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ABSTRACT 

 

Background: Evidence suggests etiologic heterogeneity among breast cancer subtypes. Previous 

studies with six-marker immunohistochemical classification of intrinsic subtypes included small 

numbers of Black women.  

Methods: Using centralized laboratory results for estrogen receptor (ER), progesterone receptor 

(PR), human epidermal growth factor 2 (HER2), proliferation marker Ki-67, epidermal growth 

factor receptor (EGFR), and cytokeratin (CK)5/6, we estimated case-only and case-control odds 

ratios (ORs) for established breast cancer risk factors among cases (n=2,354) and controls (n 

=2,932) in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium. 

ORs were estimated by ER status and intrinsic subtype using adjusted logistic regression.  

Results: Case-only analyses by ER status showed etiologic heterogeneity by age at menarche, 

parity, and age at first birth. In case-control analyses for six-marker intrinsic subtype, increased 

body mass index (BMI) and waist-to-hip (WHR) ratio were associated with increased risk of 

luminal A subtype, while older age at menarche and parity, regardless of breastfeeding, were 

associated with reduced risk. For basal-like cancers, parity without breastfeeding and increasing 

WHR were associated with increased risk, whereas breastfeeding and age ≥ 25 years at first birth 

were associated with reduced risk among parous women. Basal-like and ER-/HER2+ subtypes 

both had earlier age-at-incidence distribution relative to luminal subtypes.  

Conclusions: Breast cancer subtypes show distinct etiologic profiles in the AMBER consortium, 

a study of over 5,000 Black women with centrally assessed tumor biospecimens.  

Impact: Among Black women, high WHR and parity without breastfeeding are emerging as 

important intervention points to reduce the incidence of basal-like breast cancer.  

 



INTRODUCTION 

Basal-like breast cancer is an aggressive molecular subtype defined by a signature of 

genes, including those expressed in the basal layer of human breast tissue.1 Basal-like tumors 

typically have poor clinical outcomes and limited options for targeted treatment due to low or 

absent expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal 

growth factor receptor 2 (HER2).2–7 Previous studies show that the relative frequency of basal-

like tumors is highest among younger women and Black women, especially premenopausal 

Black women.8–11 Reproductive factors, such as parity and breastfeeding, have been shown to 

contribute to the risk of basal-like subtype, with parous women who do not breastfeed having an 

increased risk of estrogen receptor (ER) negative and triple-negative breast cancer.9,12–14 Late age 

at menarche has been associated with reduced risk of ER-negative breast cancers among Black 

women.15 Associations with other hormone-related risk factors, such as body mass index and 

oral contraceptive use, have been inconsistent across studies of Black women.16–19 

 Accurate and reliable methods for determining breast tumor subtype are important in 

studies of risk factor heterogeneity. Most prior risk factor studies have relied on ER, PR, and 

HER2 status from the clinical record for classification of tumors as luminal A (ER+/HER2-), 

luminal B (ER+/HER2+), ER-/HER2+, and triple-negative (ER-/PR-/HER2-).20–24  However, 

laboratory technical variation, changes in expression cutoff values, and intratumoral 

heterogeneity can contribute to outcome misclassification within this schema, particularly for 

luminal breast cancers. Moreover, reliance on triple negative status from the clinical record has 

resulted in misclassification of basal-like breast cancers in some studies.25–28 We recently 

showed that incorporating centrally-assayed ER, PR, HER2, Ki67, EGFR, and CK5/6 

immunohistochemical (IHC)-surrogate classification improved subtype accuracy and produced 



subtype frequencies similar to those from the RNA-based PAM50 intrinsic subtype assay in the 

African American Breast Cancer and Risk (AMBER) Consortium.29 Importantly, basal-like 

cancers were nearly as prevalent as luminal A subtype in this consortium study of Black patients. 

Thus, the AMBER consortium is well-powered for analysis of basal-like risk factor profiles. 

