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Incremental Density-based Clustering on
Multicore Processors

Son T. Mai, Jon Jacobsen, Sihem Amer-Yahia, Ivor Spence, Nhat-Phuong Tran,
Ira Assent, Quoc Viet Hung Nguyen B

Abstract—The density-based clustering algorithm is a fundamental data clustering technique with many real-world applications.
However, when the database is frequently changed, how to effectively update clustering results rather than reclustering from scratch
remains a challenging task. In this work, we introduce IncAnyDBC, a unique parallel incremental data clustering approach to deal with
this problem. First, IncAnyDBC can process changes in bulks rather than batches like state-of-the-art methods for reducing update
overheads. Second, it keeps an underlying cluster structure called the object node graph during the clustering process and uses it as a
basis for incrementally updating clusters wrt. inserted or deleted objects in the database by propagating changes around affected
nodes only. In additional, IncAnyDBC actively and iteratively examines the graph and chooses only a small set of most meaningful
objects to produce exact clustering results of DBSCAN or to approximate results under arbitrary time constraints. This makes it more
efficient than other existing methods. Third, by processing objects in blocks, IncAnyDBC can be efficiently parallelized on multicore
CPUs, thus creating a work-efficient method. It runs much faster than existing techniques using one thread while still scaling well with
multiple threads. Experiments are conducted on various large real datasets for demonstrating the performance of IncAnyDBC.

Index Terms—Density-based clustering, anytime clustering, incremental clustering, active clustering, multicore CPUs

F

1 INTRODUCTION

Data clustering is a fundamental problem in exploratory
data analysis and has many applications in different fields,
e.g., data cleaning, data compression, machine learning, and
pattern recognition [1], [2]. Given a dataset O, a cluster-
ing algorithm separates it into groups of similar objects.
However, when objects are inserted into or deleted from O,
how to efficiently update the results rather than reclustering
from scratch is an important research focus [3]–[5]. In many
clustering methods, the cluster label of an object is highly
dependent on many other ones, making an efficient cluster
update process a challenging task [6]. One example is the
density-based clustering algorithm DBSCAN [7], one of the
most widely used data clustering methods with many real-
world applications [8]–[10].

In DBSCAN, a cluster is determined by a set of connected
dense objects, and separated from other clusters by sparse
areas. An object p is in a dense area if it has more than µ
neighbors within a specific distance threshold ε. If it is, p is
a core and its label will be propagated to all neighbors. This
label propagation scheme of DBSCAN can be exploited for
efficiently updating clusters due to the locality of changes
as in IncDBSCAN [3]. For example, an inserted object may
merge some existing clusters within its neighborhood. On
the other hand, a deleted object may break clusters into
smaller pieces. In this case, these clusters need to be re-
grouped due to the label dependency of objects. Thus, in
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some cases, the whole dataset will be affected, which is
obviously as expensive as re-clustering from scratch. When
the dataset and the number of inserted or deleted objects are
large, this leads to significant computation efforts and thus
limits the applicability of the algorithm.

Contribution. In this work, we focus on an efficient ap-
proach for incrementally updating clusters following the
notion of DBSCAN. Our algorithm, called IncAnyDBC, has
some unique properties as follows.

First, before updating, existing techniques like IncDB-
SCAN [3] rely on the original DBSCAN algorithm [7] to
group objects and determine their core properties. How-
ever, DBSCAN requires all neighborhood queries to be
performed, which is expensive. It also does not keep enough
information on the cluster structure to efficiently update the
clustering results when changes occur in the database. Our
algorithm IncAnyDBC first summarizes objects into small
density-connected groups called object nodes. These nodes
and their connections serve as an underlying structure to
predict the final clusters. Based on this information, In-
cAnyDBC repeatedly chooses a subset of objects to perform
the neighborhood queries and connect nodes to build clus-
ters until it finishes. Users can interact with the algorithm
during its execution and terminate it whenever they are sat-
isfied with the current results. This active clustering scheme
brings up some benefits: (1) IncAnyDBC can produce the
same result as DBSCAN with fewer queries, thus enhancing
performance; (2) it can be interrupted and resumed at any
time to provide good approximate results (or ultimately the
exact results of DBSCAN), while most existing techniques
can only produce a single approximate or exact result, e.g.,
[11], [12]. This anytime property makes IncAnyDBC useful
for applications with limited time constraints or for very
large datasets; (3) since IncAnyDBC only builds clusters
based on neighborhood queries, it can be used with arbi-
trary distance metrics instead of only Euclidean distance
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like state-of-the-art techniques such as [11]–[13]; and (4) the
underlying node structure is preserved after the clustering
and can be exploited to efficiently update the clusters after
insertions or deletions instead of reclustering from scratch.

Second, when there are changes in the data, existing
techniques such as [3], [6] update clusters in a batch mode
(i.e., processing changes one-by-one). This scheme incurs
many redundant overheads, especially when the number of
changes is large. Our algorithm, in contrast, updates clusters
in a bulk mode (i.e., all changes at the same time). Hence,
it reduces update overhead and thus is more efficient.
During the updating process, the final cluster structure of
IncAnyDBC is exploited to identify affected areas and to
build the final clustering results. Similar to the clustering
phase, clusters are rebuilt in an iterative way by letting the
algorithm actively choose a subset of objects to query at each
iteration. Thus, the clusters are finally updated with fewer
queries compared to IncDBSCAN [3], thus making it more
efficient. Moreover, the anytime property is still guaranteed.
Users can suspend and resume the updating process at any
time for examining current results or looking for better ones.
To the best of our knowledge, no existing incremental tech-
nique for DBSCAN has this useful property. IncAnyDBC is
also not restricted in low dimension Euclidean distance like
other state-of-the-art techniques such as [6].

Third, by processing neighborhood queries in a block
at each iteration to build clusters, IncAnyDBC can be ef-
ficiently parallelized on shared memory structures such
as multicore CPUs. This makes it a work-efficient parallel
method. It runs much more quickly than state-of-the-art
sequential techniques such as DBSCAN [7] and IncDBSCAN
[3] using one thread, while scaling very well with the total
number of threads. Moreover, the anytime property still
holds in the parallel mode, uniquely making IncAnyDBC
both a parallel and an anytime method at the same time. To
the best of our knowledge, IncAnyDBC is the first shared
memory parallel approach for incrementally updating clus-
ters in the density-based notions of DBSCAN.
Summarization. Our major contributions are as follows:

• We introduce an efficient clustering method for ini-
tializing cluster structures before updates. Our algo-
rithm uses much fewer queries to build the same
clustering result as DBSCAN and thus is more ef-
ficient. Moreover, it can work under arbitrary time
constraints due to its anytime property.

• We introduce an incremental scheme to update clus-
ters wrt. changes in the data in a bulk mode rather
than a sequential batch mode. Similar to the cluster-
ing phase, our technique relies on an efficient query
pruning scheme and thus it is more efficient than
existing techniques like IncDBSCAN. The anytime
property is also supported while updating clusters.

• We propose a way of efficiently parallelizing In-
cAnyDBC on multicore CPUs for further accelerating
the performance.

To the best of our knowledge, IncAnyDBC is the first work-
efficient and anytime parallel approach on multicore CPUs
to incrementally update clusters in DBSCAN. Experiments
are conducted on very large real and synthetic datasets for
demonstrating the performance of our algorithms.

2 PRELIMINARY

Density-based clustering. The density-based clustering al-
gorithm DBSCAN [7] separates each object into clusters
based on the cardinality of its neighbors w.r.t. two given
parameters µ ∈ N+, ε ∈ R+, and a distance function d.

Definition 1. (Neighborhood) The neighborhood of an object
p, denoted as Np, is the set of objects q where d(p, q) ≤ ε.

Definition 2. (Core property) An object p is called a core
object if |Np| ≥ µ. Otherwise, if one of its neighbors is
a core, p is called a border. If none of its neighbors are
core, it is a noise.

