed; this is the basic principle of the “Two-
Microphone-Three-Calibration” (TMTC) method devel-
oped by Gibiat and Lalog [16]. The main disadvantage
of this method is that the calculation of the impedance of
closed tubes requires precise knowledge of the propaga-
tion constant, which is a frequency-dependent complex-
valued parameter that depends on a number of air con-
stants, such as the speed of sound, air density, and the

reference
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Figure 1. Sketch of the experimental set-up used in the TMFC
method. The air inside the measurement head is excited using a
compression driver. The impedance of the object connected to
the measurement head is derived from the microphone signals st
and sg.

viscosity coefficient. These constants are temperature-
dependent, and it is usually difficult to obtain the precise
set of constants for the environment in which the experi-
ments take place.

There is a second, more fundamental reason for not us-
ing a calibration method in which accurate knowledge of
the propagation constant is required. The accuracy of two-
microphone techniques is typically tested by comparing
theoretical and experimental results with a closed cylin-
drical tube of the same cross-section as the measurement
duct, and usually of a greater length than the calibration
tubes. The normalised impedance of such a tube contains
exactly the same information as the propagation constant.
For methods in which an analytical expression for the
propagation constant has to be used in the calibration pro-
cedure, this is evidently not a valid method of verifying
accuracy, since one has to first enter the same information
that is to be measured.

Dalmont [17] has proposed an alternative method for
calibration, which involves two calibration objects (a long
and a short cylindrical tube, each with closed end). Direct
calibration can only be carried out at the resonance fre-
quencies of the long tube, the impedance at any other fre-
quency being derived via interpolation. This method has
been shown to be accurate for ka < 1, where k = 2x f /¢
is the wave number, ¢ is the wave velocity, and a is the ra-
dius of the tube measured. Dalmont used a tube of radius
a = 0.01 m, and carried out measurements at frequencies
up to 5kHz. However, this method is not completely gen-
eral; it relies on certain assumptions about the calibration
coefficients and how these are affected by higher-mode ef-
fects, which increase with frequency. The accuracy of this
calibration method at higher frequencies (ka > 1) has yet
to be assessed.

In the present paper, a new calibration procedure is pro-
posed, which involves the use of two microphones and
four calibration measurements, and will therefore referred
to as the “Two-Microphone-Four-Calibration” (TMFC)
method. For a given, constant temperature, the TMFC
method is completely general, and allows direct calibra-
tion and measurement at any frequency within a certain
chosen bandwidth. Like the method of Dalmont, it does
not require accurate knowledge of the propagation con-
stant.
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2. The Method

2.1. Theory

Wave propagation in acoustic tubes can be described by a
set of propagation modes [4, 18, 19]. In the case of a cylin-
drical duct, all modes except the planar mode are evanes-
cent below the cut-on frequency of the anti-symmetric
(1,0) mode. For a cylindrical duct of radius «, this cut-on
occurs at [18]:

1.84¢

ka=184 or f= 9o
Ta

ey

Propagation of planar waves is classically described us-
ing two variables, the value p of the pressure and the
value U of the acoustical volume flow. The relationship
between two sets of (p, U) spaced a distance L apart from
each other along the longitudinal axis of a cylindrical duct
can be defined using two complex-valued parameters, the
propagation constant I' and the characteristic impedance
Z[20]:

p1 = cosh(T'L) p2 + Z.sinh(T'L) Us, 2)
Uy = Z, ' sinh(T'L) py + cosh(T'L) Us. 3)

Both Z. and T" depend on the acoustical constants of the
gas and on the duct diameter [21, 22].

The measurement duct depicted in Figure 1 has a cylin-
drical cross-section, with narrow and short side-branches
at points where the microphones are fitted. Although an
effort can be made to fit the microphones as flush as pos-
sible with the duct wall, it is in principal impossible to
completely avoid the excitation of higher modes at these
points, since this would require microphones with zero
acoustic admittance. Hence there is inevitably some level
of excitation of non-propagating modes at the positions
of the microphones. Excitation of non-propagating modes
will also occur at any non-cylindrical parts of the object
under study; this includes cases where there is a diameter
or taper discontinuity at the reference plane.

The experiments are carried out under the following
conditions and assumptions. The air inside the measure-
ment duct is excited only at frequencies below the cut-on
frequency of the first higher mode. There is no significant
coupling between any possible non-propagating modes at
or beyond the reference plane and those excited at the mi-
crophone positions, because the distance between the ref-
erence plane and each of the microphones is significantly
greater than the duct diameter. Finally, the oscillations in
the duct are limited to the linear regime.

Under these conditions, the frequency components of
the microphone signals s; and s are linear functions of p
and U at the reference plane:

51 = oqp+ /i Z.U, 4)
sy = opp+ B Z.U, ©)

where a1, a9, 81, and 3o are coefficients that depend
on the manner in which waves propagate between micro-
phones and the reference plane, as well as on the trans-
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ducing characteristics of the microphones. The effects of
non-propagating modes excited at the microphone posi-
tions are incorporated in these coefficients, although the
exact values are not easily known from theory. The char-
acteristic impedance Z.. has been put into these equations
for mathematical convenience.

For passive terminations, one may define the impedance
at the reference plane, which is the impedance load due to
connecting the object to the measurement duct, as:

p
7 = U (6)
Following the general two-microphone approach, we de-
fine a new variable y as the ratio of the two microphone
frequency-domain signals. From equations (4), (5) and (6),
one then obtains:

s2 el + P,

¥y= 81 o CE1Z+61ZC= (7)
or

,_i_ y_B

Z_ZC_A<y—C>’ ®
with

A=-Bi/ar, B=p/6, C=afar. )

Equation (8) states that the normalised impedance (the or-
dinary impedance divided by the characteristic impedance
of the measurement duct) of the object under study can
be determined from a measured value of y and three co-
efficients A, B, and C. One possible approach is to ap-
proximate the values of these coefficients with theoretical
expressions. However, as will be seen from the results pre-
sented in section 3.2, more accurate results are obtained
via calibration.