Since previous reports of the epidemiology of basal-like breast cancer relied on relatively few 

basal-like breast cancers (the largest to date enrolling n=122 Black women with basal-like 

subtype in Millikan et al. 2008; several smaller studies have examined triple-negative classified 

tumors), we sought to update estimates for risk factor associations in a more than five-fold larger 

population of Black women (n = 691 basal-like breast cancers).9,20–24 

METHODS 

Study population. The AMBER consortium includes Black cases and controls from 

observational studies of breast cancer: the Carolina Breast Cancer Study (CBCS), the Black 

Women’s Health Study (BWHS), the Women’s Circle of Health Study (WCHS) and the Multi-

Ethnic Cohort (MEC). Centralized IHC for intrinsic subtype was performed only for CBCS, 

BWHS and WCHS; MEC participants were not included in the analysis. Sampling schema for 

each study have been reported previously.30 Each study was approved by institutional review 

boards at participating hospitals and academic institutions. Briefly, the CBCS is a population-

based study of breast cancer cases in North Carolina that enrolled women in three phases (Phase 

1: 1993-1996, Phase 2: 1996-2001 and Phase 3: 2008-2013) and oversampled young and Black 

women. The study identified cases via rapid case ascertainment and recruited controls using 

Division of Motor Vehicle and Medicare beneficiary lists. Phase 3 did not enroll controls; as a 

result, use of Phase 3 cases in this study is limited to our analyses of case-only ORs and age-at-

incidence curves. Data collection included in-person interview and medical record abstraction. 



BWHS enrolled 59,000 cancer-free Black women via a mailed questionnaire beginning in 1995 

and have followed women through biennial questionnaire since. Breast cancer diagnoses are self-

reported and confirmed via medical record linkage or through state cancer registries and the 

National Death Index. Three controls per case were included from the BWHS, frequency-

matched to cases by 5-year age category. The WCHS is a case-control study initially conducted 

in metropolitan New York City and later only in 10 counties in eastern New Jersey (NJ).  New 

York cases with incident breast cancer from hospitals that served large proportions of Black 

cases and controls were identified through random digit dialing. In NJ, cases were identified 

through the NJ State Cancer Registry and controls using random digit dialing and community-

based recruitment; all data are collected through in-person interviews. 

Eligible women for the present study included 1,559 cases from the CBCS (304 from 

Phase 1, 29 from Phase 2, and 1,226 from Phase 3), 291 cases from the BWHS, and 504 cases 

from the WCHS. Controls included 788 from Phases 1 and 2 of the CBCS, 873 from the BWHS, 

and 1,271 from the WCHS. 

Tumor biomarkers. Eligible cases for the current analysis were women diagnosed with 

invasive breast cancer and for whom tumor tissue was available for centralized laboratory 

analysis (n=2,354). For all cases, IHC biomarker stains were carried out on paraffin-embedded 

tumor sections or tumor microarrays at the Translational Pathology Lab at the University of 

North Carolina at Chapel Hill using assay procedures and cutpoints as previously described.29 A 

10% ER positivity threshold was used to delineate ER-positive versus -negative. Subtypes were 

defined using 6 biomarkers: luminal A (ER+ and/or PR+, Ki-67 < 7.1%), luminal B ( ER+ 

and/or PR+, Ki-67 ≥ 7.1%]), ER-/HER2+, or triple negative (ER- and PR- and HER2- and 

[EGFR+ or CK5/6+]). When ER+ cases were missing Ki-67 (333 cases from CBCS; 0 cases 



from BWHS; 51 cases from WCHS), subtypes were defined using 5 biomarkers: luminal A (ER+ 

and/or PR+ and grade 1 or grade 2), luminal B (ER+ and/or PR+ and grade 3), ER-/HER2+, or 

triple negative (ER- and PR- and HER2- and [EGFR+ or CK5/6+]). 20 cases were additionally 

missing grade, and were included only in analyses stratified on ER status. 

Statistical analyses. ORs were calculated as the measure of association between risk 

factor exposure and breast cancer subtype. Multivariable binomial logistic regression was used to 

calculate case-control and case-only ORs and 95% confidence intervals (CIs). Multivariable 

models were adjusted for age (continuous linear), first degree family history of breast cancer (yes 

or no), parity (nulliparous, 1 – 2 children, or ≥ 3 children), breastfeeding duration (never, < 6 

months, or ≥ 6 months), and study (CBCS, WCHS, BWHS). P-values were two-sided with α = 

0.05. 

To compare the joint impact of parity and breastfeeding on risk of luminal A and basal-

like subtypes, we used a composite variable categorizing parous women by breastfeeding status 

(1 or 2 children, never lactated; 3 or more children, never lactated; 1 or 2 children, ever lactated; 

3 or more children, ever lactated) and calculated case-control ORs with nulliparous controls as 

the referent group.  