Definition 3. (Reachability) Given a core object p and an
object q ∈ Np, we say that q is density-reached from p,
denoted as p . q.

Definition 4. (Connectivity) Two objects p and q are con-
nected if there exists a sequence of core objects x1 to xn
such that p / x1 / x2 · · · . xn . q, denoted as p ./ q.

Definition 5. (Cluster) A cluster is a maximal set of density-
connected objects.

DBSCAN builds clusters by performing neighborhood
queries on all objects to determine their core properties and
chains of density-connected objects (or clusters). Thus, it has
O(n2) complexity, where n is the number of objects. Note
that each core object belongs to only one cluster, while a
border object might be shared by multiple clusters.
Incremental DBSCAN. When there is a change (insertion or
deletion), instead of re-building clusters from scratch, Ester
et al. [3] introduce IncDBSCAN for incrementally update
clusters by exploiting the locality of cluster structures as
illustrated in Figure 1. Overall, there are two cases:

• Insertion: An inserted object may change a border or
a noise object into a core one or may act as a core
object to connect two density-connected sets. Thus,
clusters may be merged or new clusters are raised
from noise objects. E.g., the inserted object a merges
clusters C1 and C2 into a cluster.

• Deletion: A deleted object may be a core or may
change other core objects into a non-core ones. This
causes clusters to be split or removed. E.g., the
deleted object b breaks cluster C3 into two smaller
clusters C31 and C32.

Note that insertion or deletion of an object may merge
or split more than two clusters respectively. IncDBSCAN
processes changes in a batch mode. For each inserted or
deleted object, IncDBSCAN determines a set of objects that
change their core property and uses them as seeds for
update clusters locally, e.g., merge clusters. However, if
a cluster may split, it needs to be fully reclustered from
scratch. Each update takes O(n2) time complexity.

 a 
b C1 C2 

C31 

C32 
C3 

Fig. 1. Incremental clustering: (1) the inserted object a merges two
clusters C1 and C2 into a single cluster and (2) the deleted object b
breaks cluster C3 into two small clusters
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Fig. 2. The general idea of IncAnyDBC

3 OUR PROPOSED ALGORITHM

We assume a database O of n arbitrary objects, grouped into
arbitrarily shaped clusters by DBSCAN. Let B be a set of m
changes on O including (1) insert an object into O, and (2)
delete an object from O.

3.1 General idea
Figure 2 illustrates general ideas of IncAnyDBC including:
summarization, active clustering, block processing, incre-
mental processing in bulks, and parallel processing. Table
3.1 shows some common abbreviations used in the paper.
Summarization. IncAnyDBC first summarizes all objects
into object nodes using neighborhood queries. Each contains
a neighborhood of an object (c.f. Definition 6), e.g., nodes vp.
If two nodes are close enough, they may belong to the same
cluster and thus will be connected by an edge, e.g., the edge
(vp, vq). These nodes and their connectivity will serve as an
underlying structure to build clusters by connecting them
into separated components since each node already is a part
of a cluster (c.f. Lemma 1, 2 and 4). This scheme brings
up two different benefits: (1) it allows the algorithm to
build clusters without having to perform all neighborhood
queries, thus significantly improving performance; and (2)
it keeps track off necessary cluster structure to efficiently
rebuild clusters after data changes (insertions or deletions).
Active clustering. Instead of performing all queries like DB-
SCAN, IncAnyDBC iteratively examines the current node
structure and chooses the most meaningful objects to exe-
cute queries and to build clusters. E.g., if we choose h, it
will connect two nodes vp and vq into a cluster if it is a
core (c.f. Lemma 2). However, if we choose g, it will not
help to clarify clusters regardless of its core property and
thus g can be safely ignored. Consequently, IncAnyDBC can
produce the same clustering result as DBSCAN with fewer
neighborhood queries and thus it is much efficient.
Block processing. At each iteration, IncAnyDBC chooses a
small set of objects to perform queries instead of a single
object. This scheme trades off between the cost of repeatedly
examining and choosing objects in the active clustering
scheme above and the number of used queries, thus bring-
ing up better performance. Moreover, it can be exploited to
create an efficient parallel algorithm as discussed below.
Incremental processing. The node structure can be ex-
ploited to effectively update clusters. When there are
changes, the first step is to update the current node structure
by adding new objects or removing deleted objects from
current object nodes. Then, we need to update the connec-
tivity among affected nodes before updating clusters. E.g.,
the inserted object a (Figure 2) will be absorbed into the

Np The Ꜫ-neighborhood of the object p 

vp The object node contains the object p and its neighbors Np 

Vp The list of object nodes that contains the object p 

G = (V, E) The graph G where V is the set of object nodes and E is the 
set of edges that connect two object nodes (vp, vq) 

L The non-core list contains all processed non-core object p 

st(p) The state of the object p (c.f., Figure 4) 

st(vp, vq) The state of an edge (vp, vq) (c.f., Figure 5) 

nei(p) The current number of neighbors of the object p 

usize(vp) The number of unprocessed objects inside the object node vp 

level(p) The number of objects when we perform the neighborhood 
query on the object p 

S The block of objects that we process at each iteration 

B The number of inserted or deleted objects in bulk 

Mp The reverse neighborhood queries of the object p on B 

TABLE 1
LIST OF ABBREVIATIONS

node vp since d(p, a) ≤ ε. Since node vp has a new object,
its connections to other nodes may be changed (c.f. Lemma
2). However, other connections (e.g., (vt, vu)) will not be
affected and can be ignored (Lemma 12 and 10). Thus, we
can limit the updated area by vp and its surrounding nodes
only (denoted by red edges) for reducing computation cost.
Bulk processing. We propose to process all changes in a
bulk scheme instead of a batch scheme. By this way, all
possible changes in the node structure will be captured and
will be updated at the same time, which is much efficient.
Parallel processing. The underlying node structure and
block processing scheme allow us to design an efficient
parallel technique. The general idea is to process all the
queries in a block independently of other blocks. The results
are be stored in a buffer and then are used for constructing
clusters. This scheme reduces the synchronization costs for
neighborhood queries and cluster building, thus enhancing
the performance (c.f. Section 3.4). Moreover, it reduces the
sequential costs while propagating cluster labels among
nodes since the number of nodes is much smaller than the
number of objects (c.f. Figure 9 in Section 4.1).

3.2 The algorithm IncAnyDBC
The algorithm IncAnyDBC consists of 6 steps. In Step 1, ob-
jects are summarized into object nodes of density connected
objects. In Step 2, we build a graph G = (V,E) where each
vertex is a node and each edge represents the connectivity
status of two nodes. Step 3 checks if the algorithm must
continue. In Step 4, some objects are selected to perform
neighborhood queries. In Step 5, IncAnyDBC updates the
graph G according to the new changes. Step 3 to 5 are
repeated until a termination condition is reached. Then,
the final Step 6 looks for the remaining border objects. The
pseudocode for IncAnyDBC is summarized in Figure 3.
Step 1: Summarization. In the beginning, all objects are
assigned an untouched initial state indicating that they have
not been processed in any way. Since we only use a subset of
objects to build clusters iteratively, the state of each object p
changes accordingly and is summarized in Figure 4. E.g., an
object p has processed-core (denoted as pcore) state indicating
that we already performed a neighborhood query on p and
it is a core. If we have not performed a query on p but we
knew it is a core, p is assigned an unprocessed-core (denoted
as ucore) state. Each arrow shows the state transition of an
object p during the clustering process. E.g., if we perform a
query on an untouched state and it is not a core, we mark it as
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function C = IncAnyDBC (O, d, µ, ε, α, β) 
input:  dataset O, distance function d, parameters µ, ε of DBSCAN,  

                the query block sizes α, β 

output: the final clustering result C 

begin 

 /* Step 1: Summarization */ 

 while there are untouched objects do 

  select a set S of α untouched objects to query randomly 
  for each object p in S do 

