A Critical Review of Multimodal Interventions for Cachexia

Published in:
Advances in Nutrition

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2020 American Society for Nutrition.
This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
A critical review of multimodal interventions for cachexia
Short running heading: Multimodal interventions for cachexia

Authors: Clare McKeaveney¹*, Peter Maxwell²,³, Helen Noble¹ & Joanne Reid¹*

¹School of Nursing and Midwifery, Medical Biology Centre, Queen’s University Belfast, Belfast, UK. ²Centre for Public Health, Queen’s University Belfast, Institute of Clinical Science, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland. ³Regional Nephrology Unit, Belfast City Hospital, Belfast Health Social Care Trust, Belfast, BT9 7AB, Northern Ireland.

*Corresponding author Professor Joanne Reid, Email: j.reid@qub.ac.uk. Tel: 0044 2890 97 2459.

Acknowledgements
Word count: 4282; Supplemental Figure 1 and Supplemental Table 1, 2 and 3 are available from the "Supplementary data" link in the online posting of the article and from the same link in the online table of contents on the AN journal site.

Conflict of Interest
Clare McKeaveney, Peter Maxwell, Helen Noble and Joanne Reid declare no conflict of interest.

Sources of financial support
Northern Ireland Kidney Research Fund provided funding for the implementation, analysis and interpretation of the data.

Abbreviations
ALB Serum Albumin
BIA Bioelectrical Impedance Analysis
BMI Body Mass Index
COPD Chronic Obstructive Pulmonary Disease
CRP C Reactive Protein
FFMI Fat Free Mass Index
Hb Haemoglobin
HGS Handgrip strength
LBM Lean Body Mass
PEW protein-energy wasting
Ω-3 PUFA Ω-3 polyunsaturated fatty acids
QoL Quality of life
RA Rheumatoid Arthritis
RCT Randomised controlled trial
RCTs Randomised controlled trials
ROBINS-II Risk of Bias in Non-randomized Studies of Interventions tool II
RT Resistance Training
ONS Oral Nutritional Supplements
6MWT 6-Minute Walking Test
UWL Unintentional Weight Loss
Abstract

Currently, there are no standardized treatments for cachexia or severe wasting. There is a growing consensus advocating multimodal interventions to address the complex pathogenesis and metabolic alterations in these conditions. This review examined multimodal treatments intended to alleviate and/or stabilize cachexia and severe wasting. The objectives of this review were to 1) identify multimodal interventions for the treatment of cachexia or associated wasting syndromes in patients with a chronic illness, 2) assess the quality of these studies, and 3) assess the effectiveness of multimodal interventions. Electronic databases including PubMed, MEDLINE, EMBASE, Scopus, Web of Science, Cochrane Library, CINAHL, PEDro, OpenGrey, and clinicaltrials.org were systematically searched using both text words and MeSH (medical subject heading) terms. The literature revealed a dearth of large, well-conducted trials in this area. Fourteen trials (n = 5 cancer, n = 5 chronic obstructive pulmonary disease, n = 4 chronic kidney disease) were included in this review. A total of 1026 patients were included across all studies; sample size ranged between 21 and 138 patients. Baseline and follow-up data were collected between 6 wk and 24 mo. All demonstrated some improvement in favour of the treatment groups, in relevant measures of body composition, nutrition, biomarkers, and functionality; however, caution should be applied due to the heterogenous nature of the interventions and small sample sizes. Overall, the evidence from this review supports the role of multimodal interventions in the treatment of severe wasting. However, randomized controlled trials with a powered sample size and sufficiently lengthy interaction period are necessary to assess if multimodal interventions are effective forms of therapy for improving body composition and nutritional and physical status in patients with cachexia and wasting. The protocol for this review is registered with Prospero (ID: CRD42019124374).

Key words: wasting, cachexia, review, interventions, multimodal
Introduction

Cachexia is a term describing a severe form of wasting. Cachexia is a complex metabolic and multifactorial syndrome requiring early intervention and multimodal management (1, 2). However, there is currently no standardized treatment for cachexia (3). It is characterized by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) and progressive functional impairment that cannot be fully reversed by conventional nutritional support (4–6).