Bimodality in age at diagnosis has been used to investigate etiologically distinct subtypes 

of breast cancer.31 We use two-component statistical mixture models to estimate the proportions 

of early-onset and late-onset cases within each of the intrinsic subtypes, as previously 

described.31,32 Within each subtype we compared the fit of single-density models versus two-

component mixture models. For each type of model we implemented both normal density and 

semi-nonparametric density models (adding polynomial multiplier to the normal distribution to 

allow for skewness and heavy tails in the distributions), resulting in a total of four models for 



each subtype. The four models fitted for each subtype were compared using Akaike information 

criterion (AIC) values, with smaller AIC values indicating a better fit. We identified the best 

fitting single-density model and the best fitting two-component mixture model, and then 

compared the goodness of fit between these two models using the difference in their AIC values 

(ΔAIC). ΔAIC >10 indicated a substantial difference in the goodness of fit between the two 

models. For each subtype we plotted the smoothed density curve estimated from the best model 

overlaid with the empirical age-at-diagnosis distribution (i.e. histogram) for early onset, late 

onset and overall distribution. All analyses were performed using SAS 9.4 (SAS Institute, Cary, 

NC) and R (version 3.4.3, R Foundation for Statistical Computing, Vienna, Austria).  

RESULTS 

Case-only odds ratios for ER-positive and ER-negative tumors. Estrogen receptor is a 

strong marker of etiologic heterogeneity in previous studies of breast cancer in Black and White 

women. To first establish the similarity of this dataset to previous studies with respect to ER 

heterogeneity, we evaluated case-only ORs for a range of risk factors comparing ER-negative 

tumors to ER-positive tumors. Multivariable ORs are presented in Table 1. Older age at 

menarche, increasing parity, age at first full term birth, and breastfeeding status showed etiologic 

heterogeneity by ER status. Family history, oral contraceptive use, BMI, and WHR did not show 

significant heterogeneity by ER status.  

Case-control odds ratios for IHC intrinsic subtype. Case-control ORs were estimated for 

subtype based on 6-marker central IHC (Table 2). Subtype distribution by study site has been 

previously reported.29 Luminal A subtype was positively associated with increasing BMI and 

increasing WHR. Older age at menarche and parity, regardless of breastfeeding status, were 

associated with reduced risk of luminal A subtype. Associations for luminal B breast cancer were 



similar to those for Luminal A but closer to the null, except for family history of breast cancer, 

which was significantly associated with luminal B risk. The direction of associations for ER-

/HER2+ tumors were similar to those for luminal A, with family history, oral contraceptive use 

and age ≥ 25 years at first birth strongly positively associated and parity inversely associated 

with risk of ER-/HER2+. Basal-like breast cancer showed distinct risk factors. Parity was not 

found to be protective for basal-like breast cancer, and instead was associated with elevated ORs 

in case-control analyses. Increasing WHR and higher parity without breastfeeding were 

significantly associated with increased risk of basal-like, while breastfeeding and age ≥ 25 years 

at first birth were protective among parous women.  

Case-only odds ratios for IHC intrinsic subtype. Case-only ORs were calculated to allow 

evaluation of etiologic heterogeneity by 6-marker subtype. Risk factor profiles for luminal B, 

ER-/HER2+ and basal-like breast tumors were estimated relative to luminal A subtype (Table 3). 

Overall, consistent with case-control findings, the luminal A and luminal B subtypes showed 

similar risk factor profiles, demonstrated by the non-significant case-only ORs for luminal B 

tumors. Case-only analyses highlighted differences between luminal A and ER-/HER2+ and 

basal-like etiology. Increased parity was associated with higher odds of basal-like but decreased 

odds of HER2-subtype compared to luminal A subtype. Breastfeeding was associated with 

decreased odds for both ER-/HER2+ and basal-like breast cancers relative to luminal A. Similar 

to case-control analyses, age ≥ 25 years at first birth was protective for basal-like cancers among 

parous women. Age at menarche, oral contraceptive use, BMI, and WHR did not show 

significant heterogeneity by intrinsic subtype. 