For future reference, the response of the object un-
der study may also be described as the ratio I? of the
backward- and forward-propagating planar mode waves
at the reference plane, commonly known as the (planar
mode) reflection coefficient. If no non-propagating modes
are excited at the reference plane (i.e. if there is no cross-
sectional or taper discontinuity at the reference plane), IR
is related to the normalised impedance by:

Z—1
= 10
Z+1 (19)

2.2. Calibration

The impedance is derived from the knowledge of three
pre-determined coefficients. Obtaining these coefficients
via calibration amounts to carrying out various measure-
ments with known reference impedances, and solving for
the unknown coefficients from the equations that result
from substituting the data in equation 8. Since we have
three unknowns, three such equations are required. In the
present study, these equations are deduced from measure-
ments with four different reference impedances.
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Figure 2. Bore configurations for the calibration measurements.
(a) negative-length tube, realised by closing off the basic mea-
surement duct. (b) Hard wall at the reference plane, realised by
connecting a closed tube of length L to the basic measurement
duct. (c) positive-length tube, realised by connecting a closed
tube of length 2L to the basic measurement duct. (d) double-
length tube, realised by connecting a tube of length 3L to the
basic mea surement duct.

In the first calibration measurement, the duct is closed
off at the reference plane, and the microphone ratio sig-
nal g is measured. The hard wall that closes the duct off
presents a zero-admittance termination'. In that case the
denominator of the right-hand side of equation 8 must be
zero, i.e.

C = yo. (11)

For the determination of coefficient I3, two tubes of the
same cross-section as the measurement duct, one of length
L and one of length — L are employed. The negative length
can be realised by defining the position of the reference
plane at a distance L from the basic measurement duct
exit (see Figure 2). The microphone ratio signals measured
with the positive- and negative-length tubes are y,, and y,,
respectively. The normalised planar mode impedance of a
closed tube of length L is Z = coth(I'L). Since

coth(—T'L) = —coth(T'L), (12)
we have
Zp +2Z,=0, (13)

where Z, and Z,, are the normalised impedances of the
positive- and the negative-length tubes, respectively. Eval-

! The admittance is not strictly zero because of heat conduction at the
wall [23]. The normalised admittance Y% of the wall is extremely small;

Dalmont [17] gives the value ¥; = 9.6 x 10*6\/]_”(1 + 7) at 20°C.
Hence using ¥; = 0 does not introduce any significant errors.

uation of the impedances in equation (13) using equation
(8) gives

yp — B ) (yn — B)]
AllZEZ=——= 1+ =0. (14)
[(yp -C yn —C
After substitution of equation 11, the value of coefficient
B is obtained as:

B 2YsYn = Yo o + yn) (15)

(Wp + Yn) — 2u0

The value of B is equivalent to the microphone signal ratio
that is obtained with an “ideal open end”, i.e. a termination
at the reference plane for which Z = 0 at all frequencies.
Such an ideal open end can be simulated using an active
termination [24], but a much better signal-to-noise ratio
(SNR) can be obtained for coefficient B on the basis of
equation 13.

For the determination of the coefficient 4, another
closed tube is connected to the measurement duct, this
time of length 2L, and the microphone ratio y- is mea-
sured. The reflection coefficient of a closed tube of length
Lis R = exp(—2T' L), thus we have

Ry =Ry, (16)

where I, and It> are the reflection coefficients of the
closed tubes of length L. and 27, respectively. Substitution
of equation 10 yields:

72 —22,75+1=0, (17)

where Z, denotes the normalised impedance of the dou-
ble-length tube. After evaluation of the impedances Z,, and
7> using equation 8, and substitution of equations 11 and
15, one obtains:

47 = [(U) 240 — yp — ya)? | %

Yp — Yn
Wpy2 + 3 (Wplo + yoyn) - - .
—4 (YpYn + Y2Y0) + YoYn] - (18)

This equation has two roots. To find the correct value of 4,
both roots are substituted in equation 8 in order to compute
the impedance Z,,, and the corresponding two reflection
coefficients are found with equation 10. When errors are
small, one of the roots results in |/2,| > 1, the other in
|R,| < 1. The latter is the correct root. When errors are
large, one also has to investigate the phase of the reflection
coefficient.

Note that the correctness of the three assumptions upon
which the calibration procedure relies, namely that equa-
tions 11, 13, and 16 are true, is independent of the value of
the propagation constant. An important restriction is how-
ever that temperature fluctuations during the experiments
should be avoided as much as possible, since the method
assumes that I" remains constant.
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At first glance, it seems that the calibration length L
can be chosen arbitrary. However, as is explained in sec-
tion 2.3, this length should be chosen as half of the dis-
tance between the microphones in order to obtain the best
results.

In various previous applications based on the two-
microphone approach, in particular those applied to inves-
tigating sound-absorbing materials [6, 7, 8, 9, 10, 11, 12,
13, 14, 15], the values of the calibration coefficients are
partly approximated by plane wave theory. In many cases,
the influence of non-propagating modes is neglected, and
the first microphone is assumed not to disturb the acousti-
cal field. The coefficients in equations 4 and 5 can then be
written:

a1 = H1 COSh(Fl’l), 61 = H1 sinh(Fxl), (19)

Qo = HQ COSh(Fl’Q), ﬂg = HQ Sinh(rl'g), (20)
where 1 and z» are the positions of the microphones
along the measurement duct, with z = 0 at the reference
plane, and H; and H» are the microphone transducing
characteristics. It follows from equations 9 that the cali-
bration coefficients then are:

_ [ sinh(Tzq) ]

4= | cosh(T'zy ) | @h
_ . [sinh(T'z2)

b=d | sinh(Tz1 ) 22)
_ - [cosh(Tzs) ]

C=0 | cosh(T'zy) | (23)

where G = H,/H,. The above approximations are used
with G = 1 in section 3.1 in order to predict the effects of
noise and calibration errors, and are compared with exper-
imentally derived values in section 3.2.