   if |Np| ≥ µ then st(p) = pcore else st(p) = pnoise  

   for each object q in Np do 

                     if st(p) = pcore and st(q) = pnoise then st(q) = pborder 
                     elseif st(p) = pcore and st(q) = untouched then st(q) = uborder 

                     if st(q) = unprocessed then nei(q) = nei(q) + 1 

                     if nei(q) ≥ µ and st(q) = uborder then st(q) = ucore 
   put p into V or L based on its core property 

 build a list Vp of nodes for each object p 

 /* Step 2: Build connectivity graph */ 
 connect pairs of nodes (vp, vq) if d(p, q) ≤ 3ɛ (Lemma 3) 

 for each object p in O do 

  if p is a core then set the yes states for edges in Vp  (Lemma 2) 

  else set the weak state for edges in Vp  (Definition 8) 
 /* Iteratively update clustering results */ 

 while true do 

  /* Step 3: Check stopping condition */ 
  label nodes via their yes connected components 

           cont = false 

  for each cross-edge (vp, vq) do  
   if st(vp, vq) is unknown, weak, or link then cont = true (Lemma 5) 

   if cont = false then break 

  /* Step 4: Select objects for querying */ 

  calculate node degrees for all nodes (Equation 1 and 2) 
  calculate object scores for all unprocessed objects (Equation 3) 

  choose a set S of β top scores objects 

  /* Step 5: Update graphs */ 
  perform queries for all objects in S, mark the state, and increase the 

                neighborhood counts for objects as in Step 1 

  for each new core object p do 

   set the yes state for edges in Vp  (Lemma 2) 
  for each core object p in S do 

   for each object q in Np do 

    if q is a core then st(Vp[1], Vq[1]) = yes (Lemma 2) 
    else st(Vp[1], Vq[1]) = link (Lemma 2) 

  for each cross-edge (vp, vq) do 

   if st(vp, vq) = weak or unknown then  
    if usize(vp) = 0 ˅ usize(vq) = 0 then st(vp, vq) = no (Lemma 6) 

   else if st(vp, vq) = link then 

    if usize(vp) = 0 ˄ usize(vq) = 0 then st(vp, vq) = no (Lemma 6) 

 /* Step 6: Check the noise list */ 
 for each object p in L do 

  check if p is a border object 

end 

Fig. 3. Pseudocode for IncAnyDBC

processed-noise (pnoise). However, in subsequent iterations, if
one of its neighbors is a core, p is a border (c.f. Definition 2)
and its state will be changed to processed-border (pborder).

We also store the number of known neighbors for each
object p, denoted as nei(p), for determining the core prop-
erty of p. Beside that, we assign for p a special number called
the database level, denoted as lev(p), which is specially used
to guarantee the consistence of the neighborhood counts in
the insertion and deletion modes presented in Section 3.3.

At each iteration, IncAnyDBC randomly chooses a set
S of α untouched objects and queries their neighbors. If
p ∈ S is a core, we create a node vp ∈ V consisting of
Np and represented by p (cf. Definition 6). In addition, we
set the current state of p (st(p)) as a processed core (pcore).
Otherwise, we set p as a processed noise (pnoise) and stores
p and Np into a special list called the noise list L for the
post processing step in Step 6. Moreover, we set lev(p) = n
stating that p is processed when the database has n objects.
Definition 6. (Object node). An object node vp ∈ V consists

of the object p and all of its neighbors in Np.

 

ucore 

 

pcore 

 

pborder 

 

Processed 

 

untouched 

uborder 

pnoise 

unoise 

Unprocessed 

Fig. 4. The state transitions of objects

Lemma 1. ( [14]) All objects inside vp are density-connected,
i.e., belong to the same cluster.

For each object q ∈ Np, we set its state following the
transition scheme for objects summarized in Figure 4 and
Lemma 1. Concretely, if p is a core, st(q) will be changed to
uborder or pborder if st(q) is untouched or pnoise, respectively.
Moreover, if q is not processed, we increase its neighbor
count nei(q) by 1, since q has p as its neighbor. If nei(q) ≥ µ
and st(q) is uborder, we set st(q) = ucore.

Step 1 end when there is no untouched objects left. At
the end of Step 1, we build for each object p a list of nodes
containing it, denoted as Vp. Since each core object belongs
to only one cluster in DBSCAN, each node also belongs to
one cluster following its representative (though its non-core
members may be shared among different clusters). Thus,
instead of labeling each object as in DBSCAN, we only
need to label each node in V . The label of an object will
be acquired from the node containing it (Lemma 1).

In the next Steps, IncAnyDBC performs additional
queries on unprocessed objects to connect nodes into con-
nected components, representing clusters.
Definition 7. (Directly-connected). Two object nodes vp and

vq are directly-connected, denoted as vp ⇔ vq , if there
exists a set of objects xi ∈ Np∪Nq so that p/x1 · · ·xm.q.

Following Definition 4 and 5, if vp ⇔ vq , they belong
to the same cluster. There are two connect (merge) cases
in IncAnyDBC, either via a shared core objects or a link
between their two core objects as described in Lemma 2.
Lemma 2. Object nodes vp and vq are directly connected if:
• Case A: they share an object a where st(a) = ucore or

st(a) = pcore (or core for simplicity).
• Case B: there exist two core objects a ∈ Np and b ∈

Nq such that d(a, b) ≤ ε.
Proof 1. Case A: We have p/a and a/q (Definition 3). Thus,

p / a . q. Case B: We have p / a and b . q (Definition 3).
Since a and b are core and d(a, b) ≤ ε, we have a ./ b.
Thus, p / a . b . q. Thus, p⇔ q (Definition 7).

Step 2: Build the connectivity graph. In this step, we create
a graph G that captures all possible merges among nodes
w.r.t. additional queries.
Lemma 3. Given two nodes vp and vq , if d(p, q) > 3ε, vp and

vq will never be directly connected.

Proof 2. Let a and b be two arbitrary objects in Np and
Nq , respectively. Due to the triangle inequality, we have
d(p, q) ≤ d(p, a) + d(q, b) + d(a, b). Since d(p, a) ≤ ε and
d(q, b) ≤ ε (Definition 6), we have d(a, b) > ε. Thus, vp
and vq will not be directly-connected (Definition 7).
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Fig. 5. The state transitions of edges

Following Lemma 3, we create the graph G by creating
an edge (vp, vq) between vp and vq if d(p, q) ≤ 3ε.G roughly
captures the cluster structure of the data (Lemma 4).
Lemma 4. If two core objects a and b are density connected

in DBSCAN, then there exists a path of nodes in G that
connects vp and vq , where a ∈ vp and b ∈ vq .

Proof 3. Let a = x1 / x2 · · · . xn = b be a chain of core
objects connecting a and b (Definition 4). After Step 1, if
xi is core, it must be covered inside a node vj of V . Since
d(xi, xi+1) ≤ ε, their nodes will be connected in G by a
path of edges.

Each edge represents a pair of nodes that may be
directly-connected wrt. additional queries. For each edge
(vp, vq) of G, we assign a state for representing the con-
nectivity status of two nodes vp and vq .
Definition 8. (Edge state). The state of an edge (vp, vq)

(st(vp, vq)), captures the connectivity status of vp and
vq . If st(vp, vq) = unknown, we do not know if vp
and vq are directly-connected. If vp and vq share an
object, st(vp, vq) = weak meaning that they are more
likely to be directly-connected. If st(vp, vq) = yes, vp
and vq are directly-connected (in the same cluster). If
st(vp, vq) = no, vp and vq will not be directly-connected.

During the operation of IncAnyDBC, the states of edges
change as summarized in Figure 5. The link state will be
explained in Step 5. Note that, the no state does not mean
that vp and vq are not in the same cluster. They may be
connected via a chain of directly-connected nodes.

