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Energy-Efficient and Throughput Fair Resource
Allocation for TS-NOMA UAV-Assisted

Communications
Antonino Masaracchia, Long D. Nguyen, Trung Q. Duong, Cheng Yin, Octavia A. Dobre and Emiliano

Garcia-Palacios

Abstract—This paper proposes an optimization framework for
power and time resource allocation during time sharing non-
orthogonal multiple access (TS-NOMA) transmissions performed
by an unmanned aerial vehicle (UAV) in the context of a large-
scale scenario. The objective of the proposed UAV-TS-NOMA
system and optimization framework is to jointly maximize the
energy efficiency (EE) and the downlink throughput fairness
among users within the UAV communication range. The idea
behind is to propose a communication system that: i) merges the
advantages of UAV communications with the ones offered by the
TS-NOMA paradigm and ii) maximizes the EE and the downlink
fairness among users. The resulting model finds applicability in
performing energy efficient and throughput fair transmissions
into power-constrained communication scenarios. Performance
investigations regarding the proposed framework in finding the
optimal set of resources which maximizes jointly the above
mentioned network metrics, have shown the advantage of the
proposed two-step optimization framework in finding the optimal
configuration of both power and time resources, respecting both
the power constraints at the transmitter and the quality-of-service
requirement of the users. In addition, it is shown how under
particular conditions the proposed framework jointly optimizes
the aforementioned network metrics in only one step.

Index Terms—EE, NOMA, throughput fairness, TS-NOMA,
UAV communications..

I. INTRODUCTION

According to Cisco forecast [1], in the near future seven
trillion wireless devices will serve seven billion people, gen-
erating a huge amount of data traffic, i.e., around 50 exabytes
of monthly global mobile data traffic. Under this perspective,
5G networks are being standardized to provide wide coverage,
support more devices, and achieve higher throughput. To meet
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these overwhelming requirements, the design of a suitable
radio access technology (RAT) represents an important aspect
for improving the capacity of a cellular mobile communication
system in a cost-effective manner.

Non-orthogonal multiple access (NOMA) technology of-
fers a number of advantages which permit to label it as
a promising multiple access scheme for future RAT [2]–
[4], gaining a great attention from both academia research
and industry. The basic idea of NOMA is to serve multiple
users in the same resource (time/frequency/code) block (RB).
A way to make this is through power-domain superposition
coding (SC) multiplexing at the transmitter and successive
interference cancellation (SIC) at the receiver [5]. On the
other hand, unmanned aerial vehicle (UAV) communication
is an emerging technique which, due to its mobility, flexibility
and good channel condition, can help future networks to
achieve better performances [6], [7]. Indeed, in contrast to
the conventional static base station (BS) communication, a
distinct feature of the UAV communication is that the existence
of line-of-sight (LoS) is capable of offering reduced small-
scale fading between UAVs and ground users, providing the
possibility to increase network performances. In other words,
the main distinctive feature between UAV communication and
an elevated BS is represented by the fact that the UAV position
can be dynamically optimized, permitting to improve channel
gains statistics of users and then network metric performances
[8]. For this reason, recently the usage of UAV communication
has been also emerging as a paradigm in the context of disaster
relief networks, allowing to optimize both UAV’s position and
trajectory in order to provide as much coverage as possible
to the users within the disaster area and supporting a timely
response of first aid operations [9]–[11].

The possibility to employ NOMA for future UAV communi-
cation systems has been recently recognized as a very effective
solution to reach the massive spectral efficiency requirements
for the 5G/Beyond-5G wireless networks [12]. Under this
perspective, several research studies have been conducted in
order to analyze the critical aspects of this possible com-
munication architecture. Dynamic power allocation strategies,
jointly optimized with the UAV altitude, have been proposed
in [13]–[15]. In particular, supposing that only two users are
multiplexed in power domain, power allocation strategies have
been proposed in order to improve user-access fairness [13],
throughput [14], as well as coverage [15] in UAV-enabled en-
abled communication using NOMA. However, all these studies
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supposed that only two users are multiplexed in power domain.
Power allocation methodologies for maximizing throughput
in a quasi-static NOMA UAV-BS deployment have been
presented in [16]. Although in this work it is assumed that
more than two users can be multiplexed in power domain, the
joint optimization of UAV altitude and performance dynamics
resulting from the choice of user pairing schemes was not
discussed. A user scheduling algorithm for a fixed altitude
cyclical NOMA UAV communication system has been detailed
in [17]. In this study, multiple users are multiplexed in power
domain in a cyclical manner. Although this type of approach
can result in a more fair resource allocation in terms of user
perceived throughput, the assumed simplification of prede-
termined power allocation while ignoring individual quality-
of-service (QoS) requirements may lead to unfair resource
allocation between the paired users. A joint optimal power
allocation and placement for NOMA-UAV networks has been
presented in [18]. The location of the UAV is first optimized
and used to determine the power allocation for NOMA which
maximizes the sum rate of the network. In this case the
QoS requirements of each user are included in the problem
formulation.