Age-at-incidence curves. Bimodal frequency distributions for age at incidence have been 

interpreted as evidence of etiologic heterogeneity for basal-like vs. luminal A tumors. We 



applied two-component mixture models among all cases and within each intrinsic subtype and 

compared them with single density models to evaluate the presence of bimodality in age at 

diagnosis. We then plotted the smoothed density plots overlaid with histograms to show the 

distribution of cases by age at diagnosis (Figure 1). We found that luminal cancers were best 

represented by a two-component mixture model (Supplemental Table 1). For the basal-like 

group, ΔAIC lay between 4-10, still indicating that the two-component mixture model provided 

better fit, albeit with slightly lower certainty than for luminal cancers. For ER-/HER2+, we could 

not distinguish which model provided the better fit, with ΔAIC<4. Broadly, luminal A tumors 

showed a strongly bimodal pattern in age at diagnosis, with enrichment for both early and late 

onset disease. Luminal B subtype had a less pronounced late onset peak. ER-/HER2+ subtype 

was skewed toward earlier age at incidence, with a strong early-onset peak. Basal-like subtype 

was similarly enriched for early-onset disease, showing a small late-onset peak.  

 

DISCUSSION 

We estimated associations between breast cancer risk factors and tumor subtypes defined 

by six-marker IHC classification among Black women in the AMBER consortium. We found 

breastfeeding to be protective for basal-like and ER-/HER2+ breast cancer in both case-control 

and case-only analyses. Parity and later age at menarche were associated with reduced risk of 

luminal A breast cancer, while increased BMI and WHR conferred increased risk. Luminal B 

subtype was not significantly associated with any risk factors other than family history, although 

the direction of association was similar for Luminal A breast cancers, and in case-only analyses 

did not exhibit a risk factor profile distinct from luminal A. Age-at-incidence curves overall 

showed bimodal distributions with pronounced early onset peaks for all subtypes, but ER-

/HER2+ and basal-like subtypes showed earlier age at diagnosis compared to luminal subtypes, 



in keeping with their distinct risk factor profiles.  In a large, Black population with centrally-

assessed, six-marker IHC-based breast cancer subtypes, risk factor profiles by intrinsic subtype 

suggest distinct risk factors for basal-like breast cancer and highlight breastfeeding as a plausible 

intervention to reduce risk of this aggressive subtype of breast cancer.  

Breastfeeding has consistently demonstrated a protective effect for triple negative and 

basal-like breast cancers in prior literature.33–40 In our study, we observed that women who were 

parous but did not breastfeed had the highest ORs for basal-like breast cancer, further reinforcing 

the importance of breastfeeding to reduce risk of basal-like breast cancer. A number of prior 

studies have found similar results, including earlier analyses with clinical markers in the 

AMBER consortium, which found breastfeeding to be associated with reduced risk for ER-

negative, basal-like, and triple-negative subtypes, while parous women who did not breastfeed 

were at increased risk for these subtypes.9,13,34,41 We also found increased WHR to be associated 

with increased risk of basal-like subtype, in agreement with earlier analyses in the AMBER 

consortium.16,18 A previous study among participants of the Women’s Health Initiative showed 

no association between WHR and risk for triple negative breast cancer; however, this study 

included a small number of Black women (n=199 cases).42 The relationship between adiposity 

and breast cancer risk appears to vary by race and ethnicity, and WHR, commonly used to 

represent central adiposity, may more strongly influence breast cancer risk than BMI among 

Black women.43 It will be important to consider obesity-related biomarkers in future studies to 

better understand how body mass distribution and race influence breast cancer etiology.  

Compared to luminal and basal-like subtypes, risk factor profiles for luminal B and ER-

/HER2+ breast cancer have been less consistently reported, likely due to the lower prevalence of 

these subtypes. However, considering the magnitude of associations in prior literature, there 



appears to be an overlapping risk factor profile for luminal A and B subtypes, in line with what 

we found.33,35,36,44 As for the ER-/HER2+ subtype, we found several significant associations, 

including a protective effect of parity with breastfeeding. Unlike for basal-like breast cancer, 

parity alone was protective for ER-/HER2+ subtype. This is in contrast to a study among a 

multiethnic cohort of women which found parity to be associated with 43% (95% CI: 1.08-1.89) 

higher odds of ER-/HER2+ breast cancer relative to luminal A.41 That study included a larger 

number (n=493) of ER-/HER2+ tumors and a lower proportion (less than 6%) of Black women 

relative to our study. In the Nurses Health Study, a cohort of largely non-Hispanic White women, 