At the end of Step 2, we update the states of edges.
Following Lemma 2, if p is a core (either ucore or pcore),
all nodes in Vp will belong to the same cluster. For each
edge (Vp[i], Vp[i − 1]) where Vp[i] is the node at position i
of Vp, we set its state to yes, i.e., they are in the same cluster.
If p is not a core, we do not know that all nodes in Vp are
in the same clusters or not. But, since they overlap, they
have higher chances to be. Thus, we assign for each edge
(Vp[i], Vp[i − 1]) the weak state (O(|Vp|) time complexity).
We do not need to change all states of edges among nodes
in Vp since this will takes O(|Vp|2) time which is expensive
while having unclear performance boost in our experiments.
Step 3: Check stopping condition. At the beginning of Step
3, we label all nodes of G by finding connected components
of yes edges of G. If two nodes vp and vq belong to the
same connected component, they are in the same cluster
following Definition 7. Let label(vp) be the current cluster
label of a node vp.
Definition 9. (Cross-edge). If an edge (vp, vq) ∈ E has

label(p) 6= label(q), it is called a cross-edge since it
connects two different clusters.

Lemma 5. If there is a cross-edge (vp, vq) where st(vp, vq) ∈
{weak, unknown, link}, the cluster structure may change.

Proof 4. Since label(vp) 6= label(vq), st(vp, vq) 6= yes. If
st(vp, vq) = no, they will never be directly-connected.
Thus, the cluster structure may only change if st(vp, vq)
is weak, unknownor link, since it may be changed to yes
wrt. new queries, leading to the merge of two clusters.

Following Lemma 5, we scan through all edges of G
looking for weak, unknown, or link cross-edges. If they exist,
the algorithm should continue. Otherwise, IncAnyDBC can
be stopped since the clustering result will not change re-
gardless of any other queries.
Step 4: Select objects for querying. The purpose of this
step is to select unprocessed objects for processing so that the
clusters are formed quickly, i.e., more yes edges created at
each iteration. At the same time, we want the algorithm to
be terminated as quick as possible to ensure the final per-
formance. To do so, the graph G is used to rank objects via
their impact on the changes of the current cluster structure.
Definition 10. (Node degree). The degree of a node vp,

denoted as deg(vp), is defined as follows:

deg(vp) =
∑

vq∈adj(vp)

ω(vp, vq)stat(vq) (1)

where adj(vp) is the set of adjacent nodes vq of vp
where label(vq) 6= label(vp) (i.e., (vp, vq) is a cross-edge);
w(vp, vq) is the predefined weight for each edge based
on its state (1, 2 and 4 for unknown, link, and weak, resp.);
and stat(vp) is the current processing score of vp:

stat(vp) = (1− |Np|
n

) +
usize(vp)

|Np|
+ ψ(vp) (2)

where usize(vp) is the number of unprocessed objects of
Np and ψ(vp) = 1 if vp consists of an pborder object and
ψ(vp) = 0 otherwise.

The deg(vp) measures the uncertainty of vp wrt. the
current structure. If vp is lying closer to borders of many
clusters (has larger |adj(vp)| or contains a pborder object), its
label is more uncertain than one lying deep inside a cluster.
Thus, if we perform a query on q ∈ vp, it will connect more
nodes (Lemma 2) or will break some undetermined edges
faster (Lemma 6). Besides that, if st(vp, vq) = weak, p and
q have stronger influence to each other than unknown state.
Thus, we assign a higher weight for weak edges. Moreover,
for each node p, we assign higher stat score for p if |Np| is
small since it is more likely to be a border node. We also
prefer nodes that have fewer unprocessed objects since fully
processing them will break undetermined edges, making
IncAnyDBC converge faster following Lemma 5.
Definition 11. (Object score). The score of an object p,

denoted as score(p), is defined as follows:

score(p) =
1

|Vp|
∑
vq∈Vp

deg(vq) (3)

Similar to the node degree, higher score(p) means that p
is in a highly uncertain area (covered by uncertain nodes).
Thus, processing it first may bring bigger changes to the
current cluster structure toward the final one.

At the end of Step 4, we choose a set S of β objects with
highest scores for processing in Step 5.
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Fig. 6. Illustration of Lemma 7

Step 5: Update graphs. In this step, we performing queries
on all β selected objects. For each object p, we mark st(p)
as pcore if it a core or pborder otherwise. We set lev(p) = n.
We also increase the number of neighbors nei(q) for each
unprocessed object q ∈ Np and set new states for them
following the transition states of objects in Figure 4.

Following Lemma 2 Case A, for each new ucore or pcore
object p ∈ O, all nodes in Vp will be directly-connected.
Thus, for each edge (Vp[i], Vp[i+ 1]), we set its state to yes.

For each core object p ∈ B, we need to check if p connect
its node to other nodes via its neighbors following Lemma
2 Case B. To do so, we scan through each object q ∈ Np.
If q is pcore or ucore, all nodes in Vp and Vq are directly
connected. However, we only need to set edge (Vp[1], Vq[1])
as yes (since Vp and Vq are processed in Case A above). If q
is uborder, the connection may be available if future queries
reveal that q is a core. Thus, we set for edge (Vp[1], Vq[1]) a
special state called link, indicating that they are more likely
to be connected via a pair of core objects.
Lemma 6. Given a cross-edge (vp, vq) where st(vp, vq) ∈
{weak, unknown, link}, if usize(vp) = 0 and usize(vq) =
0, vp and vq will never be directly-connected, i.e.,
st(vp, vq) = no, where usize(vp) is the number of un-
processed objects of vp.

Proof 5. Assume that their exists a chain of objects xi ∈
vp ∪ vq so that p / x1 · · ·xm . q. Since all xi are pcore, vp
and vq will belong to the same cluster following Lemma
2. It leads to contradiction since label(p) 6= label(q).

Optimization. Following Lemma 6, we need to perform all
queries on their objects to break a cross-edge (vp, vq) into no
state if vp and vq finally belong to different clusters. When
there are many of such cross-edge between two clusters,
redundant queries may occur, making IncAnyDBC converge
slower following Lemma 5. Thus, IncAnyDBC uses a special
trick to reduce the number of required queries.

For each weak or unknown cross-edge (vp, vq), if
usize(vp) = 0 or usize(vq) = 0, we set st(vp, vq) = no
(even though vp and vq may be directly-connected if more
queries are performed). However, if st(vp, vq) = link, we
only change it to no if both nodes are fully processed. We
prove that this scheme guarantees a correct clustering result.
Lemma 7. Assume that (va, vc) is a cross-edge at the current

iteration of IncAnyDBC (but a and c belong to the same
cluster in DBSCAN). We prove that when IncAnyDBC
stops, two object nodes va and vc will be put in the same
cluster as in DBSCAN.

Proof 6. (Sketch) Wlog., we assume that usize(va) = 0 and
hence st(va, vc) = no. There must exist a pair of object
x ∈ Na and y ∈ Nc so that d(x, y) ≤ ε and st(x) =
pcore ∧ st(y) 6= pborder (y is actually a core in DBSCAN).
If st(y) is core, va and vc are put into the same connected
component. Thus, label(va) = label(vc).

If st(y) = uborder, a link state is set to a pair of nodes
containing x and y. Assume that st(va, vc) is link, In-
cAnyDBC cannot stop until (va, vc) is not a cross-edge
or they are fully processed. In both ways, va and vc are
finally in the same cluster. Assume that the link state
is assigned to (vb, vd) as illustrated in Figure 6, where
x ∈ vb and y ∈ vd. If label(b) = label(d), va, vb, and
vd are in the same cluster (since x is core). Thus, if
label(c) = label(d), we have label(va) = label(vc). Oth-
erwise, (vc, vd) is a cross-edge. In the worst case, vc and
vd are fully processed, revealing that y is core. Hence,
va, vb, vc, vd will be in the same connected component,
making label(va) = label(vc). If label(b) 6= label(d),
(vb, vd) is a cross-edge. Thus, in the worst case, vb and vd
are fully processed. Processing y will connect two object
nodes va and vc together as the above case. The other
cases are proven similarly.