2.3. Errors and singularities

Any experimental procedure is subject to errors. Two
kinds of error occur with the TMFC method, namely noise
errors and calibration errors. Noise errors have a random
character, and the exact way that this type of error appears
in the measurement result is variable. The effect of noise
errors depends on the method for excitation that is used;
in general these effects can be largely reduced by carrying
out the experiments in a quiet environment, and by aver-
aging the measurement data.

Calibration errors are due to uncertainties in the knowl-
edge of the impedances of the calibration objects, and are
systematic errors that manifest themselves consistently in
the same manner in the results. The calibration proce-
dure described in section 2.2 does not depend on accurate
knowledge of the propagation constant, nor on any other
acoustical value or constant. It does strongly depend, how-
ever, on the accuracy of the lengths of the closed tubes, or
more specifically, on the exactness of the ratios between
the length of these tubes. That is, the correctness of equa-
tion 13 relies on the amount by which the measurement
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duct is effectively shortened being equal to the length of
the positive-length tube, while the correctness of equation
16 relies on the assumption that y» is measured using a
tube of a length that is exactly twice as long as the one
used to measure y,,. Deviations in these tube length ratios
will cause errors in the response, and for this reason, the
calibration tubes must be manufactured with great preci-
sion’.

The way in which the noise and calibration errors man-
ifest themselves in the results depends on the geometry of
the apparatus. A direct consequence of using two micro-
phones is that any measurement errors (noise or calibra-
tion) are particularly strong at and around frequencies for
which the distance d between the microphones equals half
the wavelength (or one of its multiples), thus at frequen-
cies

¢
J=n 5

for (n = 1,2,3,....). This effect occurs because at these
frequencies, the signals s; and s2 have exactly the same or
opposite phase, and therefore they effectively provide the
same information. In such cases, the system of equations
from which the calibration coefficients are solved becomes
singular. For this reason, these frequencies can be referred
to as “singular frequencies” [25]. This phenomenon can
be directly observed in the calibration method; when the
phases of s; and s, are equal or opposite, the value of
y is equal or close to either 1 or —1, regardless of the
impedance load present at the reference plane. Therefore,
both the denominator and numerator in equations 15 and
18 tend to zero, so that the coefficients B and A4 become
ill-defined.

Singular frequencies also occur as a result of the dimen-
sions of the calibration tubes. Whenever the tubes that are
used for measuring the signals y,, and ¥, both present a
zero impedance load, these signals do not provide inde-
pendent information, even though the condition in equa-
tion (13) is met. These singularities occur at

(24)

c

f=n- il (25)
for (n = 1,3, 5....). Further singularities occur when the
two tubes that are used for determining coefficient 4 have
nearly equal impedance loads (equal phase and marginally
different magnitude), in which case the signals y, and y-
represent equivalent information. Singularities of this type

occur at
c
=n-
f= 2L’

for (n = 1,2,3,....). It can be seen from equations 24,
25, and 26 that if we take L = d/2, the first singular fre-
quency due to the calibration tube lengths coincides with
the lowest singular frequency f. = ¢/(2d) due to the mi-
crophone distance. In order to ensure that the frequency

(26)

2 n our experiments, the lengths of the calibration tubes were measured
to be accurate within 0.02 mm.
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Figure 3. Schematic drawing of the experimental apparatus.

range [0 — f.] is free of singularities due to calibration
tube dimensions, the basic calibration length . must be
chosen no larger than d/2. Taking into account that f = 0
also forms a singularity, and that the effects of singular-
ities are the strongest at and around singular frequencies
[15, 25, 26], it follows that using I. = d/2 is in fact the
best choice in terms of creating a maximally wide band
of frequencies within the frequency range [0 — f,] that is
minimally affected by singularity effects.

It was found empirically that measurements with the
TMEFC method at frequencies larger than f. tend to be less
accurate than those within [0 — f.]. As a consequence, no
advantage can be gained by strategically combining the
results obtained within the higher singularity-free areas
([fe—2f.). [2fc — 3f.] etc.) of different microphone com-
binations, as done by Jang and Ih [26]. Hence the micro-
phone distance should be chosen such that all frequencies
to be measured are smaller than f.. The effects that noise
errors and calibration errors due to tube length uncertain-
ties have on the results at frequencies in the range [0 — f.]
can be predicted and analysed using computer simulations,
and is discussed in section 3.1.

2.4. Apparatus

Figure 3 shows a schematic drawing of the experimental
apparatus. The air inside the measurement duct and the
object under study is brought into vibrational motion by
the compression driver (type JBL 2426H), and the pres-
sure in the duct can be measured at four different posi-
tions along the duct axis, using cylindrically-shaped mi-
crophones (type Sennheiser KE4-211) that are mounted
in the duct wall. The distance x, between the reference
plane and the first microphone depends on the lengths
of the calibration tubes. The other microphones are po-
sitioned at x; = x, + 14mm, . = x, + 21 mm, and
xg = x, + 49mm. With these four microphones, mea-
surements with six different microphone distances can be
carried out (see Table I). Only two microphones are ac-
tively used per individual measurement session.