Cachexia has a devastating physical and psychological effect on patients and caregivers (7), resulting in altered body image, reduced quality of life, and decreased physical function, and is often associated with approaching end of life. Various definitions have been proposed to define cachexia and this has evolved for disease-specific conditions such as cancer (1, 8–11). However, cachexia is reported in almost all chronic diseases at the advanced stages including cardiac disease, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis (RA), and chronic kidney disease (CKD) (12). The prevalence of cachexia varies depending on the diagnostic criteria used; 5–15% in cardiac disease (13), 5–15% in COPD (14), 15–32% in RA (15), 50–75% in CKD (16), and between 60% and 80% in cancer patients, and exceeds 80% in the last 1–2 weeks of life (12, 17). For patients with or at risk of cachexia, a comprehensive multimodal strategy is required (18). von Haehling and colleagues highlight the urgent need to maintain body weight, improve strength, enhance the capacity for independent functioning, reduce frailty, and prolong survival (12). Several potential therapeutic approaches for cachexia have been proposed on the basis of experimental studies. These include pharmacological and nonpharmacological interventions in the form of exercise and nutrition (17). These components provide an increasingly recommended framework for classification of cachexia (4) as well as a rationale for identifying multiple therapeutic targets. By combining pharmacological and nonpharmacological interventions, the multifaceted
mechanisms involved in bodily wasting may be addressed simultaneously (17). However, despite growing and intensive research in the field, very little is known about effective treatment options to counteract wasting. Research to date has predominantly focused on a wide range of single modality treatments for cachexia in various chronic illnesses including the following: pharmacological management in cancer (19), CKD (20), COPD (21), and cardiac disease (22); exercise in cancer (23), RA (24), CKD (25), and COPD (26); and nutritional interventions in cancer (27), COPD (28), and cardiac disease (29). To date, these studies have shown limited success in stabilizing or reversing wasting. Reflective of the complexity of the syndrome of cachexia, recent trials have adopted multimodal interventions (3, 30) consistent with scientific consensus, which supports combination therapy that includes exercise, nutritional support, and anti-inflammatory agents to treat the severe wasting (31). It is argued that these components may act synergistically to improve nutritional and physical status, leading to positive secondary outcomes such as improvement in quality of life (QoL) (4). However, the beneficial effects of multimodal strategies for cachexia are unknown. A critical review is required to assess current multimodal interventions in the treatment of wasting to provide an evidence base to inform future randomized controlled trials (RCTs) and inform clinical guidelines. This review examined multimodal treatments that aim to alleviate and/or stabilize cachexia or forms of wasting. The objectives of this review included the following: 1) identify multimodal interventions for the treatment of cachexia or associated wasting syndromes in patients with a chronic illness and 2) assess the quality of these studies and 3) effectiveness of multimodal interventions.

Methods
The protocol was registered with Prospero (ID: CRD42019124374). In consultation with a subject librarian, search terms included patient population terms (e.g. CKD, COPD, cardiac disease, immunodeficiency disorder, RA, cancer), condition terms (e.g. cachexia, cachectic) and various endpoints (e.g. weight loss, Lean Body Mass (LBM), appetite, anorexia, fatigue, physical functioning, quality of life, survival; see Supplemental Table 1).

Data collection and analysis

Literature published between January 2008 and December 2019, using the following databases: PubMed, MEDLINE, EMBASE, Scopus, Web of Science, Cochrane Library, CINAHL, PEDro, OpenGrey and ClinicalTrials.gov were systematically searched. Reference lists of included sources were also checked for relevant literature. Two review authors (JR & CM) independently assessed titles and abstracts of articles for references. Relevant data was extracted, and any disagreements were discussed and resolved by consensus with a third author (HN).

Inclusion criteria

Articles were considered eligible if they included: an intervention using two or more modalities (e.g. pharmacological, nutritional and/or exercise) in adults at risk of cachexia or other forms of wasting (irrespective of definition used). We included randomised controlled trials (RCTs) or quasi-randomised studies in a hospital setting. Studies were limited to English language.

Exclusion
Studies involving participants <18 years were excluded. Animal trials, conference abstracts and case reports were not included.

Outcome measures
Endpoint measures included body weight and body composition (e.g. using body mass index (BMI), bioelectrical impedance analysis (BIA), Fat-Free Mass Index (FFMI)), physiological and biochemical measures (e.g. serum levels of pro-inflammatory cytokines, haemoglobin (Hb), C Reactive Protein (CRP), functional assessments (six-minute walk test (6MWT), sit to stand test, hand grip strength (HGS), QoL, survival) as well as feasibility outcomes (e.g. adherence to prescribed programmes and occurrence of adverse events).