According to Lemma 7, if two nodes vp and vq belong to
the same cluster, it will be detected correctly by IncAnyDBC,
though (va, vc) may be assigned as no due to the opti-
mization process described above. At the end of Step 5,
IncAnyDBC goes back to Step 3 to check if it should stop.
If not, it chooses another set of objects to process until the
termination condition in Step 3 is reached.
Step 6: Check the noise list. This post-processing step of
IncAnyDBC checks the noise list L to find remaining border
objects. For each object p ∈ L with pnoise state, if there is a
core object q ∈ Np, p will be a border object and is assigned
the same label as q. Otherwise, we need to perform a query
on each uborder object q ∈ Np and set level(q) to n until we
find a core to assign p to. If there is no core object found, p
is surely a noise.
Correctness. When it reaches its final stage, IncAnyDBC
produces the identical results as DBSCAN. Shared border
objects may be labeled differently in both DBSCAN and
IncAnyDBC based on the examining orders of objects.
Lemma 8. IncAnyDBC produces the identical final clustering

results as DBSCAN.

Proof 7. (Sketch) If two core objects a ./ b in DBSCAN, there
exists a path of nodes v1 · · · vm in G such that a ∈ v1 and
b ∈ vm (Lemma 4). Due to Lemma 7, all nodes vi belong
to the same clusters in IncAnyDBC. Hence, label(a) =
label(b) (Lemma 1). Moreover, if a 6./ b in DBSCAN, for
each chain of core objects a = x1 · · ·xm = b, there exists
a pair xi and xi+1 where d(xi, xi+1) > ε. Moreover, xi ∈
vp and xi+1 ∈ vq where p 6= q (otherwise a ./ b). Thus,
vp and vq will not be directly-connected. Consequently,
label(a) 6= label(b) in IncAnyDBC. Step 6 of IncAnyDBC
ensures that we do not miss any border objects.

Monotonicity. Since IncAnyDBC merges nodes with new
queries, the number of clusters decreases at each iteration.
Complexity. Let v = |V |, e = |E|, and l = |L|. Step 1
needs O((v+ l)n) for neighborhood queries and O(vn+ lµ)
for marking object states. Step 2 consumes O(v2) for build-
ing G and O(vn) for updating edges. Step 3 uses O(v2)
for connected component finding and O(e) for checking
termination condition. Step 4 requires O(e) for node de-
gree calculations, O(vn) for calculating object scores, and
O(n log n) for sorting objects. Step 5 spends O(βn) time for
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Fig. 7. Different Steps of IncAnyDBC for the insertion (top) and
deletion (bottom) cases

queries, O(vn + βn) for updating yes edges, and O(e) for
no edges. Step 6 needs O(lµn) time for querying neighbors.
Overall, IncAnyDBC has O(vn+ ln+ v2 + n

β (v
2 + e+ vn+

n log n + βn) + lµn) time. If v and l are O(n), e = v2 and
β = O(n), the time complexity of IncAnyDBC is O(n2),
which is similar to that of DBSCAN. IncAnyDBC needs to
store all nodes, the graph G and the noise list L. Thus, its
space complexity is O(vn+ v2 + lµ).

3.3 Dynamic cluster update
Reverse query. In IncAnyDBC, we have two different kinds
of neighborhood queries. The first one is the full query
where we find the neighbors for an object p on the whole
databaseO. The second one is called reverse-query, where we
only perform neighborhood queries on the set B of inserted
or deleted objects. Since m � n (where n = |O|, m = |B|),
the reverse-query is much faster than the normal query. Let
Mp be the neighbors of p under a reverse-query.

3.3.1 Insertion
In the insertion case, the clusters will be merged into bigger
ones or new clusters are raised as described in Section 2.
IncAnyDBC first updates the current noise list L and the
node list V in Step I1 and I2. Then it creates new nodes
for new objects if it is necessary in Step I3. The graph G
is updated for reflexing changes in Step I4 to I10. And the
clusters are updated in Step I11 (c.f. Figure 7 (top)).
Step I0: Preparation. Before updating clusters, we mark
the state of each new object as untouched. Each object o is
assigned a flag called ptou indicating that it is in processed
state but may change to unprocessed due to inserted objects.
Step I1: Update the noise list. Some noise objects may
become core ones if new objects come into their neighbor-
hoods. Thus, for each object p ∈ L, we perform a reverse-
query on p, looking for new objects in its neighborhood.
If nei(p) + |Mp| ≥ µ, p becomes a pcore. We also mark
st(q) = uborder for q ∈ Np ∪ Mp if q is a new object
and pborder if q is an old object. In both cases, we update
the neighborhood for p as Np ∪ Mp, increase the number

of neighbors nei(q) by 1 for new object q ∈ Mp, set the
database level level(p) = m + n (since the database has
m objects more), and set ptou(p) = 0 (since p is surely a
processed objects after insertions ). At the end, we remove p
and put it into the set V of nodes if it is a core.

Step I2: Update the node list. Similar to the noise list, some
existing nodes in G may change wrt. new inserted objects
and thus need to be updated. Hence, for each node vp ∈ V ,
if Mp 6= ∅, we add Mp into the neighbor set Np of p and
update nei(q) for q ∈Mp. We also set level(p) = m+n and
ptou(p) = 0 like Step I1.

Step I3: Create new nodes. After Step I2, some new objects
have been covered in new nodes or existing nodes. Some
remain outside with the untouched state. We need to cover
these objects inside nodes.

Similar to Step 1 of IncAnyDBC (Section 3.2), we repeat-
edly choose a set A of α untouched new objects. For each
object p in A, we perform a range query on p, if Np ≥ µ, we
set st(p) = pcore and put vp to V . Otherwise, st(p) = pnoise.
Now, we increase the number of neighbors nei(q) for q ∈ Np
only if level(q) < n + m. Here, the database level en-
sures that nei(q) is correctly recorded since some currently
processed objects have been checked without new inserted
objects by IncAnyDBC during its clustering phase.

Step I4: Connect new nodes into G. Let V N be the set of
new nodes created in Step 1 and 3. We need to determine
their relationships with other nodes. Following Lemma 3,
for each node vp ∈ V N , if d(p, q) ≤ 3ε, where vq ∈ V , we
add an edge (vp, vq) into the edge set E of G, indicating
that they can be directly-connected. We also temporarily set
st(vp, vq) = no (it will be fixed later in the next steps).

Step I5: Identify change core objects. At the end of Step
I3, all new objects are either inside nodes or in the noise
list. Let V 1 be the set of nodes that contain new objects
and L1 be the set of new objects in L. Let OA be the set
of objects in ∪vp∈V 1adj(vp) and ∪p∈L1Np, i.e., all objects
inside nodes with new objects and its adjacency and inside
the neighborhoods of new none-core objects in L.

Lemma 9. All processed objects o /∈ OA will not change their
core properties after the insertion by new objects.

Lemma 9 is directly referred from the triangular inequal-
ity in Lemma 3. E.g., all objects in vu and vt (Figure 2) will
not change their core properties due to the inserted object
a. All processed non-core objects in O1 may change to core
ones due to the new inserted objects. Thus, for each pnoise or
pborder object o ∈ OA (that has not been processed in Step
I1, i.e., ptou(o) = 1), if nei(o) ≥ µ, we mark it as a changed
object. Otherwise, we perform a reverse query on o to check
if o is a core (if nei(o) + |Mo| ≥ µ), set ptou(o) = 0, and
level(o) = n+m. For each object p ∈Mo, we update nei(p)
if nei(p) < n+m. For each change core object, we add their
nodes to the list of change core nodes V 2 together with all
newly created nodes in Step I1 (since their centers change
from noise to core objects).