Despite the high quality research works recently presented
in literature, the performance of an UAV assisted communi-
cation system is often limited by the power constraint on the
on-board energy reserves. Then, the energy efficiency (EE),
defined as the ratio of downlink sum-rate to the total power
consumption, has emerged as a core performance metric for
the UAV based wireless networks [19]. An energy efficient
placement algorithm for a drone BS that serves a set of
ground users, using minimum required transmit power was
proposed in [20], [21]. In both works, the optimal drone
position is obtained by decoupling the deployment problem
in the horizontal and vertical dimensions. With respect to
[20], authors in [21] illustrated how the performance of the
proposed placement framework in terms of power saving
varies within the user distribution. Finally, iterative trajec-
tory planning strategies aiming to minimize the total energy
consumption and maximize the secrecy energy efficiency of
a fixed-wing UAV-BS have been proposed in [22] and [23],
respectively. However, the reported analyses assumed that
orthogonal multiple access (OMA) techniques are employed.
In addition to the EE maximization problem investigated in
the context of NOMA-enabled static BS networks in both
transmission directions [24], [25], i.e., downlink and uplink,
recently, studies have focused on the EE maximization prob-
lem for UAV-enabled networks in which NOMA technology
is adopted [26], [27]. In particular, authors in [26] proposed
a two-sided matching and swapping algorithm to achieve
subchannel assignment and a power allocation to iteratively
maximize the EE of a fog UAV wireless network. Through
simulation they have shown how the EE of NOMA-based fog
UAV wireless networks is higher than that of an orthogonal
frequency-division multiple access scheme. A more exhaustive
investigation where the UAV altitude and the QoS constraint of
the users are considered in optimization problem formulation
was conducted in [27].

In the context of NOMA user aggregation procedure, the

most common approach, adopted in the aforementioned works,
is to multiplex a cell centre user (best channel gain) with a
cell edge user (worse channel gain). This user pairing strategy
is sometimes termed as conventional NOMA (C-NOMA).
However, due to the random distribution of users, the ratio of
users in near and far regions may vary significantly, especially
in the case of UAV communications where the channel gain
conditions are dependent on the UAV altitude [6], [7]. In order
to address the case in which the number of cell centre users
is less than cell edge users, a virtual pairing based NOMA
(VP-NOMA) was proposed in [28]. The VP-NOMA system
simultaneously pairs a cell centre user with two or more cell
edge users over non-overlapping frequency bands, achieving
higher capacity gains compared to C-NOMA and OMA tech-
niques. However, the cell centre user may need to perform
multiple SIC operations, increasing the power consumption
of the decoding users, which in some power constrained
scenarios such as disaster communications is a critical issue
[29], [30]. In order to reduce this computational cost, a time
sharing-NOMA (TS-NOMA) system was proposed in [31].
This approach consists in dividing the total time slot duration
T into two sub-time slots t1 and t2. During the first sub-time
slot t1 ≤ T , UE1 (cell centre user) is paired with UE2 (cell
edge user) . For the remaining time t2 = T − t1, UE1 is
paired with another cell edge user, i.e., UE3. In this way, UE1
is able to use the whole bandwidth of B Hz for the complete
duration of communication session, whereas UE2 and UE3
can use the complete bandwidth for portions of time t1 and
t2, respectively. In addition, the computational cost at the cell
centre user is reduced since only one SIC process per sub-time
slot is performed.

As far as the authors are aware, the technical literature lacks
works related to the application of the TS-NOMA concept to
UAV-NOMA communications (UAV-TS-NOMA), especially
in the context of disaster relief network where this commu-
nication paradigm can be adopted as a potential solution to
perform energy-efficient and throughput fair transmissions by
saving energy at both transmitter and receiver. Thus, this paper
aims to fill in the existing gap in the literature. Specifically,
the main contributions of this paper are as follow:

• We propose a model of an UAV-TS-NOMA system
and for such a communication model, in addition to a
low computational cost user clustering procedure, we
formulate a joint EE and throughput fairness optimiza-
tion problem which takes into account the QoS require-
ments of users and the power availability at the UAV
as optimization constraints. To the best of the authors’
knowledge, this represents the first work on joint EE
and throughput fairness maximization for a TS-NOMA
applied in the context of a large-scale network scenario
under UAV-enabled communication.

• Due to the non-linearity and non-convexity of the EE
optimization problem, we propose a dual-layer iterative
algorithm for the optimal resource allocation, which
basically finds the joint sub-optimal resource allocation
scheme in two steps. The first step aims to select the
proper power resources to maximize the EE. Then, the
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second optimization step aims to select the proper time
resources to maximize the throughput fairness among
users. More importantly, we propose semi-closed form
solutions for both steps. In addition, under particular
conditions, the power optimization step is sufficient to
jointly optimize the aforementioned network metrics,
reducing the processing energy consumed by the UAV
for evaluating the optimal set of power resources.

• We conduct a performance investigation campaign
through simulations varying the main parameters that
influence the optimization process, and showing how the
proposed framework is able to find the optimal resource
allocation configuration while satisfying the constraints.
In particular, we show how the proposed communication
paradigm achieves higher network performances with a
lower computational complexity when compared with
another EE framework proposed in the literature.

The rest of the paper is organized as follows. The system
model, as well as a user aggregation policy and the formulation
of the joint power and time resource allocation optimization
problem are introduced in Section II. Section III provides the
proposed two-step procedure for joint power and time resource
allocation. Section IV presents the performance investigation
of the proposed approach along with a comparison with a
random power allocation scheme, a fixed power allocation
schemes and another EE power allocation scheme proposed in
literature. Finally, conclusions and future directions are drawn
in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, let us suppose to have a set of
N users, randomly distributed into a circular area of radius
R according to a Poisson point process (PPP) and served
by an UAV which performs TS-NOMA transmissions. Each
time slot T is divided in NS = 2 time slots, i.e. t1 = αT
and t2 = (1 − α)T , with 0 ≤ α ≤ 1. The UAV is placed
at the center of the cell at height H . To perform energy
efficient TS-NOMA transmissions among its users, the UAV
should perform the following operations: i) classify the users
according to their channel condition obtaining Type-I (cell
centre) and Type-II (cell edge) users, ii) adopt a clustering
policy in order to multiplex Type-I users with Type-II users
in the power domain, and iii) select both the optimal power
coefficients and the time slot durations in order to jointly
maximize the EE and the downlink throughput fairness among
users.