The microphone signals are sampled using a dynamic
data acquisition card (National Instruments PCI 4451) and
stored in computer memory. The excitation signal is cal-
culated using the computer and converted into an analog

Table 1. Possible microphone combinations in the experimental
set-up and their measuring properties. BW is the measurement
bandwidth. See text and Figure 3 for an explanation of the other
quantaties.

combin. s1 S9 d (mm) fo (kHz) BW (kHz)
I S Se 7 24.6 7.4 —20

11 Sa S 14 12.3 3.7—-10
111 Sq Se 21 8.2 2.4 —6.7
v Se Sq 28 6.1 2.0 —5.0
\% Sb Sd 35 4.9 1.5—-4.0

vl Sa Sq 49 3.5 1.0—-29

signal with a second data acquisition card (National Instru-
ments PCI 4452). The complex-valued frequency-domain
descriptions of s; and s» are obtained by applying an FFT
to the recorded microphone time-domain signals.

In order to obtain the required acoustic data for fre-
quency f, a sinusoidal signal of that frequency is sent to
the compression driver. This procedure is repeated for a
series of frequencies. For each frequency, the length of the
recorded microphone signal is chosen as an exact integer
multiple of the period, such that the subsequent FFT anal-
ysis is free from numerical artefacts.

Experiments are carried out for a series of frequencies
within a certain frequency band, without changing the set-
tings of the amplifier. At the start of each measurement
session, the amplitudes of the signals that are computed
and sent to the driver are calibrated so that all frequencies
have approximately equal amplitude at the microphones
when the measurement duct is terminated anechoically.
This is achieved by first measuring the microphone signals
with a 30 m long tube connected to the measurement duct,
using a set of driving signals with frequency-independent
amplitude, and then adapting the amplitudes by dividing
by (|s1]| + |s2|) /2 and normalising. This procedure com-
pensates for losses and resonance effects in the measure-
ment duct, which is especially important for obtaining a
good SNR at the higher frequencies. The sensitivity to
noise errors is further reduced by averaging over a num-
ber of repeated periods in the microphone signals.

The radius of the measurement duct is ¢ = 4.9 mm. For
temperatures above 20 °C, the free-space sound velocity
is larger than 343 m/s. It follows from equation 1 that all
higher modes are evanescent in the measurement duct at
frequencies below 20.5kHz.

Empirically it was found that when using a microphone
distance d, the effective measurement bandwidth within
which accurate results can be obtained is approximately
[0.3 — 0.8]f. (see also section 3.1). The effective band-
widths of the different possible microphone combinations
of the experimental set-up are listed in Table I.

2.5. Discontinuity at the reference plane

The radius of the measurement duct is chosen such that
for all frequencies below 20.5 kHz, any higher modes that
are excited at the reference plane or within the object un-
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Figure 4. Discontinuity at the reference plane. Z is the
impedance matrix as calculated on the left-hand side of the
reference plane, the planar mode component of which is the
impedance Z in equation 8. Z(® is the impedance matrix as cal-
culated on the right-hand side of the reference plane, the planar
mode component of which represents the impedance of the ob-
ject under study.

der study do not propagate back to the microphones. How-
ever, in cases where non-propagating modes are excited at
the reference plane, the impedance Z in equation 8 using
the calibration procedure described in section 2.2 does not
represent the planar mode impedance of the object. Instead
it equals the planar mode impedance as calculated on the
input side of the reference plane.

Figure 4 depicts a situation in which the object under
study has an entry that is wider than the measurement duct;
the cross-sectional discontinuity causes excitation of non-
propagating modes at and around the reference plane. In
order to clarify the relationship between the impedances
on either side of the reference plane, the acoustic vari-
ables need to be written in multimodal form. Following
recent studies in multi-modal modelling [4, 19], no anti-
symmetric modes are taken into account, which is jus-
tified for discontinuities in axially symmetric structures.
The pressure and volume velocity are denoted as the vec-
tors p and U, where the ith element of these vectors rep-
resents their ¢th axially symmetric mode component. The
impedance is then defined as a matrix that relates the pres-
sure to the volume velocity by

p=ZU, @7)

where the planar mode component is given by the corner-
element Zy o. Referring to Figure 4, the impedance yAS
on the left side of the reference plane is related to the
impedance Z® by [19]:

zH = FZOFt, (28)

where F is a non-diagonal matrix that is defined by the
boundary conditions at the walls of the tube at and around
the discontinuity. It is shown in Appendix A2 that in cases
where the non-propagating modes excited at the disconti-
nuity are not coupled to any modes active within the rest
of the object, the relationship between the planar mode
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components of the impedances on either side of reference
plane can be derived from equation 28 as:

N
780 =250 =3 (Fon)” 26, (29)
n=1

where Z(¢) is a diagonal matrix that represents the char-
acteristic impedance on the right side of the discontinu-
ity, and N is the number of higher modes taken into ac-
count. Thus, the planar mode impedance of an object that
has a different diameter from the measurement duct can
be derived from a measured value of the planar mode
impedance on the left side of the reference plane using
equation 29, provided that none of the non-propagating
modes excited at the reference plane are coupled to any
modes active in the remaining part of the object. In prac-
tice this means that the entry diameter must be less than
twice the measurement duct diameter to avoid propagation
of the axially symmetric (0, 1) mode within the entry re-
gion. The object must also have a cylindrical entry section
of a length that is at least about twice its entry diameter,
such that the non-propagating modes excited at the dis-
continuity are not coupled to any non-propagating modes
in other parts of the object.