Quality assessment
We evaluated the quality of RCTs using the Jadad scale, which is a commonly used 3-item, 5-point quality scale, to rate independently the quality of the trials and to allocate a score of between 0 (very poor) and 5 (rigorous) (32). Domains included randomization, blinding, and withdrawals. We assessed the risk of bias for nonrandomized studies using the Risk of Bias in Non-randomized Studies of Interventions tool (ROBINS-I) (33), which considers biases from confounding factors, selection of participants, missing data, and outcomes. Two investigators (CM and JR) evaluated each study against rubrics provided by the Jadad and the ROBINS-I tool. If investigators’ scores differed on a specific domain of either the Jadad or the ROBINS-I tool, they discussed to reach consensus. The Robvis tool was used to visualize risk-of-bias assessment for ROBINS-I (34). Additional quality indicators, patient characteristics, and descriptions of interventions and main outcomes are summarized in Table 1.
Results

In total, 12,153 articles were collated from seven databases (see Supplemental Figure 1). Findings were screened for duplicates and 2428 were subsequently removed. Initial screening of title and abstract removed 9545 articles, 180 of which were selected for full screening analysis. This review identified 14 studies that implemented a multimodal intervention for wasting. A total of 1,026 patients were included across all studies; sample size ranged between 21 and 138 patients. Baseline and follow-up data were collected between 6 weeks and 24 months.

Study design comprised two double blind studies, six unspecified RCTs, two pilot RCTs, two open label RCTs, a RCT feasibility study and a controlled pilot study. The mean Jadad score was 2 (range 0-3), implying inconstant quality of design and inadequate randomisation and blinding. ROBIN-I score was used for the only non-randomised study (52) and considered at low risk of bias. The majority of studies focused on interventions aimed at patients with cancer (n=5), followed by COPD (n=5) then CKD (n=4). The following synthesis presents results based on disease assessing the following aspects: operational definition applied, type of interventions, endpoints, adherence and adverse outcomes, study limitations and quality assessment.
Insert - Table 1. Studies identified using multimodal interventions for cachexia
Five multimodal intervention RCT studies were conducted in patients with COPD. An operational definition for wasting was provided for all studies; however, these varied. Pison et al. (40), Calder et al. (37), and van Beers et al. (35) referred to standardized indices of FFMI [e.g., age and sex specific below the 25th percentile of FFMI; i.e., < 17 kg/m² (males), < 15 kg/m² (females)]. However, variations exist within these, including Calder et al. (37) who distinguishes between pre-cachexia [unintentional weight loss (UWL) > 5%] and overt cachexia (> 5% with respective FFMI) according to the European Respiratory Society. In addition, Pison et al. (40) references FFMI or BMI (in kg/m²) < 21, whereas van Wetering et al. (38) suggest that a UWL of 5% over 1 mo or 10% over 6 mo with a BMI < 25 were appropriate cutoffs for wasting. Baldi et al. (42) refers only to weight loss as > 5% over 6 mo. Four of the 5 studies included some form of exercise (e.g., cycling, walking and/or resistance bands and/or weight training), but all studies included an oral nutritional supplement (ONS) (35, 37, 38, 40, 42). Branded (35, 38, 40, 42) and an unbranded (37) compound(s) were prescribed in similar quantities. In addition, nutritional counselling was included during the maintenance phase of 2 studies (35, 38). All studies included assessments of body composition reporting on weight, BMI, and fat mass as well as tests of physical function (e.g., 6MWT, cycle endurance test). Additional measures included metabolic biomarkers and inflammatory markers (40, 37), QoL (38, 35), and survival (40). All studies that implemented an exercise regimen and ONS reported significant improvements in favour of the treatment groups; however, after 24 mo, improvements in primary endpoints such as BMI and FFMI were lost in van Wetering et al. (38). However, caution is needed in interpretation due to the small sample size, which reduces generalizability. Other limitations were noted, including an overrepresentation of females, indicating a randomization bias and a lack of blinding (42).
The majority of the studies were not double-blinded due to the nature of the interventions, which makes double blinding impractical. However, 2 studies were double blinded (35, 37) and 2 studies were single blinded (38, 40). Pison et al. (40) included the largest sample and was also the only study to include all 3 recommended components: exercise, ONS, and pharmacology (testosterone). Of note, the exercise regimen was not supervised; however, significant improvement in clinical outcomes as well as survival suggest efficacy of a home-based intervention. Calder et al. (37) was the only other study to include a drug component (PUFAs) in combination with an ONS. Despite reported weight gain in both groups, Calder et al. (37) reported several positive effects for the treatment group, including improved body composition (e.g., fat mass), functionality (e.g., fatigue, dyspnea), and metabolic biomarkers (e.g., blood pressure, lipoprotein, and cholesterol). Control groups in 2 studies (35, 37) replicated placebo conditions appropriately. For example, van Beers et al. (35) implemented a placebo exercise and noncaloric cloudified aqueous solution. Pison et al. (40) and van Wetering et al. (38) used education programs as control conditions. Baldi et al. (42) provided both groups with the same exercise intervention with the adjunct of ONS only for the intervention. Studies that included interventions with no exercise component (37) had lower drop-out rates (9%). van Wetering et al. (38) demonstrated the poorest adherence (31% dropout) but this may not be surprising after 2 y. In addition, after 15 mo, van Beers et al. (35) experienced a similar adherence (25% dropout). Dropout was high, resulting in 21% of patients dropping out or failing to adhere at 6 mo follow-up (40). Conversely, Baldi et al. (42) described that 14% of the patients had some difficulties in adhering to the home-based nutritional rehabilitation.