A. Node classification and clustering

The full procedure for node classification and clustering
is summarized in Algorithm 1 and described in the sequel.
Supposing that the UAV has complete knowledge about the
channel gain of each user, a very fast and simple way to
divide the set of users into two clusters is represented by the
adoption of the k-means++ algorithm [32]. The output of this
algorithm consists in a group of NC cell centre users and a
group of NE cell edge users. Once the two subsets of users
are obtained, iteratively each cell centre user is paired with

H

UE
1

UE2

UEN

(x,y)R

Fig. 1. System model.

K cell edge users per sub-time slot, i.e., 2K cell edge users
in total. Under this assumptions, the ideal output from the k-
means algorithm should consist in N

2K+1 cell centre users and
N × 2K

2K+1 edge cell users. However the output is dependent
on the channel gain conditions. Then, when NC < N

2K+1
we modify the k-means++ algorithm in order to consider
the first K1 =

(
N

2K+1 −NC
)

strong users from the NE
as cell centre users. The opposite procedure is applied when
NC > N

2K+1 , i.e., the last K2 = NC − N
2K+1 are considered

as weak users.1 In Fig. 2 one can observe the system model
after node classification, where the green area and red area
contains cell centre and cell edge users, respectively. Once
these clusters are obtained, the available bandwidth is divided
into NC orthogonal sub-channels labelled with an unique ID,
i.e., ID = 1, · · · , NC , each of them used to multiplex a cell
centre user with the corresponding 2K cell edge users in the
power domain. Since the user pairing process and user to
sub-channel mapping represents a critical aspect for NOMA
systems [33], [34], indicating with gi,c the channel gain of the
i-th cell centre user and with gk,e the channel gain of the k-th
cell edge user, they will be multiplexed in the power domain if
the channel gain ratio gk,e

gi,c
fits in the range reported in Table

I, which guarantees the minimum power requirement at the
transmitter [35].

TABLE I
CHANNEL GAIN RATIOS.

Edge users per time slot K = 1 K = 2 K = 3

channel gain ratios
[0.4− 0.5] [0.4− 0.5] [0.4; 0.5]

[0.2− 0.35] [0.2− 0.35]
[0.5− 0.15]

B. Resource allocation problem

As mentioned before, we suppose that the available band-
width B is divided into NC orthogonal sub-channels of equal
size B/NC . Each sub-channel is used to multiplex one Type-I
user with Ki,1 and Ki,2 Type-II users during the first and the

1These assumptions have been considered in order to obtain a complete
performance investigation varying the UAV altitude, which impacts on channel
conditions.
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Fig. 2. System model after node classification.

Algorithm 1 Algorithm for user clustering.
Input: Channel gains of the N users within the coverage area.
Output: Groups of users to be multiplexed into the power

domain.
1: Apply the modified k-means++ algorithm to the set of

channel gains;
2: Sort the set of NC in a descending order;
3: for ID = 1 to NC do
4: create the set TSset,i = []
5: take gi,c
6: for t = 1 to NS do
7: create the set SLOTset = []
8: for k = 1 to K do
9: select user gk,e from NE as indicated in Table I.

10: SLOTset = [SLOTset, gk,e]
11: end for
12: TSset,i = [TSset,i, SLOTset]
13: end for
14: end for
15: return TSset,i ∀i = 1, · · · , NC

second sub-time slot, respectively. Then, the signal received
by the generic k-th user within the i-th sub-channel during
the first sub-time slot, can be expressed as:

yi,k,1 = hk ×
Ki,1+1∑
j=1

√
Pjsj + ωk , (1)

where hk represents the channel coefficient of user k, Pj is
the amount of transmitting power allocated to user j, sj with
‖sj‖2 = 1, is the signal transmitted to user j and ωk is the
received noise.

Regarding the channel coefficient hk, it has been modelled
using the air-to-ground (ATG) channel model for device-to-
device UAV-assisted communication provided in [36], [37]. In
particular, the channel coefficient from the UAV to the k-th
user located at (x, y) position can be written as:

hk =PrLOS ×
(√

x2 + y2 +H2
)−β

+ PrNLOS × γ
(√

x2 + y2 +H2
)−β

,

(2)

where β represents the path-loss exponent and γ is the
excessive attenuation factor in the case of non-LoS (NLoS).
Finally, PrLOS and PrNLOS = 1 − PrLOS represent the
LoS and the NLoS probability, respectively. These last two
quantities are obtained from the following formula [36]:

PrLOS =
1

1 + a× exp (−b [φ− a])
, (3)

where a and b are constant values depending on the environ-
ment, and φ is the elevation angle between the UAV and the
user expressed in degree, as follow:

φ =
180

π
× arcsin

(
H√

x2 + y2 +H2

)
. (4)

Furthermore, due to the random distribution of obstacles
between UAV and UEs, for a more realistic mobile commu-
nication model [38], random components ζLOS and ζNLOS
following a log-normal distribution with a zero mean and stan-
dard deviations σLOS and σNLOS are considered, respectively.
Then, (2) can be expressed as:

hk =PrLOS × ζLOS
(√

x2 + y2 +H2
)−β

+ PrNLOS × ζLOS × γ
(√

x2 + y2 +H2
)−β

.