Step I6: Fix the core property of objects. Due to additional
range queries in Step I1, I2, I3 and I5, the core properties of
objects may change and need to be updated. For each old
object o ∈ OA, if ptou(o) = 1, o may change from processed
to unprocessed states. If st(p) 6= pcore and nei(p) ≥ µ, we
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change it to ucore. Otherwise, its state remains unchanged.
If st(p) = pcore, we change it to ucore. If o is not processed
before insertions or has been updated (ptou(o) = 0), st(o) =
uborder, and nei(o) ≥ µ, we set st(o) = ucore.

If o /∈ OA, st(o) will not change (Lemma 9). Thus, we set
level(o) = n+m and ptou(o) = 0 if p is in processed states.

Step I7: Update cluster structures. For each affected object
o ∈ OA, we update the graph G by setting a yes connection
among pairs of nodes in Vo as in Step 5 of IncAnyDBC. Then,
we update the labels of nodes following their connected
components of yes edges like Step 3 of IncAnyDBC.

Due to the merge of clusters, some existing cross-edges
with the no state will be changed. Let V A = V 1 ∪ V 2 be the
sets of nodes with new objects and change cores objects.

Lemma 10. For each cross-edge (vp, vq), if vp /∈ V A and vq /∈
V A, st(vp, vq) will not be affected by new objects.

Proof 8. (Sketch) Since (vp, vq) are a cross-edge before inser-
tion, st(vp, vq) must be no. And, there is no pair of core
objects that will connect them as described in Lemma 2.
Thus, edge st(vp, vq) only changes if there is a new object
coming into them or a processed border object inside vp
or vq becomes a core object. These objects may become
shared core objects or create a core-core link between
them, causing the state changes. Note that an uborder
object in vp or vq does not contributed to the connectivity.
Thus if it becomes a core, it will not cause any change.

E.g., in Figure 2, edges (vt, vu) and (vr, vt) are not
affected by the object a. Following Lemma 10, for updat-
ing clusters, an obvious way is reseting all possible edges
related to V A back into the unknown state and taking all
objects inside nodes of V A and its adjacency nodes to
rebuild the connections among them. However, this still
incurs redundant queries as shown in Figure 2. Since vv and
vp already belong to the same clusters, examining (vv, vp)
will not lead to any changes in the result. Thus, we follow
a more efficient way by reducing the total number of nodes
and links that need to be examined. Consequently, this saves
unnecessary queries, thus improving the performance.

Step I8: Fix the links in G wrt. new objects. Let V 1A be the
set of nodes vq where (vp, vq) is a cross-edge and vp ∈ V 1.

Lemma 11. Given a new object a ∈ vp, if d(a, q) > 2ε, a itself
does not change the state of (vp, vq) directly.

For finding exactly nodes will be affected by new objects,
for each node vq ∈ V 1A, we perform a reverse-query on q
with threshold 2ε (as demonstrated in Figure 2). If M2ε

q does
not contain a core or or uborder new object, st(vp, vq) will
obviously not be affected and can be excluded from V 1A.
Similarly, we remove a node from V 1 if it has no cross-edge
counter parts in V 1A.

Let O1A be the set of objects in V 1A (exclude pnoise
and pborder due to no contribution and change core ob-
jects (which will be processed in Step I9). For each object
o ∈ O1A, we perform a reverse query on o to get new
neighbors Mo and use them to limit the involved nodes.

Before further processing, we need to update the core
properties of objects due to new queries. For each object
o ∈ O1A, if level(o) = n, we update the numbers of neigh-
bors for o by increasing nei(o) and nei(p) for each p ∈ Mo

with level(p) < n +m. If nei(p) ≥ µ and st(p) = uborder,
we change st(p) to ucore. Similarly, if nei(o) ≥ µ, we assign
st(o) = ucore and set level(o) = n + m to update its
query information. For each new core objects, we set the
yes connections among its nodes following Lemma 2.

For each o ∈ O1A and for each object p ∈ Mo, if o and p
are core, we set a yes connection between two nodes in Vo[1]
and Vp[1] following Lemma 2. Otherwise, if p is not pborder
or pnoise, o and p may link these nodes together. Thus, we
keep all nodes of Vo and Vp inside the sets V 1 and V 1A

respectively. At the end, V 1 and V 1A contains only nodes
that can cause the changes in cluster structures.

If there are new yes edges, we re-update the cluster labels
to reduce the number of cross-edges. Then, for each cross-
edges (vp, vq) where vp ∈ V 1 and vq ∈ V 1A, if st(vp, vq) =
no, we set st(vp, vq) = unknown. This makes the algorithm
to reupdate clusters following Lemma 5 in Section 3.2.
Step I9: Fix the links in G wrt. change core objects. Similar
to new objects, change core ones cause clusters to be merged
as in Lemma 2. Let V 2A be the set of nodes vq where (vp, vq)
is a cross-edge and vp ∈ V 2. Let O2 be the set of change core
objects in V 2.
Lemma 12. For each object o ∈ O2 and node vp ∈ V 2A, if

d(o, p) > 2ε, the object o does not change st(vp, vq).

Following Lemma 12, for each object o ∈ O2 and vp ∈
V 2A, if d(o, p) ≤ 2ε, we do not remove vp from V 2A and o
from O2 since they may cause cluster structure changes.

For each remaining object o ∈ O2 and p ∈ No, if p is a
core object, we set st(Vo[1], Vp[1]) = yes following Lemma
2. If p is uborder, p and o may form a link later if p is truly
a core. Thus, we do not remove nodes of Vo and Vp from
V 2 and V 2A, respectively. Similar to Step I8, we update the
labels of nodes if a yes edge occurs above before changing
each cross-edge (vp, vq) where vp ∈ V 2 and vq ∈ V 2A to the
unknown state if it is in the no state.
Step I10: Choose objects to be examined. Let V E = V 1 ∪
V 1A∪V 2∪V 2A be the set of nodes that may be merged and
are detected in Steps I8 and I9. Let OE be the set of objects
in vp ∈ V E (exclude node center, pborder and pnoise objects).
Proposition 1. We only need to examine objects in OE to

fully update clusters after the insertions.

Proposition 1 can be seen directly from Lemma 10 and
the Steps I8 and I9 described above. In these steps, edges
that do not affected by new inserted objects will be excluded
from the cluster update by keeping their states as no. Thus,
V E contains all nodes belong to changing edges. Following
Lemmas 2 and 6, we need to examine all objects in OE to
clarify these edges as yes or no ones. Following Proposition
1, we remove the processed mark for each object o ∈ OE

from pcore to ucore. This allows IncAnyDBC to re-perform
queries on these objects to update clusters in Step I11.
Step I11: Update the clusters. In this step, we update cluster
structures by examining all unprocessed objects in OE to
connect nodes in similar ways to Step 3 to 6 of IncAnyDBC
in Section 3.2.

Concretely, at each iteration, we choose a set of β objects
in OE to perform queries by assessing their roles on the
changes of cluster structures as in Step 4 of IncAnyDBC.
However, we calculate usize(vp) for each node vp by objects
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inside OE only. Then, for each selected object p, we perform
the range queries on it and update the state and current
number of neighbors for each unprocessed object q ∈ Np as
in Step 5 of IncAnyDBC. Since there are new objects inserted
into the database at different times, we only update nei(q)
if q ≥ level(p) ∧ p ≥ level(q) for ensuring consistency.
After that, we update the states of edges of G following the
changes of objects as in Step 5 of IncAnyDBC. The process
stops when the termination condition in Lemma 5 in Step 3
of IncAnyDBC is reached with new usize values of objects.
Finally, a post processing step as in Step 6 of IncAnyDBC is
performed to identify the remainder border objects.
Lemma 13. (Correctness). IncAnyDBC produces identical

results to those of DBSCAN after insertions.