Chronic kidney disease (n=4)
Two of the 4 multimodal interventions for CKD did not define criteria for severe wasting (45, 46). The remaining 2 studies used protein-energy wasting (PEW) according to the Fouque et al. (44) definition; however, minor differences were described (43, 47), and Martin-Alemañy et al. (47) do not mention reduction in dietary intake as an optional criterion. All interventions were conducted intra-dialysis, which involved cycling (43, 45) or resistance training (RT) (46, 47). Three studies also included an ONS also while on dialysis (43, 45, 46). However, Hristea et al. (43) included dietary counselling. The nutritional supplements for these trials also constituted respective control components. Hristea et al. (43) provided the most comprehensive assessments, including weight change (e.g., BMI), biomarkers (e.g., serum albumin), physical function (e.g., 6MWT), and nutrition (e.g., dietary energy intake). Jeong et al. (45) assessed body composition, physical function, and muscle strength. However, Dong et al. (46) did not include an assessment of functionality and Martin-Alemañy et al. (47) did not include nutritional parameters. Both studies using RT failed to report significant improvements (46, 47). Jeong et al. (45) also found no significant change in the primary outcome of physical function or body composition, but there were modest improvements as interventions increased (protein-only to protein and exercise), suggesting more comprehensive lifestyle modifications are needed in this population. Safety profile was also regarded as good, with 1 adverse event reported by Jeong et al. (45) within the protein-only group. Hristea et al. (43) also reported positive benefits, such as improvement in QoL and physical function, but no evidence of PEW remission.

Cancer (n=5)

Five multimodal interventions were reported for patients with cancer and severe wasting. Three studies failed to provide inclusion criteria for patients at risk of severe wasting (48, 50,
Only 1 study defined cachexia, Solheim et al. (49) cites weight loss and BMI cutoff (<30). Wen et al. (51) referred to involuntary weight loss of >5% with different trajectories of 3 mo. Endpoints were less varied between cancer studies. Uster et al. (48), Wen et al. (51), Solheim et al. (49), and Schink et al. (52) assessed a variety of similar parameters, including biomarkers (e.g., Hb, CRP), nutrition (e.g., dietary intake), body composition (e.g., body weight), and functionality (e.g., QoL, fatigue). Xu et al. (50) focused on body composition as well as adherence. However, comparison between multimodal interventions was not possible as each implemented different modalities. Solheim et al. (49) used 3 components, including aerobic training and RT, ONS, and ibuprofen. No significant changes were reported, and survival was similar between groups compared with usual care. However, the primary endpoint was feasibility, which demonstrated no serious adverse events and good compliance. Of note, Solheim et al. (49) used an open-label design trial, which may have compliance issues given the impact of knowledge of treatment allocation. Uster et al. (48) also failed to show an improvement in overall QoL through the implementation of a combined nutritional support and physical exercise program (cycling and balance training). Adherence was good (67%), and significant improvement in dietary intake and the reduction in nausea and vomiting was found. This helps to demonstrate the potential that multimodal therapy holds for cancer cachexia. However, limitations for outcome measures, such as bioimpedance analysis and QoL, were considered problematic. Improvements were reported by Xu et al. (50) in those who received the supervised walking program and nutritional advice. Walking distance, HGS, and body weight improved significantly compared with controls. Compliance was moderately high at 68%. However, the authors noted this was a powered, but small sample. In addition, there was an overrepresentation of males and 1 ethnic group. There is
also a need for longer follow-up observations. Wen et al. (51) also reported significant improvements in body weight, appetite, QoL, HGS, fatigue, and metabolic biomarkers (e.g., Glasgow Prognostic Score, IL-6, TNF). Patients who received megestrol acetate (MA) and thalidomide experienced greater improvements compared with controls who only received MA. Despite this, controls also experienced significant improvements in body weight and appetite, suggesting MA also has beneficial effects. In addition, the safety profile was reported as good, with a low occurrence rate of toxicities for both groups. Schink et al. (52) also reported significant improvements in body composition and physical function but no significant changes in QoL, fatigue, or biochemistry. Schink et al. (52) provided a unique intervention using strength training in the form of whole-body electro-myostimulation with nutritional support in cancer patients. This pilot study reported a combined approach was effective; however, the comparison, using dietary therapy alone, also showed improvements in physical function (e.g., HGS).