Furthermore the planar mode reflection coefficient must
now be taken as the corner-element (i.e. Fy) of the re-
flection coefficient matrix, calculated as [4]:

o -1
R = [z<2> (z@) + I]

x [zm (z@)_1 _ 1] . (30)

There are however alternatives to the above approach. For
example, Gibiat and Lalog [16] suggest the use of calibra-
tion tubes that have the same diameter as the object under
study. The higher-mode effects are then automatically cal-
ibrated out. A practical disadvantage of this method is that
many sets of calibration tubes are required to measure ob-
jects with a range of entry diameters.

If the main objective of the measurement is to use the
data to reconstruct the bore profile of the object under
study, it is sufficient to know the impedance on the mea-
surement duct side of the reference plane. The discontinu-
ity then forms a part of the reconstructed bore profile, and
there is no need to know the actual planar mode impedance
of the object as defined on the output side of the reference
plane. In such applications, it is in fact advantageous to
add a conical coupling section between the measurement
duct and the object. This way, more acoustic energy can
be injected into the object, which results in a better SNR.

3. Results

3.1. Error analysis via simulation

It is always useful to have knowledge of the manner
in which errors manifest themselves in the measurement
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Figure 5. Reflection coefficient magnitude of the cylindrical tube.
In the simulation, errors are artificially introduced. (a) Indepen-
dent noise signals were added to the microphone signals. (b) The
lengths of the calibration tubes were slightly altered.

data. As explained in section 2.3, random (noise) and sys-
tematic (calibration) errors can occur with the measure-
ment method. In this section, computer simulations with a
very basic model of the acoustic vibrations in the measure-
ment set-up are used to study the effects of noise and cal-
ibration errors. In the model, the relationship between the
microphone signal ratio and the impedance load Z at the
reference plane is defined by the theoretical “plane wave”
(PW) formulations in equations (19) and (20). The cali-
bration procedure is simulated by calculating the micro-
phone signals for the known loads of the four calibration
tubes, using a theoretical expression for the propagation
constant [27]. Next, the microphone ratio is calculated for
a 128 mm long cylindrical tube with closed end and of
the same cross-section as the measurement duct, and the
impedance is obtained using equation 8. Of course, this
simulation procedure gives perfect, error-free answers un-
less errors are intentionally added.

In order to study the effect of noise errors, white noise
was added to the simulated microphone signals. The mi-
crophone distance was taken as d = 7mm (microphone
combination I). As explained in section 2.4, that means ac-
curate results can be obtained at frequencies in the range
[0.3 — 0.8]f., where f. = ¢/(2d) ~ 24.6kHz is the first
singular frequency. Figure 5a shows the effects on the re-
flection coefficient versus f/f.. As expected from the the-
ory explained in section 2.3, the noise effects are strong at
frequencies near 0 and near f.. Importantly, the results are
hardly affected by the noise in the region [0.3 — 0.8] f...

40 T

T T
—— experiment
: — — PW theory
20 § e

IAI (dB)
o

i i i
0 11 12 13 14 15 16 17 18 19 20
frequency (kHz)

(b)
40 T

1Bl (dB)

0 11 12 13 14 15 16 17 18 19 20
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(©
40 w

_40 i i i i i i
10 11 12 13 14 15 16 17 18 19 20

frequency (kHz)

Figure 6. Calibration coefficients, as determined experimentally
using microphone combination I. (a) Magnitude of A. (b) Mag-
nitude of B. (c) Magnitude of C'.

The effects of calibration errors can be studied by alter-
ing the lengths of the calibration tubes by a small fraction.
Figure 5b shows the reflection coefficient magnitudes ob-
tained by off-setting the negative-length tube by —0.1 mm,
and the positive- and double-length tube by +0.1 mm. An
oscillation appears in the simulated curve; the period of
oscillation is related to the effective length of the tube un-
der study. As with noise errors, the effects are larger near
the singularities and the middle range.

Interestingly, the effects of noise and calibration errors
are independent of the distance x; between the reference
plane and the first microphone. That is, the simulations
give identical results when varying x; but keeping d con-
stant. Hence the choice of 27 is not critical with the TMFC
method.

3.2. Calibration coefficients

Precise determination of the calibration coefficients 4, B,
and C is vital for accurate measurement of the impedance
of the object under study. Figure 6 shows the coefficient
magnitudes, as determined at frequencies between 10 and
20kHz, using d = 7 mm (microphone combination I). For
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comparison, the values of the coefficients according to PW
theory (equations 21, 22, and 23 with G = 1), are also
shown.

between theory and experiment is relatively good for co-
efficient A. This is mainly because, as can be seen from
equation 21, A depends only on how the pressure p; expe-
rienced by the diaphragm of the first microphone relates to
the pressure and volume flow at the reference plane; it does
not depend on how p; relates to the microphone signal s,
(i.e. the microphone transducing characteristics {;), nor
on any properties related to the second microphone. The
diminished extrema are due to non-propagating modes ex-
cited at the microphone positions.

The match between theory and experiment is less good
for the coefficients 3 and C'. The increased deviations are
partly caused by the difference in transducing character-
istics between the two microphones; in principle this can
be corrected for by pre-calibrating the microphones. Fur-
ther deviations are due to the effects of non-propagating
mode excitation, and also due to the small cross-sectional
discontinuity that waves travelling between the second mi-
crophone and the reference plane experience when pass-
ing the first microphone, which causes added reflections
of waves. The experiments we conducted show that the
nature and magnitude of these further deviations are very
sensitive to the way the microphones are placed into their
positions. Switching the two microphones indicated that
these effects are not negligible in comparison with micro-
phone transducing differences.

In conclusion, the calibration results show the limit
for high frequencies of calibration methods that involve
PW approximations, such as the method by Chung and
Blaser [8], and indicate the necessity of using a calibration
method that takes into account not only the microphone
transducing characteristics, but also the effects they have
on the acoustic field inside the tube.