(5)

In the same way, the signal received by the generic k − th
user during the second sub-time slot is:

yi,k,2 = hk ×
Ki,2+1∑
j=1

√
Pjsj + ωk . (6)

Then, according with (1) and (6), the achievable rate of each
user during the respective time slot can be expressed as:

Ri,k,1 = α
B

NC
log2

(
1 +

|hk|2Pk
σ2 + |hk|2

∑Ki,1+1
j=k+1 Pj

)
, (7)

and

Ri,k,2 = (1− α)
B

NC
log2

(
1 +

|hk|2Pk
σ2 + |hk|2

∑Ki,2+1
j=k+1 Pj

)
.

(8)
Then, the total amount of power employed by the UAV is
represented by:

Ptotal = ζ

αKi,1+1∑
j=1

Pj + (1− α)

Ki,2+1∑
j=1

Pj

+ Pcirc , (9)

where ζ is the reciprocal of the drain efficiency of the amplifier
and Pcirc is the non-transmissive power dissipated into the
internal power circuit of the transmitter. Indicating with P the
vector containing all the power levels allocated for each user
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during the first and the second time slot, the EE optimization
problem per sub-channel is formulated as follow:

max
P;α

∑Ki,1+1
k=1 Ri,k,1 +

∑Ki,2+1
k=1 Ri,k,2

Ptot
(10a)

s.t. Ri,k ≥ Rmini,k , ∀ k = 1 · · ·Ktot,i (10b)
Ki,1∑
k=1

Pk ≤ Psub (10c)

Ki,2∑
k=1

Pk ≤ Psub (10d)

0 ≤ α ≤ 1, (10e)

where Ktot,i = Ki,1 + Ki,2 + 2. Equation (10b) represents
the QoS constraint of each user in downlink and (10c)-(10d)
represent the constraints on the power transmission level. In
particular, supposing that Pmax is the maximum transmission
power along the whole bandwidth, we assume that it is equally
distributed within each sub-channel, i.e., Psub = Pmax/NC .

III. JOINT POWER AND TIME RESOURCE ALLOCATION
ALGORITHM

In this section we illustrate the proposed joint power and
time resource allocation framework for an UAV-TS-NOMA-
enabled system. Due to the non-linearity of (10) we propose a
dual-layer iterative algorithm, organized in two steps as follow:

1) Optimal power allocation procedure utilized to find the
optimal vector P which maximizes the EE for a fixed
value of α;

2) Optimal time resource allocation procedure to update the
factor α, using the power allocation values P obtained
from the previous step.

A. Power allocation procedure

As stated before, during the first optimization step the time
factor α is considered as constant in the range [0, 1]. Then,
the optimization problem (10) can be considered as a power
allocation problem for EE maximization as follows:

max
P

∑Ki,1+1
k=1 Ri,k,1 +

∑Ki,2+1
k=1 Ri,k,2

Ptot
(11a)

s.t. Ri,k ≥ Rmini,k , ∀ k = 1 · · ·Ktot,i (11b)
Ktot,i∑
k=1

Pk ≤ Psub. (11c)

Since (11) can be classified as a non-linear fractional optimiza-
tion problem, we propose to apply the Dinkelbach method
[39], which as illustrated in [40], can be used for solving
general non-linear fractional programming problems. In par-
ticular, according with the Dinkelbach method, the vector P∗

solves the problem (11) if and only if it solves the following
equivalent problem:

max
P

Ki,1+1∑
k=1

Ri,k,1 +

Ki,2+1∑
k=1

Ri,k,2

− τ × Ptot (12a)

s.t. Ri,k ≥ Rmini,k , ∀ k = 1 · · ·Ktot,i (12b)
Ktot,i∑
k=1

Pk ≤ Psub, (12c)

with τ = τ∗
∆
=

∑Ki,1+1

k=1 Ri,k,1+
∑Ki,2+1

k=1 Ri,k,2
Ptot

∣∣∣∣
P=P∗

. After

some mathematical manipulations, the objective function can
be expressed as:

α×
[
R̂i,1 − τP̂i,1

]
+ (1− α)×

[
R̂i,2 − τP̂i,2

]
, (13)

where R̂i,1 =
∑Ki,1+1
k=1

B
NC

log2

(
1 + gkPk

σ2+gk
∑Ki,1+1

j=k+1 Pj

)
and

P̂i,1 = ζ
∑Ki,1+1
k=1 Pk + Pcirc. The values P̂i,2 and R̂i,2 are

defined in a similar way. As final result, the original fractional
problem (10) has been reduced to two optimization sub-
problems, one for each sub-time slot, which can be studied
separately. Henceforth,, since the two sub-problems are in
the same form, without loss of generality we will refer to
the first sub-time slot problem. Then, indicating with P1 the
variable of the first sub-problem which contains all the power
levels used during the first sub-time slot, the new optimization
problem becomes:

max
P1

[
R̂i,1 − τP̂i,1

]
(14a)

s.t. Ri,k ≥ Rmini,k , ∀ k = 1 · · ·Ki,1 + 1 (14b)
Ki,1+1∑
k=1

Pk ≤ Psub. (14c)

However, due to the non-concavity form of the achievable
rate function R̂i,1, the problem (14) is still difficult to solve.
To overcome this issue, we use efficient mathematical tech-
niques to transform problem (14) into a convex form. Firstly,
constraint (14b) can be relaxed by setting P̂k

∆
= Ak/φk, where

Ak =

(
2
Rmini,k ×NC

α×B

)
and φk = gk/(σ

2 + gk
∑Ki,1+1
j=k+1 Pj).