Quality of the evidence

The only 2 double-blind RCTs, according to the Jadad scale (see Supplemental Table 2), were deemed as having moderate quality (a score of 3) (35, 37). Although randomization and attrition were adequately described, the blinding procedures were not provided. In addition, both studies were reported as inadequately powered. Two studies reported a score of zero using the Jadad assessment tool (42, 43). Randomization procedures were not described, and blinding was absent. Other issues included small sample sizes, low adherence, and high dropout. The majority of randomized studies (n = 9) had a score of 2, suggesting low quality (38, 40, 45–51). Randomization procedures tended to be provided, but these studies failed to include information on any blinding. The majority of studies were not powered by study
completion or did not describe a power calculation at the outset of the study (35, 38, 40, 45, 47, 49). Xu et al. (50) reported sufficient power to assess some, not all, measures with confidence. Wen et al. (51), Dong et al. (46), and Uster et al. (48) also reported powered samples at 90%, 90%, and 80%, respectively. In addition, although all studies provided detailed drop-out and withdrawal rates, these tended to be considerable from the initially small sample sizes. The only nonrandomized study by Schink et al. (52) was reported as having a low risk of bias using ROBINS-I quality assessment (see Supplemental Table 3). Information related to selection biases (e.g., selection of participants) and confounding factors was not described; however, appropriate detail was provided for issues relating to the intervention, missing data, and reported outcomes.

Discussion

This review identified 13 RCTs and 1 feasibility trial delivering multimodal interventions to patients at risk or requiring treatment for wasting. The trials demonstrated mixed evidence regarding the benefits of interventions; however, heterogeneity of intervention components a small sample sizes need to be taken into consideration. These studies reflect a growing scientific consensus recommending a framework of combined pharmacological, nutritional, and exercise components to treat cachexia and wasting conditions in chronic disease (4). This review highlights greater improved endpoints when combining treatment modalities, furthering our understanding of the effectiveness of multimodal interventions in cachexia. Furthermore, the majority of studies found significant improvements in weight gain, body composition, and physical activity as well as functionality (37, 38, 40, 42, 50, 51). However, some studies failed to find clinically significant improvements (43). Various limitations were identified, including small sample sizes (42), short follow-up periods (49, 50), high drop-out
rates, lack of appropriate controls or assessment procedures (45), and modest intervention regimens (46). Overall, the nature of studies included were heterogeneous (e.g., dose, modality, disease). Larger and longer trials are required to clarify whether multimodal interventions are effective forms of therapy for improving body composition and nutritional and physical status in patients with wasting and advanced disease.

Single therapies such as pharmacological or nonpharmacological, nutritional interventions, or physical exercise programs demonstrate variable results across different diseases (4). Trials of nutritional support and other single-component interventions have proven unsuccessful in stopping or reversing cachectic deterioration (1). It is evident that multimodal intervention strategies (i.e., forms of resistance exercise, nutritional supplementation and/or drugs) aimed at muscle mass, physical function, nutritional status, and clinical outcome in patients at risk of or requiring treatment for cachexia are necessary. Multimodal interventions are likely to provide comprehensive lifestyle modifications to patient cohorts at high risk of wasting. However, despite a consensus for multimodal intervention (4), only 2 studies in this review implemented the recommended framework of combined pharmacological, nutritional, and exercise components (40, 49).

This review also helps highlight the controversy around terminology. This review sought to collate interventions for cachexia, a muscle-wasting condition with or without fat loss (5, 6). However, only 2 experimental studies provided a specific definition relating to cachexia (37, 49). Equally, a wide range of terminology, including malnutrition, PEW (43, 45–47), low FFMI, cachexia (40, 49), and cancer-related anorexia/cachexia syndrome (51), was used. Cancer cachexia has received the most research attention and currently has a consensus definition
(1), unlike other chronic conditions. It is therefore not surprising that no multimodal intervention RCTs for other clinically relevant conditions (e.g., cardiac disease, RA) were reported. Currently, terminology indicating cachexia is being used interchangeably due to multiple generic operational definitions for wasting disorders. Experts have recommended terminology such as malnutrition for all wasting conditions as part of its continuum, with cachexia as an extreme form (53, 54).