Fortner et al. also found parity to be associated with increased risk of ER-/HER2+ tumors.35 Our 

discrepant findings may be due to differences in tumor classification schema and/or patient 

population, as reproductive factors are known to vary by race and ethnicity.45,46 Of note, we 

found an increased risk for ER-/HER2+ subtype with oral contraceptive use, a finding that has 

been previously reported among White and Asian women, but not among Black women.47–49  

Age at incidence curves offer additional perspectives on etiologic heterogeneity among 

breast tumor subtypes. Recent evidence has suggested that breast cancer can be divided into two 

etiologic subtypes defined by age at onset, and that the difference in the relative distribution of 

those two subtypes underpins the biological characteristics of any given breast cancer 

categorization.50 We saw that, compared to the luminal subtypes, ER-/HER2+ and basal-like 

subtypes exhibited strong early onset peaks, which supports the distinct risk factor associations 

found in case-only analyses. However, it is notable that predominant early onset enrichment was 

observed among all subtypes in this study of Black women. This is in contrast to an earlier study 

using data from the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC), which enrolled mostly White women, and showed luminal A and luminal B 



subtypes to have predominant late onset modes.51 Our findings confirm a consistent trend toward 

earlier age at breast cancer incidence for Black women compared to White women and suggest 

that it persists across all subtypes.31,52,53  

Strengths of this study include a large population of Black women from throughout the 

United States and the use of central laboratory, 6-marker IHC classification. The sample size of 

ER-/HER2+ and basal-like breast cancers is also much higher than previous studies of these 

subtypes in diverse populations. However, despite being one of the largest cohorts of Black 

women with breast cancer, we still lacked precision in measuring risk factor associations for the 

less common luminal B and ER-/HER2+ subtypes. Additionally, some associations were not 

statistically significant in case-control analyses, but the magnitude of these associations are 

important for interpretation of case-only analyses, which include larger sample sizes. It is also 

important to note that the modes for early and late age at incidence cannot be generalized to 

women in the source populations because some studies in the AMBER consortium oversampled 

for younger women. However, the modes were stable across intrinsic subtype, allowing for 

comparison of age-at-incidence curves by subtype.  

Previous studies with diverse populations have found similar risk factors for basal-like 

breast cancer. However, in these earlier analyses, aggregation of risk factor patterns by race, 

including a trend toward earlier births and lower breastfeeding rates in Black women, remained a 

concern for etiologic inference. This study shows that even among a population entirely 

composed of Black women, reproductive and body size patterns were associated with this more 

aggressive breast cancer subtype. Future research to understand the mechanisms underlying these 

associations are needed. Additional approaches such as studies of second primary breast cancers 

may offer more direct evidence for etiologic heterogeneity. However, the current results suggest 



that continued promotion of breastfeeding as well as improved understanding of the biologic 

mechanisms linking adiposity and basal-like breast cancer risk should be part of a 

comprehensive strategy to address breast cancer disparities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: Case-only odds ratios comparing ER-negative relative to ER-positive breast cancer. Cases are 

from BWHS, WCHS, and CBCS Phases 1, 2, and 3.  
 ER-Positive 

(n=1393) 
ER-Negative 

(n=956) 

Risk Factor n (%) n (%) OR (95%CI)a 

Family history 
  

 

No 1147 (82) 793 (83) 1.00 

Yes 246 (18) 163 (17) 1.03 (0.82 – 1.29) 

Age at menarche 
  

 

<11 164 (12) 96 (10) 1.00 

11-12 630 (45) 413 (43) 1.15 (0.86 – 1.54) 

>=13 597 (43) 446 (47) 1.35 (1.01 – 1.80) 

Missing 2 1  

Parity 
  

 

Nulliparous 242 (17) 114 (12) 1.00 

1-2 children 661 (47) 492 (51) 1.87 (1.43 – 2.44) 

>=3 children 490 (35) 350 (37) 2.05 (1.54 – 2.73) 

Missing 0 0  

Age at first full-term birthb 
  

 

<25 808 (70) 643 (76) 1.00 

>=25 337 (30) 196 (23) 0.74 (0.60 – 0.92) 

Missing 6 3  

Lifetime breastfeeding 

durationb 

  
 

Never  640 (56) 538 (64) 1.00 

<6 mos 205 (18) 144 (17) 0.75 (0.59 – 0.96) 

6+ mos 297 (26) 154 (18) 0.61 (0.49 – 0.78) 