3.3. Short cylindrical tube of equal cross-section

For testing the accuracy of the method, one needs to mea-
sure an object of which the impedance is known with rela-
tively high certainty. For the TMFC method, the most suit-
able test object is probably a cylindrical tube with closed
end and a cross-section that is exactly equal to that of the
measurement duct. In our experiments we used a tube of
128 mm length.

Figures 7, 8, 9, and 10 show the measurement results
obtained with microphone combinations VI, 1V, II, and
I, respectively. The total frequency range at which the
impedance of the test tube is measured is 1 to 20kHz. Each
of the four figures shows the magnitude and phase of the
normalised impedance, and the reflection coefficient mag-
nitude (indB). As can be seen from the plots, the errors
are most easily observed in the latter quantity. This is be-
cause for cylindrical tubes, I? varies over a much smaller
dynamic range than Z.

At the lower frequencies (1 to 5kHz), the measured re-
flection coefficient magnitude is within 0.05 dB of the the-
oretical curve. At frequencies above 5kHz, the deviation
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Figure 7. Response data measured with the short cylindrical tube
of equal cross-section, using microphone combination VI. (a)
Impedance magnitude (normalised). (b) Impedance phase. (c)
Reflection coefficient magnitude.

in measured reflection coefficient magnitude gradually in-
creases towards about 0.2 dB near 20kHz.

In principle, it is possible to merge the results shown in
figures 7, 8, 9, and 10 in order to obtain a complete set
of response data between 1 and 20kHz. One must then
however take care in ensuring that the individual measure-
ment sessions are carried out under the same conditions.
In particular, it is important to keep the temperature con-
stant over the period of four measurement sessions. In or-
der to ensure a smooth transistion between sets of results
obtained with different microphone distances, the large-
bandwidth result can be computed using a weighting func-
tion, such as applied by Vorldnder [28].

From the reflection coefficient magnitude curves, it can
be seen that the measurement errors are primarily struc-
tural, i.e. they exhibit oscillatory rather than noisy pat-
terns. However, the size of the error exceeds that of what
is predicted from the length-precision of the calibration
tubes. The simulation results in section 3.1 showed that
for length deviations of about 0.1 mm in the calibrations
tubes, we may expect errors of less than 0.1 dB in the op-
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Figure 8. Response data measured with the short cylindrical tube
of equal cross-section, using microphone combination IV. (a)
Impedance magnitude (normalised). (b) Impedance phase. (c)
Reflection coefficient magnitude.

timal frequency range when measuring a tube of 128 mm
length. The actual calibration tubes have been measured
to be more precise in length than 0.1 mm, but neverthe-
less errors larger than 0.1 dB can be observed at frequen-
cies between 10 and 20kHz. Furthermore, the nature of
the error is different too; the oscillatory patterns are not
as regular. This indicates that the structural errors are at
least partly due to factors other than errors in the lengths of
the calibration tubes. The most likely factors are other ge-
ometrical imperfections, such as small cross-sectional ir-
regularities. Unlike with length imperfections - that can be
defined as occurring at one specific point along the path of
propagation of waves - these can occur over the complete
length of a tube and are therefore more difficult to observe
or measure, or to systematically incorporate in a model for
error prediction such as in section 3.1. Improving the mea-
surement apparatus with respect to cross-sectional irregu-
larities would essentially require more sophisticated size-
measuring tools than the ones that were available to the
authors. Non-linearities could be another cause of struc-
tural errors, but are unlikely since measurements are car-
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Figure 9. Response data measured with the cylindrical tube
of equal cross-section, using microphone combination II. (a)
Impedance magnitude (normalised). (b) Impedance phase. (c)
Reflection coefficient magnitude.

ried out at low amplitudes, and no evidence of non-linear
behaviour was found in the FFT-spectra of the microphone
signals.

3.4. Plane Wave Attenuation

For studying the attenuation of plane waves in cylindri-
cal ducts, a tube of 404 mm length was measured. The
losses can be observed in the reflection coefficient mag-
nitude, and are a function of the length and the attenuation
constant. The attenuation constant is the real part of the
propagation constant, and can be determined from the re-
flection coefficient using the formula:
log ||
a= 5T 3D
The oscillating curves in Figure 11 show the attenua-
tion constant as a function of frequency, as deduced di-
rectly from the reflection coefficient of the long cylindri-
cal tube measured at frequencies between 1 and 20kHz.
The results obtained with several different measurements
sessions and microphone combinations are plotted. It is
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Figure 10. Response data measured with the short cylindrical
tube of equal cross-section, using microphone combination I.
(a) Impedance magnitude (normalised). (b) Impedance phase. (c)
Reflection coefficient magnitude.

known from theory that attenuation is a monotonically in-
creasing function of frequency [22]. It therefore makes
sense to fit a smoothly rising function to the data, in or-
der to make an estimate of the attenuation constant that is
free of the spurious oscillations due to calibration errors.
To this end, a function of the type

ap = \/Ew) +eg w4+
cqw? cs W

1+cw? 14502

(32)

was fitted to the data; the form of equation 32 follows from
theory (see Appendix Al).

For comparison, the attenuation constant as calculated
from theory, and its decomposition into the attenuation c,,
associated with viscothermal processes at the wall and the
attenuation (a.+ .y, ) associated with classical and molec-
ular effects, are also plotted. In various previous studies,
that were restricted to lower frequency ranges [16, 17],
the losses associated with classical and molecular effects
have been neglected. As can be seen from Figure 11, this
would result in a significant underprediction at the higher
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Figure 11. The attenuation coefficient, as deduced from the re-
sponse data measured with the long cylindrical tube of equal
cross-section. The results obtained with 6 different microphone
combinations are plotted.

frequencies. The discrepancy between the fitted curve o
and the theoretical curve is less than 1.4% at all frequen-
cies up to 20kHz. These results are comparable to those
obtained by Dalmont [17], who measured a discrepancy
of less than 3% at frequencies up to 5 kHz.