Overall, there is a continued need for a more thorough understanding of the pathophysiology of cachexia and its progression, as this will lead to the development of combination therapies that are greatly needed. Although there is a consensus definition for cancer cachexia, no standardized treatment exists (3). Clinical studies are still needed to further explore the mechanisms of wasting in chronic illnesses and to discover novel therapies to prevent or reverse the development of cachexia (55). This will assist in the development of clinical practice guidelines to inform treatment pathways for patients with cachexia associated with a variety of advanced disease states.

The presence of cachexia is associated with high mortality and poor symptom status but also low QoL (12). Despite this, there continues to be gaps in the provision of QoL interventions and psychosocial support for patients experiencing wasting with advanced disease. No studies reported psychosocial interventions; however, several studies reported on QoL endpoints. It is important to acknowledge that a patient’s relationship with food is negatively affected, which impacts social and family aspects. Future interventions should address the emotional and social context of such factors likely to impact eating problems, such as distress, anxiety, and support for family carers (7). Psychosocial support continues to be an unmet need in patients
experiencing cachexia with advanced disease and should be included in the overall multimodal
intervention framework (49). Of note, all studies reported good acceptability, compliance, and
safety profile of a wide range of intervention combinations. Solheim et al. (49) demonstrated
that patients with advanced cancer who have a high risk of developing cachexia are willing and
able to participate in an RCT of a complex intervention that includes a defined exercise
program. The positive effect of this multimodal cachexia intervention on weight also highlights
that cachexia need not be an inevitable consequence of advanced disease but may be
attenuated through a multimodal intervention program (49). Limitations relate to a large
number and wide range of outcomes, preventing meta-analysis. The durations of intervention
varied between 6 wk to 24 mo, making comparison of effects difficult. Sample sizes were
typically small and tended to lack power. For the sample sizes that were powered, caution
should be applied to the interpretation of such small RCTs [e.g., (49)]. The diversity of patients
(e.g., disease states) also makes it somewhat challenging to reach generic conclusions about
cachexia in advanced disease. However, this review provides a unique collation and
comparison of up-to-date RCTs for the treatment of severe wasting in advanced disease.

Conclusion

Previous reviews have sought to summarize the applicability of multimodal interventions (17,
56), but this is the first critical review of multimodal interventions for cachexia. From research
conducted to date, there is a clear consensus that single therapies will not stabilize or reverse
cachexia (4). Taking into account the significant complexities of cachexia, a multimodal
approach that includes a combination of pharmacology, exercise, and nutritional components
is necessary. Accordingly, these studies report the role of multimodal interventions as positive
and wide ranging, improving important clinical endpoints as well as QoL outcomes. This review
also describes a good safety profile and compliance despite increased modes of intervention.

Most important, this review highlights that well-conducted and powered RCTs are needed to
test multimodal interventions to ascertain their true benefit for these populations. The number
of patients who have cachexia and its consequential impact underscores the significance of
this research direction. However, greater research collaboration, across chronic illnesses, will
be required to tackle the complex challenge of

severe wasting known as cachexia.

Declarations

Acknowledgements

JR is the principal investigator of this study. All authors have assisted in the design of the study
and have revised and given approval for the final version.

Availability of data and materials

Additional information is provided: Supplemental Figure 1; Supplemental Table 1-3.

Ethical approval

No applicable.

Funding

This study was funded by Northern Ireland Kidney Research Fund.

Consent to participate
1 Not applicable.