Therefore, the power variable can be rewritten as Pk = P̂k+P̃ ,
where P̃k ≥ 0 and P̂k represents the minimum amount of
power necessary to maintain the QoS of each user. Then, (14)
is equivalent to the following convex optimization problem

max
P̃1

Ki,1+1∑
k=1

B

NC
log2

(
ak + φkP̃k

)
− τP̂i,1(P̃) (15a)

s.t.
Ki,1∑
k=1

P̃k ≤ P̂sub, (15b)

where P̂sub = αPsub −
∑Ki,1
k=1 P̂k, ak = 1 + φkP̂k and Pk is

defined as
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Pk =

{
Aσ2

gk
+ P̃k k = 1,

Aσ2

gk
+A

∑k−1
j=1 P̂j +A

∑k−1
j=1 P̃j , k > 1.

Remembering that Pk = P̂k + P̃ , for a sake of simplicity
and without loss of generality we can derive the following
expressions:

P̂k =

{
Aσ2

gk
k = 1,

Aσ2

gk
+A

∑k−1
j=1 P̂j k > 1,

P̃k =

{
P̃1 k = 1,

A
∑k−1
j=1 P̃j , k > 1.

(16)
Then, once P̂1 and P̃1 are calculated, the expressions in

(16) can be used to calculate all the power levels recursively.
However, as stated before, P̂k represents the minimum amount
of power necessary to maintain the QoS of each user. Then,
in order to set the initial level of power of each user we
employ the procedure described in the sequel. Supposing that
P̃1 has been randomly allocated, after some mathematical
manipulations, the expression for the generic P̃k illustrated
in (16) can be written as:

P̃k =

{
P̃1 k = 1,

(1 +A)
k−2

A× P̃1, k > 1.
(17)

Then, by applying the power constraint (15b), after some
mathematical manipulation, we obtain:
Ki,1∑
k=1

P̃k = P̃1 +

Ki,1∑
k=2

(1 +A)
k−2

A× P̃1 = P̃1 × (1 +A)
Ki,1−1 ≤ P̂sub.

(18)
In other words, we found that P̃1 ≤ P̂sub

(1+A)Ki,1−1 . From this
constraint, is possible to perform the random initialization
of problem (15) as illustrated in Algorithm 2. When the

Algorithm 2 Algorithm for random power allocation.

Input: Maximum Power level P̂sub and QoS constraint.
Output: Initial Random power level.

1: Select a random value for P̃1 between 0 and P̂sub
(1+A)Ki,1−1 .

2: for k = 2 to Ki,1 do
3: compute the value of P̂k using Eq. (16).
4: compute the value of P̃k using Eq. (17).
5: end for
6: return the vectors P̂ and P̃

initialization process is completed, the problem (15) is solved
through the following algorithm:

I ) Initialization. Solve (15a) for initial τ > 0. If its
optimal value is higher than zero, set τ = τ , reset
τ ← 2τ , and solve (15a) again. Otherwise (its optimal
value is less than zero), set τ̄ = τ . We end up having
τ and τ̄ such that the optimal value of (15a) is positive
for τ = τ and negative for τ = τ̄ . The optimal τ for
zero optimal value of (15a) lies on [τ , τ̄ ]; as such, we
locate it by the bisection method, as explained in the
following.

II ) Bisection. Solve (15a) for τ = (τ+ τ̄)/2. If its optimal
value is positive, reset τ ← τ , otherwise (its optimal
value is negative), reset τ̄ ← τ . This process is repeated

until the condition τ̄ − τ ≤ ε (tolerance) is reached.
Then, optimal value of (15a) will be τ∗ = (τ + τ̄)/2 .

III ) Optimal power P̃ ∗k computation. For a fixed value τ∗

obtained from the previous step, compute the gradient of
(15a) respect to the P variable. Then, the optimal value
P∗ is the one at which the gradient is equal to zero.

From the previous procedure, starting to compute the first-
order derivative from the user with worst channel condition
and defining the f(P̃) =

∑K̄
k=1

B
NC

log2

(
ak + φkP̃k

)
−

τP̂i,1(P̃) and K̄ = Ki,1 + 1, the execution of step III consists
in finding the solution of the following system of K̄ equations:

∇f(P̃) =


B
NC
× φK̄

Ψ(P̃K̄)
− τζ

...
B
NC
×
(

φk
Ψ(P̃k)

+
∑K̄
j=k+1

φ′j
Ψ(P̃j)

)
− τζ

= 0,

(19)
where Ψ(Pk) = ln(2)(ak + φkP̃k) and φ′j =

∂φj
∂P̃j

. Even
if this provides a closed-form expression for the optimal
solution, as the number of users increases, it can result in high
computational cost procedure, requiring high levels of energy
for the computation of the solution. Under this perspective,
we propose a sub-optimal approach for the computation of
power coefficients. In particular, solving the first equation
of the previous system, PK̄ has the following closed-form
expression:

P̃K̄ =
B/NC
ln(2)τζ

− aK̄
φK̄

. (20)

At this step, once the optimal power level of the user with
worst channel condition has been obtained, we can calculate
the other coefficients exploiting the relation in (16). In partic-
ular, if K̄ = 2:

0 ≤ P̃1 ≤
P̃K̄
A
. (21)

Otherwise, if K̄ > 2

0 ≤ P̃k ≤


P̃K̄

(1+A)K̄−k
, 2 ≤ k ≤ K̄ − 1

P̃K̄
(1+A)K̄−kA

, k = 1.
(22)

According to (21) and (22), considering users as decreasing or-
dered pairs, i.e., (PK̄ ;PK̄−1), (PK̄−1;PK̄−2), · · · , (P2;P1),
one can notice that for each of these pairs the power for the
user with best channel condition should be considered as a
fraction of the power of user with worst channel condition.
Indicating with βP this fraction which respects conditions
(21)-(22), as reported in Fig. 3a, one can observe how an
increase of βP corresponds a decrease/increase of downlink
user perceived throughput of user with worst/better channel
condition within the ordered pair. In addition, comparing Fig.
3b with Fig. 3a the aggregate throughput within each pair
reaches a maximum value when the users in the pair reach
the same downlink throughput and remains constant for higher
values of βP . In view of this result, for each ordered pair of
users we select the value of βP which guarantees the same
downlink performances of the users in a pair. This choice is
motivated by the fact that at that point we have the same
performances but with minimum aggregated power per pair
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Fig. 3. Typical trend of downlink throughput along each ordered pair.

employed, i.e., higher local EE. The full proposed procedure
for power optimization is summarized in Algorithm 3.

Algorithm 3 Algorithm for βP and P∗ computing.
Input: NC group of users with random power allocation

calculated by Algorithm 2.
Output: Optimal level of power for each user

1: for i = 1 to NC do
2: create the set TSset,i = []
3: Organize users within the same sub-channel

in K̄ − 1 decreasing ordered pairs, i.e.,
(PK̄ ;PK̄−1), (PK̄−1;PK̄−2), · · · , (P2;P1).

4: for k = K̄ − 1 to 1 do
5: Find the minimum value of βp in order to maintain

the same downlink throughput performances within
the pair.

6: end for
7: end for
8: return The vector of optimal power levels P∗

B. Time resource allocation

The next step of the optimization process is to find the
optimal value of α. However, calculating the first order
derivative with respect to α of the objective function in (11),
one can notice how this variable does not impact on the
maximum value of the EE. In contrast, the value of α impacts
the fairness among users. From this perspective, using the
Jain’s fairness definition [41], we formulate the following
optimization problem for the downlink fairness maximization:

max
α

(∑K̄1

k=1Ri,k,1 +
∑K̄2

k=1Ri,k,2

)2

Ktot,i ×
(∑K̄1

k=1R
2
i,k,1 +

∑K̄2

k=1R
2
i,k,2

) (23a)

s.t. 0 < α < 1 ∀ k = 1 · · ·Ktot,i, (23b)

where K̄1
∆
= Ki,1 + 1 and K̄2

∆
= Ki,2 + 1. After some

mathematical manipulations, the objective function (23a) can
be reformulated as:

(αz + w)2

Ktot,i × [α2x+ (1− 2α)y]
, (24)

where

x =

Ktot,i∑
k=1

R2
i,k; y =

Ktot,i∑
k=K̄1+1

R2
i,k;

z =

K̄1∑
k=1

Ri,k −
Ktot,i∑
k=K̄1+1

Ri,k; w =

Ktot,i∑
k=K̄1+1

Ri,k.

(25)

For better comprehension, Ri,k represents the following quan-
tities:

Ri,k =

{
Ri,k,1
α 1 ≤ k ≤ K̄1;

Ri,k,1
1−α K̄1 + 1 ≤ k ≤ Ktot,i.

(26)

Then, calculating the first-order derivative with respect to α
of (24) we obtain:

−2 (αz + w) (α (zy + wx)− (zy + wy))

Ktot,i × [α2x+ (1− 2α)y]
2 . (27)

Albeit (27) admits two different solutions, we will choose the
one which satisfies the constraint (23b). Then the closed-form
expression for αopt is:

αopt =
y(z + w)

(zy + wx)
. (28)

IV. NUMERICAL RESULTS

In this section, we present simulation results obtained by
applying the optimization procedures illustrated in Section
III. As mentioned in Section II, we considered a simulation
scenario where an UAV located at altitude H provides cov-
erage through TS-NOMA transmissions to a set of N users,
randomly distributed into a circular area of radius R according
to a PPP process. The noise power at the receivers in the
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Fig. 4. Optimality index variation over different network configurations.

whole bandwidth is N0 = 290 · kB · B · NF , where kB
and NF are Boltzmann constant and noise figure at 9 dB,
respectively. Then, the noise power in each sub-channel is
N0/NC . Herein, the simulation parameters used to investigate
this scenario follow the study in [35] and are summarized
in Table II. The performance of the proposed joint time

TABLE II
SIMULATION PARAMETERS.