3.5. Cylindrical tube of different cross-section

As mentioned in section 2.5, the impedance derived us-
ing equation 8 does not always represent the impedance
that is the objective of the measurement. In the case where
the object under study has an entry cross-section that does
not match the measurement duct cross-section, the derived
impedance is the planar mode impedance Zé}g as calcu-
lated on the input side of the reference plane, whereas the
input impedance of the object under study equals the pla-
nar mode impedance Zé?g on the object side of the refer-
ence plane. Under certain circumstances, explained in sec-
tion 2.5, the relationship between these two planar mode
impedances can be described with equation 29, derived
from multimodal theory.

In order to test this theory, a tube with closed end of
larger cross-section (18.7 mm in diameter and 239 mm in
length) was connected to the measurement duct, and the
impedance Zé}g was determined in the usual way. Micro-
phone combination II was used, and frequencies between 5
and 10kHz were measured. The impedance Zé?g was then
computed using equation 29, with the number of higher
modes taken into account set to N = 40. Figure 12 com-
pares these impedances to the theoretical input impedance
of the cylindrical tube. As expected, the impedance Zé}g
does not match the theoretical impedance. The impedance
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Figure 13. Dimensions of the expansion chamber (inmm). In
both the experiments and the theoretical calculations, the object
was terminated anechoically.

Zé?g approximates theory much more closely. However,
the discrepancy between theory and experiment is larger
than in the case of measuring a tube of equal cross-section;
the impedance magnitude curves differ by more than 2 dB
at some frequencies. This is probably because classical
and molecular losses were not taken into account in the
multi-modal model>.

3.6. Expansion chamber

In order to test how experimental results compare with
those obtained from multimodal theory, the impedance of
the expansion chamber depicted in Figure 13 was mea-
sured. The entry cross-section of this object matches that
of the measurement duct, thus we may directly derive the
input impedance. Computations with the discrete-segment
model of multimodal computation, as developed by Pag-
neux et al. [19] and recently elaborated by Kemp [4], in-

3 The higher-order mode theory of Bruneau et al. [27] was used for in-
cluding boundary layer effects in the model.

— theory [1 mode]

— - theory [2 modes]
—— theory [6 modes]
X experiment

170 T T
160

150

o 140 —
2 SN,
N 130

120

110

100 i i i i i i
10 11 12 138 14 15 16 17 18 19 20

frequency (kHz)

0.5 T

ZZln
o

0 11 12 13 14 15 16 17 18 19 =20
frequency (kHz)

Figure 14. Response data measured with the expansion chamber,
using microphone combination I. (a) Impedance magnitude. (b)
Impedance phase.

dicated that for this tubular object the second mode is
strongly excited in the wider part of the object.

Figure 14 shows the impedance of the expansion
chamber. The measured impedance is compared to the
impedance computed taking into account 1, 2, and 6
modes. The measured curve matches rather well with the
curves computed taking into account 2 or more modes.
The discrepancy between taking into account 1 or 2 modes
is particularly striking in this case. This emphasises the
need for the inclusion of at least one higher mode in the
theoretical model.

4. Conclusions

A new method for calibrating a measurement set-up with
two microphones fitted in a cylindrical measurement duct
has been presented. A major advantage in comparison with
many previous methods, such as the TMTC method, is that
it does not require knowledge of the propagation constant.
The calibration is completely general for a given constant
temperature, and is relatively insensitive to ambient noise.
The effects of non-propagating modes excited at the mi-
crophone positions and other influences related to the mi-
crophones are automatically calibrated out. The range of
tubular objects that can be measured is not restricted to
tubes that have the same cross-section as the measurement
duct; a method based on multimodal theory has been pro-
posed to take into account the effects of non-propagating
modes at the discontuinuity at the reference plane in cases
where the object has a different cross-section. Accurate ex-
perimental results have been obtained up to 20kHz, which
is just below the cut-on frequency of the anti-symmetric
(0,1) mode of the measurement duct.
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The method has been applied to experimentally deter-
mine plane wave losses in a cylindrical tube. The measured
attenuation constant has been shown to be within 1.4% of
the coefficient predicted by theory that includes the con-
tributions of boundary layer losses, classical plane wave
losses, and molecular relaxation processes.

A good concordance between multimodal theory and
experiments was found for a tubular object in which higher
modes are strongly excited due to abrupt changes in cross-
section. This result paves the way for improving methods
for bore reconstruction of quickly varying tubular profiles
from acoustic data, by incorporating the effects of higher
modes.

Major efforts have been made in order to minimise
structural errors due to geometrical imperfections in the
calibration tubes. However, some errors in measured impe-
dances remain, and are larger than and of a different nature
from those predicted for small errors in the lengths of the
calibration tubes. These errors can probably be reduced by
using even more precisely manufactured tubes and tubular
connections.