2

3
References
26. De Brandt J, Spruit MA, Derave W, Hansen D, Vanfleteren LE, Burtin C., Changes in structural and metabolic muscle characteristics following exercise-based interventions in
10.1586/17476348.2016.1157472
10.1183/09031936.00070914
54. Sánchez-Rodríguez D, Annweiler C, Cederholm T. A translational approach for the clinical application of recently updated definitions of malnutrition (GLIM) and sarcopenia (EWGSOP2). Maturitas 2019;122:89–90.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Disease</th>
<th>Participants</th>
<th>Study type</th>
<th>Length of study</th>
<th>Definition of wasting</th>
<th>Intervention modality</th>
<th>Control (n)</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Beers et al. (35)</td>
<td>COPD</td>
<td>81</td>
<td>RCT</td>
<td>12 mo</td>
<td>FFMI below sex and age-specific 25th percentile. FFMI values defined by (36).</td>
<td>Exercise, Diet/ONS, Drugs</td>
<td>x</td>
<td>Treatment group reported improvements in Plasma levels² and HADS². EQ-5D decreased in placebo group only. Both groups increased physical capacity but treatment group exceeded the minimal important difference to reduce risk of hospital admission. Trend towards weight gain in treatment group and weight loss in placebo led to between-group difference at 12 mo².</td>
</tr>
<tr>
<td>Calder et al. (37)</td>
<td>COPD</td>
<td>68</td>
<td>RCT</td>
<td>12 wk</td>
<td>Pre-cachectic (PC) and cachetic according to European Respiratory Society UWL >5% (PC) or UWL >5% with FFMI of <17kg/m² (m) or 15kg/m² (f).</td>
<td>X</td>
<td>2g D-3 PUFA</td>
<td>BW increase in both groups but treatment group gained more fat mass. LDL & Triglycerides increased in treatment group. Reductions in fatigue & dyspnoea in treatment group. Compliance and safety profile similar in both groups.</td>
</tr>
<tr>
<td>Van Wetering et al. (38)</td>
<td>COPD</td>
<td>39</td>
<td>RCT</td>
<td>24 mo</td>
<td>Muscle wasting according to (39) UWL at least 5% in 1 mo or ≥ 10% in 6 mo with BMI <25kg/m²</td>
<td>Exercise (cycling and walking & upper and lower strength and endurance training; home based 30min 2x/wk), ONS 3x125ml (564kcal) daily followed by 20 mo INS maintenance program</td>
<td>x</td>
<td>Changes in favour of treatment group at 24 mo. Maximum inspiration mouth pressure³, quadriceps average power, 6MWT¹ & CET¹. Hospital admission costs lower in treatment group.</td>
</tr>
<tr>
<td>Pison et al. (40)</td>
<td>COPD</td>
<td>126</td>
<td>RCT</td>
<td>3 mo</td>
<td>Malnourished patients (BMI <21)</td>
<td>Unsupervised cycling 3.5x/ wk; elastic, ONS 120ml 3x/d Testosterone 80mg (m) /40mg (f) 2x/d</td>
<td>x</td>
<td>"Home health education" (n=62). Improvements in treatment group for</td>
</tr>
</tbody>
</table>

Table 1. Studies identified using multimodal interventions for cachexia
<table>
<thead>
<tr>
<th>Study</th>
<th>Disease</th>
<th>N</th>
<th>Study Design</th>
<th>Duration</th>
<th>Intervention</th>
<th>Body Compositional Data</th>
<th>Baseline</th>
<th>Weekly</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldi et al. (42)</td>
<td>COPD</td>
<td>28</td>
<td>RCT: Pilot study</td>
<td>12 wk</td>
<td>Defined as dynamic weight loss (>5% BW) < 6 mo</td>
<td>BMI, FFMI measured by 50 kHz BIA <25th percentile of predicted which corresponds to FFMI <18 kg/m² in men or <15 kg/m² in women (36, 41)</td>
<td></td>
<td></td>
<td>Exercise (uploaded cycling 30min, 2x/wk)</td>
</tr>
<tr>
<td>Hristea et al. [43]</td>
<td>Renal</td>
<td>21</td>
<td>RCT: open-label</td>
<td>6 mo</td>
<td>PEW according to Fouque et al. (44)</td>
<td>BMI, FFMI, Hb, PW, QIP, ET, CRQ if only 36, 41</td>
<td></td>
<td></td>
<td>Survival was also better in compliant patients.</td>
</tr>
<tr>
<td>Jeong et al. [45]</td>
<td>Renal</td>
<td>138</td>
<td>RCT</td>
<td>12 mo</td>
<td>Protein and exercise group only: Intra-dialysis cycling 5-45 mins</td>
<td>BMI, FFMI, Hb, PW, QIP, ET, CRQ if only 36, 41</td>
<td></td>
<td></td>
<td>Increased FFMI & BW² in treatment group.</td>
</tr>
<tr>
<td>Dong et al. (46)</td>
<td>Renal</td>
<td>32</td>
<td>RCT: open-label</td>
<td>6 mo</td>
<td>RT (12 reps x 3 using leg press machine)</td>
<td>BMI, FFMI, Hb, PW, QIP, ET, CRQ if only 36, 41</td>
<td></td>
<td></td>
<td>Improvements for gait/leg strength for treatment groups only.</td>
</tr>
<tr>
<td>Martin-Alemany et al. (47)</td>
<td>Renal</td>
<td>44</td>
<td>RCT</td>
<td>3 mo</td>
<td>PEW according to Fouque et al. (44)</td>
<td>BMI, FFMI, Hb, PW, QIP, ET, CRQ if only 36, 41</td>
<td></td>
<td></td>
<td>Decrease in PEW prevalence and increases in dietary energy/protein intake² for both groups. Increases in BW, BMI, TSF, FM percentage, HGS, Phase angle and ALB in both groups².</td>
</tr>
<tr>
<td>Uster et al. (48)</td>
<td>Cancer</td>
<td>58</td>
<td>RCT</td>
<td>12 wk</td>
<td>Group cycling, strength program & balance training (60min 2x/wk)</td>
<td>BMI, FFMI, Hb, PW, QIP, ET, CRQ if only 36, 41</td>
<td></td>
<td></td>
<td>Improvements in treatment group for nausea/vomiting (Patient-rated symptom scale) and protein intake².</td>
</tr>
<tr>
<td>Authors</td>
<td>Journal</td>
<td>Year</td>
<td>Study Design</td>
<td>Duration</td>
<td>Inclusion Criteria</td>
<td>Intervention</td>
<td>Attrition Rate (%)</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Solheim et al.</td>
<td>Cancer</td>
<td>46</td>
<td>RCT: feasibility</td>
<td>6 wk</td>
<td>Cachexia: BMI <30kg/m² & 20% weight loss <6 mo</td>
<td>Aerobic 30 mins, 2x/wk; resistance training 20 mins, 3x/wk (home-based)</td>
<td>11%</td>
<td>Good feasibility and safety profile. BW gain in treatment group and BW loss in control group.</td>
<td></td>
</tr>
<tr>
<td>Xu et al.</td>
<td>Cancer</td>
<td>59</td>
<td>RCT: Pilot study</td>
<td>6 wk</td>
<td>Not defined</td>
<td>Supervised walking 3x/wk (protocol provided)</td>
<td>X</td>
<td>Lower intravenous nutritional need, wheelchair use, less decline in 6MWT (100-m), HGS (3kg) & BW (2kg) in treatment group.</td>
<td></td>
</tr>
<tr>
<td>Wen et al.</td>
<td>Cancer</td>
<td>102</td>
<td>RCT</td>
<td>8 wk</td>
<td>Loss of >5% of pre-illness or ideal BMI in previous 3 mo</td>
<td>MA 160mg po, bid 2x/d</td>
<td>X</td>
<td>Treatment group reported improvements in GPS and BW, IL-6, fatigue, HGS, tumor necrosis factor. Controls also reported BW & appetite.</td>
<td></td>
</tr>
<tr>
<td>Schink et al.</td>
<td>Cancer</td>
<td>131</td>
<td>Controlled pilot study</td>
<td>12 wk</td>
<td>Not defined</td>
<td>WB-EMS 20 min, 2x/wk</td>
<td>X</td>
<td>Treatment group improved PF & PS only Low</td>
<td></td>
</tr>
</tbody>
</table>