Missing 9 6  

Oral contraceptive use 
  

 

Never 559 (40) 339 (35) 1.00 

Ever 823 (59) 611 (64) 1.02 (0.85 – 1.23) 

Missing 11 0  

Body mass index 
  

 

<25 228 (16) 155 (16) 1.00 

25-29 367 (26) 285 (30) 1.22 (0.94 – 1.59) 

>=30 782 (56) 506 (53) 1.04 (0.82 – 1.33) 

Missing 16 10  

Waist-to-hip ratio 
  

 

<0.77 164 (12) 116 (12) 1.00 

0.77-0.83 343 (25) 287 (30) 1.18 (0.87 – 1.59) 

>=0.84 837 (60) 528 (55) 0.97 (0.73 – 1.29) 

Missing 49 25  

 
aModel includes: age, family history, parity, breastfeeding duration, and study. 
bIncludes parous women only 



Table 2: Case-control odds ratios for six-marker breast cancer subtypes among cases from BWHS, WCHS, and CBCS Phases 1 and 2. 

 

  

Controls 

(n=2932) 
Luminal A 

(n=471) 
Luminal B 

(n=240) 
ER-/HER2+ 

(n=122) 
Basal 

(n=295) 

Risk Factor N (%) N (%) ORa (95% CI) N (%) ORa (95%CI) N (%) ORa (95%CI) N (%) ORa (95%CI) 

Family history          

No 2616 (89) 386 (82) 1.00 202 (84) 1.00 101 (83) 1.00 247 (84) 1.00 

Yes 316 (11) 85 (18) 1.76 (1.34 – 2.30) 38 (16) 1.44 (1.00 – 2.10) 21 (17) 1.87 (1.15 - 3.05) 48 (16) 1.67 (1.20 - 2.35) 

Age at menarche          

<11 298 (10) 55 (12) 1.00 32 (13) 1.00 13 (11) 1.00 31 (11) 1.00 

11-12 1201 (41) 221 (47) 0.97 (0.70 – 1.34) 98 (41) 0.78 (0.51 - 1.19) 53 (43)  1.03 (0.56 - 1.93) 127 (43) 1.04 (0.68 - 1.59) 

>=13 1423 (49) 110 (46) 0.70 (0.51 – 0.98) 110 (46) 0.71 (0.47 - 1.07) 56 (46) 0.95 (0.51 - 1.77) 137 (46) 0.93 (0.61 - 1.42) 

Missing 10 1  1  0  0  

Parity          

Nulliparous 464 (16) 95 (20) 1.00 32 (13) 1.00 30 (25) 1.00 31 (11) 1.00 

1-2 children 1434 (49) 216 (46) 0.81 (0.59 – 1.13) 125 (52) 1.18 (0.73 - 1.92) 54 (44) 0.48 (0.26 – 0.91) 146 (49) 1.22 (0.75 - 1.97) 

>=3 children 1032 (35) 160 (34) 0.77 (0.56 – 1.07) 83 (35) 1.04 (0.65 – 1.69) 38 (31) 0.48 (0.25 – 0.90) 118 (40) 1.39 (0.87 - 2.24) 

Missing 2         

Age at first full-

term birthb          

<25 1733 (71) 255 (69) 1.00 146 (71) 1.00 57 (63) 1.00 213 (81) 1.00 

>=25 716 (29) 117 (31) 1.17 (0.91 – 1.49) 61 (29) 1.06 (0.77 - 1.46) 33 (37) 1.66 (1.06 - 2.62) 50 (19) 0.62 (0.44 – 0.86) 

Missing 19 4  1  2  1  

Lifetime 

breastfeeding 

durationb 

         

Never 1353 (55) 205 (55) 1.00 121 (58) 1.00 62 (67) 1.00 169 (64) 1.00 

<6 mos 444 (18) 52 (14) 0.79 (0.57 – 1.10) 32 (15) 0.85 (0.57 - 1.28) 11 (12) 0.57 (0.29 - 1.10) 34 (13) 0.65 (0.44 – 0.95) 

6+ mos 648 (27) 110 (29) 1.11 (0.86 – 1.43) 54 (15) 0.90 (0.64 - 1.27) 19 (21) 0.71 (0.41 - 1.20) 57 (13) 0.73 (0.53 - 1.00) 