The main priority of the present study being the exper-
imental study of impedance at high frequencies, the appa-
ratus was designed to cover a range between 1 and 20 kHz;
the method has not yet been tested for frequencies below
1kHz. Note that in order to measure at lower frequencies,
the apparatus will have to consist of tubes of larger dimen-
sions. For example, to measure the impedance at 50 Hz,
the optimal distance between the microphones is about
1m.
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Appendix

Al. Propagation constant in a cylindrical
tube

The following thermodynamic constants are given by
Keefe [21] for wave propagation in air:

p = 1.1769 - (1 — 0.00335AT)Kgm™3,
p = 1.846- 10 %(1 + 0.0025AT)Kgs 'm 1,
v = 1.4017(1 — 0.00002AT),

P, = 1/0.8410(1 — 0.00002AT),
¢ = 3.4723-10%*(1 — 0.00166AT) ms ™,

where p is the mean density, u is the coefficient of viscos-
ity, -y is the ratio of specific heats, P, is the Prandtl num-
ber, and c is the wave velocity. These values are evaluated
at Tp = 300° K (26.85°C), and are accurate within £10°K
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of that temperature. The temperature difference relative to
Ty is AT.

For propagation of plane waves in a sufficiently wide
cylindrical duct, in which the boundary layers occupy only
a very small fraction of the duct’s cross-sectional area, the
propagation constant can be written [22]

=] (%) (1 + i), (A1)

where «,, is the attenuation constant associated with vis-
cous drag and heat conduction at the tube wall. Pierce [22]
gives the value

1 fwu y—1
=—,/=—= |1 . A2
o av2pc2[+\/Pr] A2

More complex formulations of «,, are available in the lit-
erature (For an overview, see Tijdeman [29]), but the dif-
ference with equation A2 is usually very small (typically
within 1% at frequencies below 20kHz).

In the derivation of equation A2, standard attenuation of
plane waves in free-space, i.e. the “classical losses”, have
been assumed to be much smaller than the wall losses and
therefore neglected. Moreover, molecular relaxation pro-
cesses have not been taken into account. Therefore, equa-
tion A2 is only valid at low frequencies. For accurate pre-
diction of the total attenuation of a plane wave travelling
in a cylindrical duct at frequencies up to 20kHz, both the
classical and molecular effects have to be added to the wall
losses [30]. For a tube of 5 mm radius, and frequencies be-
tween 1 and 20kHz, the phase velocity is only marginally
affected by these processes?, thus the propagation constant
can be written:

F:j(%—{—aw)—{—(aw—{—ac—{—am). (A3)

Pierce [22] gives formulae for the attenuation constants
associated with classical (subscript ¢) and molecular (sub-
script m) effects:

a4 pup -1
P g . A4
“ 2p03[3+u+Pr]' (A
(A 2wT,
Q= ) (A5)
" zy: A 1—{—(@07})2

where g = 0.64 is the bulk viscosity, A = ¢/f is the
wavelength, and v indicates the type of gas molecule. For
air, which consists for 21% of O» (v = 1) and for 78% of
Ns (v = 2), the relaxation times are [22]

1
2r (24 + G)’

T 1
2=\Vn {271’ [0+ (35 x 100 he ] } » (A7)

4 Dispersion associated with classical and molecular processes is small
pw/p [301.

T = (A6)

for large values of s = a
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where

(A8)

. 1
G:(4.41x106)h<005+ UOh),

0.391 + 100A

1/3
(%) - 1] ; (A9)

with T3 = 293.16°K. The value h indicates the humidity
factor:

and

F=6.142

001 (RH)p,
p b

h (A10)
where p is the pressure (approximately equal to the at-
mospheric pressure at small oscillations), I2H is the rel-
ative humidity (expressed as percentage) and p,, is the va-
por pressure of water, which depends on the temperature.
A third-order polynomial fit to the values given by Pierce
(page 555) gives:

po = 0.065773 % + 0.1445¢2

159.34 ¢ + 560.54, (A11)

where t is the temperature in °C. The term (a,A)y,
in equation A5 represents the maximum absorption per
wavelength associated with the v-type relaxation process,
and is given by:

(N m = g (%) @

where ¢, is the specific-heat contribution from internal
vibrations of v-type molecules, and R is the gas constant
for air. The values of (¢, /R) for Os and N> are given
by Pierce (page 554) for a number of temperatures be-
tween —10 and 40°C. The following formulas are derived
as third-order polynomial fits to these values:

(A12)

(%) ~ [~0.000002778 £2 + 0.0007857 2

+0.08599¢ + 3.883] x 1073, (Al13)

(%2) ~ [~0.00000009259 £ + 0.00035596 2

+0.02212¢+ 0.5525] x 1073, (Al14)

The attenuation constants associated with classical and
molecular effects are compared to the attenuation constant
associated with wall losses for & = 5mm and ¢ = 10mm
in Figure A1l.

A2. Impedance relationship at a cross-
sectional discontinuity

For convenience, we repeat equation (28), which relates
the impedances matrices on either side of the reference
plane in Figure 4:

7z = FZOFL, (A15)
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Figure Al. Attenuation constants versus frequency for sound in
a pipe at 25°C and 20% relative humidity.

If the non-propagating modes excited at the discontinuity
are not coupled to any modes active in the rest of the ob-
ject, the object impedance load as seen from the right-hand
side of the reference plane equals that of an anechoic ter-
mination for all modes except the planar mode. The matrix
Z(?) is thus identical to the characteristic impedance ma-
trix, except for the corner-element:

Z5 0
0z ..

YA (A16)

AN
The product of the first two terms in equation A15 is thus

FooZsy FonZ\S .. FonZ\)y
FioZ$) Fiaz{ ..

. . (A7)
Fn o780 L FvnZy

The full product in equation A15 can be worked out; it is
easily seen that the corner-element of this product is

Z5) = ViV, (A18)
where

Vi=[FRoo2$) FoaZ . FonZ$y . (A19)

and
Vo= [Foo Fop - - Fon]. (A20)
Thus, given that Fy g = 1[19, 4], we have
N
250 = 20+ 3 (Fon)” Z0), (A21)

n=1

which is equivalent to equation 29.
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