ALB: serum albumin; BIA: bioelectrical impedance analysis; BMI: body mass index; BW: body weight; CET: cycle endurance test; COPD: chronic obstructive pulmonary disease; CRQ: chronic respiratory disease questionnaire; DHA: docosahexaenoic acid; ECOG PS: Eastern Cooperative Oncology Group Performance Status; EQ-5D-3L: EuroQol Five Dimensions Questionnaire; EPA: eicosapentaenoic acid; ET: endurance time; FFMI: fat-free mass index; FM: fat mass; F: female; GPS: Glasgow Prognostic Score; HADS: Hospital Anxiety and Depression Scale; Hb: haemoglobin; HDL: high-density lipoprotein; HGS: handgrip strength; IL-6: Interleukin-6; INS: individualized nutritional support; MA: megestrol acetate; M: male; MA: megestrol acetate; MIN: minutes; NSAIDs: nonsteroidal anti-inflammatory drugs; ONS: oral nutritional supplement; PA: physical activity; PEW: protein-energy wasting; PF: physical functioning; PS: performance status; PW: peak workload; QA: quality assessment; QIF: quadriceps isometric force; QoL: quality of Life; RCT: randomized controlled trial; RT: resistance training; TNF: tumor necrosis factor; TSF: triceps skinfold thickness; UWL: unintentional weight loss; WB-EMS: whole-body electro-myostimulation; 6MWT: 6-Minute Walk Test; & Ω-3 PUFAs, omega-3 polyunsaturated fatty acids.

P<0.05 is considered significant.

Three of 4 of the following listed categories and at least 1 test of the following — 1) albumin: <3.8 g/100 mL; 2) BMI <23 kg/m²; UWL over time: 5% over 3 mo or 10% over 6 mo or total body fat percentage <10%; 3) muscle mass: reduced muscle mass 5% over 3 mo or 10% over 6 mo or reduced mid-arm circumference area or creatinine appearance; and 4) dietary intake: unintentional low dietary energy intake <1 g/(kg of ideal weight/d) for at least 2 mo, unintentional low dietary energy intake <30 kcal/(kg of ideal weight/d) for at least 2 mo.