Missing 23 9  1  1  4  

Oral contraceptive 

use 
         

Never 1376 (47) 214 (45) 1.00 112 (47) 1.00 43 (35) 1.00 125 (42) 1.00 

Ever 1546 (53) 254 (54) 1.19 (0.97 – 1.47) 128 (53) 1.09 (0.83 - 1.44) 79 (65) 1.50 (1.01 - 2.24) 170 (58) 1.13 (0.88 - 1.47) 

Missing 10 3  0  0  0  

Body mass index          

<25 578 (20) 74 (16) 1.00 41 (17) 1.00 21 (17) 1.00 62 (21) 1.00 

25-29 870 (30) 131 (28) 1.16 (0.85 – 1.58) 65 (27) 1.02 (0.68 - 1.53) 42 (34) 1.51 (0.88 - 2.60) 93 (32) 1.03 (0.73 - 1.45) 

>=30 1425 (50) 260 (55) 1.41 (1.07 – 1.88) 129 (54) 1.19 (0.82 - 1.73) 57 (47) 1.26 (0.75 - 2.12) 133 (45) 0.87 (0.62 - 1.20) 

Missing 59 6  5  2  7  



Waist-to-hip ratio          

<0.77 576 (20) 74 (16) 1.00 32 (13) 1.00 23 (19) 1.00 41 (14) 1.00 

0.77-0.83 778 (28) 116 (25) 1.24 (0.90 – 1.71) 54 (23) 1.08 (0.68 - 1.72) 35 (29) 1.18 (0.68 - 2.06) 89 (30) 1.49 (1.00 - 2.21) 

>=0.84 1472 (52) 262 (56) 1.43 (1.06 – 1.94) 143 (60) 1.31 (0.85 - 2.01) 58 (48) 1.25 (0.74 - 2.11) 154 (52) 1.45 (0.99 - 2.12) 

Missing 106 19  11  6  11  

Parity and 

breastfeeding 
         

Nulliparous 464 (16) 95 (20) 1.00 32 (13) 1.00 30 (25) 1.00 31 (11) 1.00 

1-2, never 833 (28) 128 (27) 0.74 (0.55 – 0.99) 81 (34) 1.37 (0.90 – 2.11) 40 (33) 0.72 (0.44 – 1.18) 99 (34) 1.70 (1.11 – 2.60) 

3+, never 520 (18) 77 (16) 0.68 (0.49 – 0.95) 40 (17) 1.06 (0.65 – 1.73) 22 (18) 0.62 (0.34 – 1.10) 70 (24) 1.84 (1.17 – 2.90) 

1-2, ever 582 (20) 81 (17) 0.69 (0.50 – 0.95) 44 (18) 1.06 (0.66 – 1.70) 14 (11) 0.38 (0.20 – 0.72) 43 (15) 1.10 (0.68 – 1.78) 

3+, ever 510 (17) 81 (17) 0.72 (0.51 – 0.99) 42 (18) 1.13 (0.69 – 1.83) 16 (13) 0.51 (0.27 – 0.97) 48 (16) 1.40 (0.87 – 2.26) 

Missing 23 9  1  0  4  
aModel adjusts for age, family history, parity, breastfeeding duration, and study site. bAmong parous women only 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Case-only odds ratios comparing six-marker subtypes of breast cancer among cases from BWHS, WCHS, and CBCS Phases 

1-3. 

  

Luminal A 

(n=827) 
Luminal B 

(n=626)  

ER-/HER2+ 

(n=210)  

Basal 

(n=691) 

Risk Factor N N OR (95%CI)   N OR (95%CI)   N OR (95%CI) 

Family history           
No  664  535  1.00   177  1.00   568  1.00 

Yes  163   91  0.70 (0.53 – 0.93)    33  0.84 (0.55 - 1.27)   123  0.93 (0.71 - 1.21) 

Age at menarche           
<11   90   79  1.00    22  1.00    70  1.00 

11-12  386  269  0.81 (0.57 - 1.14)    91  0.97 (0.57 - 1.64)   298  0.99 (0.69 - 1.42) 

>=13  350  277  0.92 (0.65 - 1.31)    97  1.23 (0.73 - 2.09)   322  1.19 (0.83 - 1.71) 

Missing    1    1      0      1  
Parity           

Nulliparous  146  108  1.00    47  1.00    57  1.00 

1-2 children  377  314  0.98 (0.68 – 1.41)    91  0.58 (0.34 - 0.99)   374  1.74 (1.16 - 2.62) 