Parameter Value
N (average number of nodes) 150
H [m] [100, 150, 200, 250]
α [0.2, 0.3, 0.4, 0.6, 0.7, 0.8]
Bandwidth (MHz) 40
NF (dB) 9
Pcirc (mW) 160
Pmax (mW) 150
Drain efficiency ζ 1

0.388
a 11.95
b 0.136
Cell radius [m] 500
Excessive attenuation factor γ [dB] 20
Pathloss exponent β 4
σLOS [dB] 4
σNLOS [dB] 10

and power allocation scheme (JTPA) framework, in terms of

EE and fairness maximization, has been compared with the
following power allocation policies policies: i) the fixed power
allocation (FPA) policy, ii) the random power allocation (RPA)
policy illustrated in Section III-A, iii) the adoption of only
power optimization policy (PA), and iv) the power allocation
scheme proposed in [25], which is referred to as SOMSA-DC.
Although the first two represent easy policies to implement
in order to maintain the QoS constraint of the users, they
have been chosen in order to highlight that they do not use
the available power efficiently. The third policy permits to
highlight the impact of the time optimization process in terms
of fairness after the EE maximization. Finally, the SOMSA-
DC framework provides a complete performance comparison
in terms of user clustering complexity and both EE and
throughput fairness maximization. These analyses have been
performed for different values of H and different initial values
of α, which are reported in Table II. For clarity, this section
is organized in two subsections. Subsection IV-A discusses
the user clustering procedure in terms of computational cost
and optimality. Finally, the performance of the proposed JTPA
framework in terms of EE and downlink throughput fairness
maximization is provided in subsection IV-B.
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(d) α = 0.8 , H = 200 m.
Fig. 5. EE for different initial values of α and H = 200 m.

A. Computational cost and optimality

In this subsection we discuss the proposed clustering frame-
work in terms of computational cost and optimality. In order
to have a direct comparison with the framework proposed in
[25] and without loss of generality, we suppose that each cell-
centre user will be multiplexed with 2K = 2 cell-edge users,
i.e., K = 1 cell-edge user per sub-time slot and then Ki,1 =
Ki,2 = 1. Under these assumptions, supposing to have N users
and M sub-channels, the time complexity of the exhaustive
search is O( M !

(3!)N
). Then, the logarithm of the complexity

is O(ln(M !) − N ln(3!)). Regarding the SOMSA algorithm
proposed in [25], its worst case complexity occurs when all the
users have the same preference list. In this case, the SOMSA
algorithm has to compare

(
N
M

)2
(
∑N
i=1(N−i)) configurations.

Then, the worst case time complexity can be approximated as
O(
(
N
M

)2
), i.e., O(2(ln(N)− ln(M)) + ln (

∑N
i=1(N − i)) in

logarithmic form. As mentioned in Section II-A, we propose
to use a k-means++ based algorithm. As illustrated in [32]
, the k-means++ algorithm has a computational complexity
of ln(N × C × d), with C as the number of clusters and d
as the dimension of data point. Since we consider that the
users are clustered in two groups, i.e., cell-centre users and
cell-edge users, and d = 1, the computational complexity of

our proposed clustering framework is O(ln(N)), which is less
than that of the SOMSA algorithm.

Regarding the discussion in terms of optimality, we com-
pared the proposed clustering algorithm with the exhaustive
search. In particular, indicating with EEexh the maximum
EE obtained by searching over all possible combinations of
users and with EEkms the maximum EE obtained using the
k-means++ based clustering algorithm, we used the following
optimality index (OI) as performance indicator:

OI = 1− EEexh − EEkms
EEexh

. (29)

Note that (29) indicates how close the EE achieved using the
k-means++ algorithm is to the one obtained by adopting the
exhaustive search approach. The variation, in percentage, of
the OI indicator for different values of H and α is presented in
Figs. (4a)-(4d). From these figures one can note that through
the k-means++ based algorithm is possible to reach levels
of EE very close to the one obtained with exhaustive search
approach..

As a result, the adoption of the proposed user-clustering
scheme is more suitable for UAV-based scenario, since it can
achieve EE performances close to optimal but with signifi-
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Fig. 6. CDF of EE for different initial values of H and α = 0.5.
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Fig. 7. Mean optimal EE varying α and H .

cantly reduced computational cost permitting then to prolong
the UAV battery lifetime.

B. Network metrics maximization

From Fig. 5, which presents the EE along each sub-
channel at a fixed UAV altitude H and different values of α,
one can observe the following interesting results. Firstly, the
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(d) α = 0.8 , H = 200 m.
Fig. 8. User fairness along each sub-channel for different initial values of α and H = 200 m.

optimization procedure for power and time resource allocation
provides better performances with respect to the FPA, RPA
and SOMSA-DC allocation schemes, by allocating the proper
amount of power which maximizes the EE along each sub-
channel. Secondly, as stated in Section III-B, the value of α
does not impact on the EE maximization procedure. Indeed,
it is possible to note how the full optimization policy reaches
the same maximum points independently of the initial value
of α. Then, only the power allocation procedure is sufficient
to reach the maximum of the EE. It is worthy to mention
that the SOMSA-DC framework does not include a time
optimization procedure; thus, for a fair comparison, we applied
this optimization step to SOMSA-DC and refer to the new
policy as JTPA (SOMSA-DC). In contrast, PA (SOMSA-DC)
represents the legacy version of the SOMSA-DC framework.
Although both legacy and the new version of SOMSA-DC
reach the same final values, one can note how the initial
value of α impacts the EE maximization, providing different
trends of the EE per sub-channel by varying α. Regarding
the descending trend of the EE, it is related to the clustering
policy. Indeed, observing Algorithm 1, as the sub-channel ID
increases the channel gains of the users along that sub-channel
decreases, i.e., more power is necessary to guarantee the QoS

constraints. Then, since Psub is supposed to be equal for
each sub-channel, as a consequence the EE decreases with
the sub-channel ID. Then, this confirms that the proposed
framework finds the optimal values of power to maximize the
EE respecting the power constraint.