Proof 9. (Sketch) Steps I1 to I3 guarantee that if a new object
a is a core, it will be covered inside a node. Moreover,
Steps I8 to I9 ensures that all possible changes in G wrt.
new objects can be captured. And the result can be fully
updated by following the set OE as in Proposition 1.
Thus, similar to Lemma 8, if two core object a ∈ vx
and b ∈ vx are density-connected, vx and vy will be
assigned the same label at the end and vice versa. And
the post-processing process will assign the labels for
border objects accordingly.

Complexity. Steps I0 to I10 take O(lm), O(vm), O(mn),
O(v2), O(v2 + vn + lµ + nm), O(n + m), O(v2 + vn),
O(mv2+vn+vm+mn+m2), O(v2+vn+vm+mn+n2),
and O(v2 + vn+ vm), respectively. Step I11 has the similar
time complexity as in Steps 3 to 5 of IncAnyDBC since
OE = n+m in the worst cases. Thus, the overall time com-
plexity of IncAnyDBC will be O(mn2) (roughly speaking)
for inserting m objects. And it is similar to IncDBSCAN. It
consumes O(vn+ v2 + lµ+ nm) overall space complexity.

3.3.2 Deletion
In the deletion case, some objects may loose their core
property, thus leading to the split of clusters [3]. In Step
D1 and D2 (Figure 7), we update the non-core list L and
the node list V by removing deleted objects out. Due to
deleted nodes, orphan objects that are not covered inside
any nodes will be grouped again into new nodes or placed
into the non-core list in Step D3. Steps D4 to D10 update the
connectivity of the graphGwrt. changes. Step D11 identifies
if splits occur in clusters. All objects that may involve to
cluster changes are captured in Step D12. We update clusters
in Step D13 following the active clustering scheme.
Step D0: Preparation. Before updating clusters, each object
o is assigned a flag called ptou indicating that it is in
processed state but may change to unprocessed one.
Step D1: Update the non-core list. Objects in L will not
change to core ones due to deleted objects. However, we
need to clean their deleted neighbors. To do so, we scan
through each object p ∈ L and remove the deleted objects
from its neighbors (or p itself). And we mark p as an updated
object by setting ptou(p) = 1. E.g., the non-core object e in
Figure 2 will be removed since e is deleted.
Step D2: Update the node list. In contrast to the non-core
ones, objects inside the node list V may loose their core
property due to deleted objects. For each node vp ∈ V , we

remove deleted objects from its neighbors or vp itself if p is
deleted. If Np < µ, p is not a core anymore. We remove vp
from V and put it into the non-core list L. All edges related
to vp also need to be removed from the graph G. We mark p
as updated objects (ptou(p) = 0). Let V 1 be the set of nodes
that contains deleted objects.

Step D3: Fix orphan objects. Due to deleted nodes in step
D2, some objects may become orphans since they are not
covered inside any nodes or in the non-core list. And they
need to be fixed. To do so, we first assign the untouched
state for all those objects. And then, we repeat the below
procedure until there is no untouched orphan objects.

At each iteration, we choose a set A of α untouched
objects to perform queries. For each object p ∈ A, if
Np < µ, we set st(p) = pnoise if st(p) = untouched or
st(p) = pborder if st(p) = uborder and put p into L.
Otherwise, we set st(p) = pcore and put it into V . For
each object q ∈ Np, we assign st(q) = uborder if p is a core
and st(q) = untouched. We also increase the neighbor count
nei(q) by 1 if q ≥ level(p) and p ≥ level(q) and q has not
been updated (ptou(q) = 1).

Step D4: Update the graph. Let V 3 be the set of new nodes
created in step D3. For each node vp ∈ V 3, we add an edge
to other node vq if d(p, q) ≤ 3ε following Lemma 3. Initially,
we set st(vp, vq) = no.

Step D5: Fix the numbers of neighbors. Since deleted
objects may be covered inside the neighborhoods of pro-
cessed ones, we need to update the neighborhood count
for some related objects. Let L1 be a set of deleted objects
inside L and V 1 be the set of nodes containing deleted
objects acquired from Step D2. Let OA be the set of objects
in ∪vp∈V 1adj(vp) ∨ ∪p∈L1

Np, where adj(vp) is the set of
adjacent nodes of vp including itself.

Lemma 14. All object o /∈ OA will not be affected by deleted
objects.

Lemma 14 is directly inferred from the triangular in-
equality in Lemma 3. Each object o ∈ OA may be inside the
neighborhood of a deleted object and thus their number of
neighbors nei(o) may change. Thus, for each object o ∈ OA,
we perform a reverse query to get deleted objects Mo

around o. For each object p ∈ Mo, we decrease nei(p) if
p ≥ level(o) and o ≥ level(p). This ensures that no non-core
objects is recognized as cores, causing false yes connections
and a wrong clustering result consequently.

Step D6: Identify change core objects. Obviously, all objects
in OA may change their core properties. Thus, for each ob-
ject o ∈ OA, we mark o as a change core one if st(o) = pcore
or st(o) = ucore and nei(p) < µ, and we put all nodes Vo of
o into the set of change core nodes V 2 for further processing.

Step D7: Fix the core properties. Since the numbers of
neighbors change in steps D3 and D5, the core properties
of objects must be fixed. We first extend OA by adding
objects in the adjacent nodes of the degenerated ones in
step D2. Following Lemma 14, additional queries in step
D3 only affects the neighbor counts for objects in OA. Thus,
for each object o ∈ OA if o is not updated (ptou(o) = 0),
we fix its core property. If st(o) = pcore and nei(o) < µ,
we change st(o) to pborder if o is inside a node or pnoise
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otherwise. If st(o) = uborder and nei(o) ≥ µ, st(o) = ucore.
If st(o) = ucore and nei(o) < µ, st(o) = uborder.

Given a yes edge (vp, vq), if vp or vq is deleted in Step D2,
the edge (vp, vq) will be deleted from G. Otherwise, (vp, vq)
still remains but their yes state may loose if a core object is
deleted from their neighbors following Lemma 2. This might
cause the connected components of nodes to be broken, thus
causing the splits of clusters. Let V A = V 1 ∪ V 2 ∪ V 3

be the set of involved nodes. A simple approach would
reset all their yes edges to the unknown states and re-run
the clustering algorithm to re-build clusters. However, this
still incurs many redundant calculations. Thus, we follow a
more efficient scheme as follows.
Step D8: Fix the links in G by deleted objects. Let V 1A be
the set of nodes vq where st(vp, vq) = yes and vp ∈ V 1.
Lemma 15. Given a deleted object a ∈ vp, if d(a, q) > 2ε, a

itself does not break the yes state of (vp, vq) directly.

E.g., if we delete the object a in Figure 2, the yes state
of (vp, vq) remains since d(a, v) > 2ε. Following Lemma
15, we perform a reverse query on deleted objects for each
vq ∈ V 1A with a threshold of 2ε. If M2ε

q does not contain
a deleted core object, the yes connection between vp and vq
will not be affected by deleted objects. Thus, we remove vq
and its partner vp from V 1A and V 1, respectively. At the
end, for each edge (vp, vq) where vp ∈ V 1 and vq ∈ V 1A,
we reset st(vp, vq) to unknown state since it may be affected
by the deleted objects.
Step D9: Fix the links in G by change core objects. If an
object looses its core status, it may break the yes connection
between its nodes and their adjacency. Let V 2A be the set of
nodes vq where st(vp, vq) = yes and vp ∈ V 2. We remove
nodes that do not have its yes counter parts in V 2A from V 2.
Let O2 be the set of change core objects in V 2.
Lemma 16. For each object o ∈ O2 and o ∈ vp and node

vq ∈ V 2A, if d(o, q) > 2ε, the object o does not break the
yes state of (vp, vq).