>=3 children  304  204  0.80 (0.55 - 1.15)    72  0.66 (0.39 - 1.12)   260  1.66 (1.10 - 2.49) 

Age at first full-term birth           
<25  483  361  1.00   111  1.00   498  1.00 

>=25  193  156  1.12 (0.87 - 1.46)    50  1.13 (0.77 – 1.67)   135  0.70 (0.54 – 0.92) 

Missing    5    1      2      1  
Lifetime breastfeeding duration*          

Never   376  297  1.00   101  1.00   405  1.00 

<6 mos  111  101  1.12 (0.82 - 1.53)    28  0.81 (0.50 - 1.31)   110  0.84 (0.62 - 1.14) 

6+ mos  185  119  0.84 (0.64 - 1.11)    33  0.64 (0.42 - 1.00)   115  0.60 (0.45 - 0.79) 

Missing    9    1      1      4  
Oral contraceptive use           

Never  336  252  1.00    69  1.00   243  1.00 

Ever  484  370  0.89 (0.71 - 1.12)   140  1.13 (0.81 - 1.58)   443  1.01 (0.81 - 1.27) 

Missing    7    4      1      5  
Body mass index           

<25  132  104  1.00    37  1.00   110  1.00 

25-29  224  160  0.94 (0.67 - 1.32)    74  1.32 (0.83 - 2.09)   196  1.11 (0.80 - 1.55) 

>=30  462  355  1.01 (0.75 - 1.37)    96  0.89 (0.57- 1.38)   378  1.04 (0.77 - 1.41) 

Missing    9    7      3      7  
Waist-to-hip ratio           

<0.77  101   74  1.00    32  1.00    73  1.00 

0.77-0.83  204  158  0.89 (0.61 - 1.31)    64  1.03 (0.62 - 1.70)   206  1.24 (0.85 - 1.82) 

>=0.84  493  373  0.90 (0.63 - 1.28)   107  0.84 (0.52 - 1.37)   395  1.06 (0.74 - 1.52) 

Missing   29   21      7     17  



Parity and breastfeeding          

Nulliparous 146 108 1.00  47 1.00  57 1.00 

1-2, never 218 190 1.16 (0.84 – 1.59)  63 1.00 (0.64 – 1.55)  252 3.04 (2.11 – 4.37) 

3+, never 158 107 0.89 (0.62 – 1.27)  38 0.90 (0.55 – 1.49)  153 2.58 (1.74 – 3.81) 

1-2, ever 152 124 1.06 (0.75 – 1.50)  28 0.55 (0.32 – 0.93)  118 1.89 (1.27 – 2.80) 

3+, ever 144 96 0.91 (0.63 – 1.31)  33 0.85 (0.51 – 1.42)  107 2.06 (1.37 – 3.09) 

Missing 9 1   1   4  

*Includes parous women only  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table 1: Estimates for early-onset and late-onset modes and mixing proportions by subtype.  

 
Total 

cases,  

n (%) 

Median 

age at 

diagnosis 

(years) 

Model fit (AIC) Modeb (years) 
Mixing 

proportionb 

 
AICsingle 

density 

AICtwo-

component mixture 

ΔAIC
a 

(AICsingle - 

AICmixture) 

Early 

onset 

Late 

onset 

Early 

onset 

Late 

onset 

Intrinsic subtype          

All cases 2354 51 18024.7 17952.8 71.9 49 67 0.86 0.14 

Luminal A 827 54 6331.3 6311.8 19.5 49 66 0.69 0.31 

Luminal B 626 51 4829.8 4805.7 24.0 48 67 0.81 0.19 

ER-/HER2+ 210 48 1569.5 1569.0 0.5 47 67 0.91 0.09 

Basal-like 691 49 5226.1 5219.7 6.5 46 62 0.75 0.25 
aPositive values favor the two-component mixture model, with ΔAIC >2 indicating little support for the lower-ranking model and ΔAIC 

>10 indicating essentially no support for the lower-ranking model. 
bModes and mixing proportions are shown for the two-component mixture model 

 

 

 

 

 

 

 

 

 

 



Figure 1. Density plots showing age frequency distributions at diagnosis for invasive breast 

cancer cases from AMBER, overall and by 6-marker IHC-based subtype 
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