In order to better highlight the gain of the proposed frame-
work in terms of EE maximization, in Fig. 6 one can see
the comparison between the cumulative distribution functions
(CDF) of the EE obtained adopting different resource alloca-
tion methods.

Once again these figures confirm that: i) the proposed
framework yields an improved performance when compared
with RPA and SOMSA-DC frameworks in terms of EE; ii)
the time allocation procedure does not impact the system in
terms of the EE performance. For completeness, Fig. 7 shows
how the EE varies for different values of UAV altitude H
and different initial values of α. As expected, for a fixed
value of H , the results in terms of EE of JTPA policy are
independent from the initial value of the time slot duration
(Fig. 7a ). In contrast, as mentioned before, the initial value of
α impacts the EE reached by the SOMSA-DC framework (Fig.
7b). However, as also observed in Fig. 6, in both cases the EE
varies with the UAV height. This behaviour can be explained
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Fig. 9. Network fairness for different values of H and power allocation policy.

by considering the UAV channel model. In particular, from
(4) one can observe how an increase of H corresponds to
an increase of the elevation angle and then, according to (3),
a further increase of PrLOS . This means that more users
will experience higher channel conditions and then higher
downlink throughput with less power requirements, i.e., EE
increases. However, after a certain altitude level, even if the
PrLOS is high, the path loss component of (2) starts to be
more dominant causing a channel gain degradation, i.e., the
EE starts to decrease.

Fig. 8 illustrates the fairness index along each sub-channel
obtained by adopting each specific policy for a fixed value of
UAV altitude and different initial values of α. One can note
that the FPA policy reaches the maximum level of fairness
and does not depend on the initial value of α. This is because
the FPA policy allocates the minimum level of power to each
user, which permits to guarantee the QoS requirements. Since
these constraints are supposed to be equal, ideally all users
experience the same rate, i.e., maximum fairness. Furthermore,
even if a higher level of fairness can be reached with a joint
power and time resource allocation, the achievable fairness
level of the SOMSA-DC policy is always lower than that of the
proposed framework, both for the PA and JTPA cases. Finally,

even from these figures, one can notice how the maximum
value of fairness reached by the PA and PA (SOMSA-DC)
policies depends on the initial value of α. Indeed, for low
(0.2) or high (0.8) initial values of α, through both PA and
PA (SOMSA-DC) policies is not possible to reach a level of
fairness higher than 0.7 and 0.5, respectively. On the other
hand, for initial values of α close to 0.5, interestingly, the
system performance of both PA and JTPA policies reaches the
maximum fairness. This means that the procedure illustrated in
Algorithm 3 for finding the value of βP implicitly maximizes
the fairness by maintaining the maximum of EE when the time
resources are equally divided. In other words, the proposed
framework is able to jointly reach the maximum of both EE
and throughput fairness only through the power allocation
procedure.

For completeness, the box-plots provided in Figs. (9a)-(9d)
are used to highlight better the dependence of the network
fairness, achieved by each policy, on the UAV altitude and
the initial value of α. One can notice that the achievable
fairness does not depend on the altitude, regardless of the
policy. In addition, for a certain value of the UAV altitude, the
interquartile range is zero only if the JTPA policy is adopted.
This means that, in contrast to the other power allocation
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policies, the initial value of α does not influence the proposed
framework in finding the optimal values of both power and
time resources that jointly maximize the EE and the user
fairness of the served area.

V. CONCLUSIONS AND FUTURE DIRECTION

In this paper, we have introduced the concept of TS-
NOMA multiplexing in the context of UAV-enabled com-
munications. Further, for the UAV-TS-NOMA communication
system, we have proposed a user clustering procedure and
formulated an optimization problem which, considering the
QoS requirements of users and the power availability at
the UAV as system constraints, aims to jointly maximize
the EE and downlink throughput fairness in the network.
Regarding the clustering procedure, we have illustrated how
adopting a k-means++ based solution permits to reach similar
results as the exhaustive search, yet with a significantly lower
computational cost, allowing then to reduce the processing
energy at the UAV side. On the other hand, due to the non-
linearity of the optimization problem, we have proposed a
dual-layer iterative algorithm in which i) the power resources
are optimized and provided in a semi-closed form by using
the Dinkelbach method in conjuction with some mathematical
transformations, and subsequently ii) a closed-form expression
for the optimal time resource allocation is obtained as the
first-order derivative of the optimization function. By varying
the main parameters that influence the optimization algorithm,
we have evaluated the performance of the proposed algorithm
through simulations. In particular, we have illustrated how
in contrast to the constant power allocation, random power
allocation, and both versions of the SOMSA-DC scheme
proposed in [25], the proposed framework is able to efficiently
use power and time resources, reaching the maximum of
both EE and downlink network fairness while satisfying the
optimization constraints. In addition, we have highlighted how
the proposed power resource allocation procedure maximizes
the fairness implicitly under particular conditions. Hence, the
proposed UAV-TS-NOMA communication framework can find
applicability in the context of disaster communications, where
it can be adopted as a potential solution to perform energy-
efficient transmissions by saving energy at both transmitter and
receiver.. However, since the performance of an UAV-based
network is strongly dependent on the UAV trajectory path and
position, as illustrated in [11], the authors believe that future
directions of this work can be identified in the designed of
an intelligent UAV-TS-NOMA network where multiple UAVs
cooperate to optimize their transmission resources and trajec-
tory path in order to maximize EE and throughput fairness in
the context of disaster communication networks.
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