Following Lemma 16, we do not remove node vq from
V 2A if there exist an object o ∈ O2 such that d(o, q) ≤ 2ε
since st(vp, vq) may be changed by the deletions. Then,
for each edge (vp, vq) where vp ∈ V 2 and vq ∈ V 2A, if
st(vp, vq) = yes, we change st(vp, vq) = unknown, waiting
for this edge to be re-updated.
Step D10: Update cluster structures. For each object o ∈ O
and o /∈ B, if o is a pcore or ucore, we set the yes connections
for edges (Vo[i], Vo[i − 1]) where Vo is the set of nodes
containing o and 1 ≤ i ≤ |Vo|. After that, we re-update the
labels of nodes following the connected components of yes
edges as in Step 3 of IncAnyDBC. This step helps to reduce
the possible split causing by the delegation of yes edges in
Steps D8 and D9.
Step D11: Detect possible splits. Given two arbitrary object
nodes vp and vq that belong to the same cluster c. If
label(vp) 6= label(vq) after Step D10, c is affected by the
deletions (indicated by the changes of yes edges) and need to
be re-checked if it really splits. Let CA be the set of affected
clusters (including all nodes in V 3, which are assigned the
same special cluster labels initially).
Lemma 17. Any cluster c /∈ CA will not be affected by the

deletions.

Proof 10. (Sketch) Steps D2, D8, and D9 guarantee that
all possible broken yes edges are changed to unknown,
waiting for the cluster updates. Thus, c will not be
changed by deleted objects.

For each cluster c ∈ CA, we need to re-cluster it to check
if c is really be spitted. To do so, we change all no edges in c
back into unknown states and rerun the clustering algorithm
to look for clusters again. Let V A be the set of nodes inside
CA. For each node vp ∈ V A and vq ∈ adj(vp), if vp and vq
currently belong to a splited cluster, we put them into the set
of nodes V E to be examined later. Moreover, if st(vp, vq) =
no, we change it to unknown as discussed before.
Step D12: Choose objects to be examined. Let OE be the
set of objects inside vp ∈ V E (exclude node centers, pborder
and pnoise ones).
Proposition 2. We only need to examine objects in OE to

fully update clusters after the deletions.

Proposition 2 is straightforwardly drawn from Lemma
17 and Steps D8 to D11 of IncAnyDBC. All edges that are
not affected by deleted objects are excluded in steps D8 and
D9. Steps D10 and D11 guarantee that if a cluster may be
broken, it will be re-examined by placing all of its nodes
into the examined node set V E . Following Lemma 2 and
Lemma 6, we need to examine all objects in OE to clarify
these edges as yes or no ones. Following Proposition 2, for
each object o ∈ OE , if st(o) = pcore and ptou(o) = 1, we
change st(o) to ucore, indicating that a neighborhood query
may need to be repeated on o to build clusters.
Step D13: Update clusters. The cluster update process in
the deletion case is also build upon the Step 3 to 6 of
IncAnyDBC in Section 3.1, but is limited on the set of objects
OE only like the Step I11 of IncAnyDBC (insertion case).
Lemma 18. (Correctness). IncAnyDBC produces identical

results to those of DBSCAN after the deletions.

Proof 11. (Sketch) Steps D1 to D3 ensure that a core object
will be covered in a node after the deletions. Steps D8
and D9 ensure that all possible affected yes edges are
reversed back to unknown states to be re-checked. Step
D11 detects any possible broken cluster. All changes can
be captured by examining OE in Step D13 following
Proposition 2. Thus, if two core objects a ∈ vp and b ∈ vq
are density-connected in DBSCAN, they will be placed
into the same connected component in IncAnyDBC.

Complexity. Steps I0 to I12 take O(n), O(lµ), O(vn + v2),
O(n2), O(v2), O(mn), O(nv), O(n), O(v2 + vm + mv2),
O(v2 + nv), O(nv), O(v2), O(v2), and O(vn). Step D13 has
the similar time complexity as in Steps 3 to 5 of IncAnyDBC.
Thus, the overall time complexity is O(mn2) like IncDB-
SCAN. It requires O(vn+ v2 + lµ+ nm) space complexity.

3.4 Parallel processing
Figure 8 shows the parallel model of IncAnyDBC. At each
iteration, a block of unprocessed objects are selected from
the database for processing using multiple threads, e.g.,
objects a to f . We propose to execute each query indepen-
dently of each other using a single thread, e.g., threads t1, t2,
and t3 process object a, b, and c, respectively. This is more
effective than executing each query in parallel, especially
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with index structures since not all of them can be executed in
parallel efficiently. Since the neighborhood query times may
vary, dynamic scheduling would be employed for better
balancing the overall workload of threads.

However, since the neighborhoods of objects may over-
lap, we propose to wait for all queries to be completed
before updating the information of objects and connectivity
among nodes. Otherwise, many critical sessions (locks) will
be required to ensure consistency, thus significantly reduc-
ing the scalability. Thus, we use a memory buffer (MB) to
temporarily store the neighbors of selected objects. And a
barrier is placed for synchronizing all threads after query
processing. After that, each thread will grab a stored neigh-
borhood from the bufferMB to update the core information
and to connect object nodes into clusters. In our preliminary
experiment, without using the buffer, the scalability of the
algorithm is significantly reduced (1.5-2x). Since the neigh-
borhood sizes of objects vary, we use dynamic scheduling
for balancing threads’ workload. IncAnyDBC then synchro-
nizes all threads and do some necessary sequential tasks
before starting the object selection process until its end.

Instead of propagating labels among objects like DB-
SCAN, IncAnyDBC assigns labels for nodes by following
connected components of the yes connections. Due to the
monotonicity of the cluster structures as described in Section
3.2, connected components change incrementally wrt. new
yes edges. Thus, we use a Disjoint Set (DJS) data structure
to efficiently update the components rather than relooking
them from scratch. Each object node will be placed into
the DJS. The DJS supports two operations: (1) FindSet(vp)
looks for the label of a node vp and (2) Union(vp, vq) merges
two nodes vp and vq into the same component. The Union
operation is not thread-safe. Thus, it is placed in a critical
section for synchronization.

IncAnyDBC needs to hold a list of nodes Vp for each
object p. Since each object may belong to many different
nodes, naively parallelizing this task will lead to perfor-
mance degradation since many synchronizations need to
be used. To do so, each node is first assigned to a fixed
thread t. Then each thread t will build its own node list
V tp for each object p independently to each others. Finally,
for each object p, we build Vp by merging all node lists
of p in parallel. By this way, we only need to synchronize
all threads one time while still having the same workload
as the sequential algorithm. Thus, it helps to improve the
scalability considerably. However, balancing the workload is
still a hard problem since the neighborhood sizes of objects
can vary significantly though we use dynamic scheduling to
try to balance threads’ workload.
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Fig. 9. The numbers of object nodes and queries for GasSensor dataset

4 EXPERIMENTS

Datasets. We perform experiments on 7 real datasets ac-
quired from different sources including: (1) Farm: contains
3,627,086 objects. Each has 5 VZ-features of a satellite image
in SaudiArabia1 [12]; (2) Household: has 2,049,280 objects
with 7-D data for electricity and mortgage expenses in US
[15]; (3) Sdss2Mass: contains 1,258,127 8-D objects describ-
ing locations and gravities of different galaxies [16]; (4)
GasSensor: records values of 16 different sensors exposed
to Ethylene-CO with 4,178,504 objects [15]; (5) PAMAP2:
describes the physical activities using inertial measurement
units and is acquired from the UCI archives [15] with
974,479 39-D objects; (6) Precipitation: contains data of mean
monthly surface climate such as precipitations and temper-
atures over global land areas2 with 566,268 12-D objects; and
(7) OSFP: acquired from the French national registry of sleep
apnea3. It describes sets of syndromes for 39,252 patients
with Obstructive Sleep Apnea (OSA).
Systems.4 Experiments are are conducted on Linux server
with two 8-core CPUs (Intel Xeon E5-2650 v2 - 2.6 GHz) and
128GB RAM (64 GB/CPU) using g++ 4.9.2 and OpenMP5.
Outline. In Section 4.1 and 4.2, we study the clustering per-
formance of IncAnyDBC using single and multiple threads.
Then we study the cluster update phase in Section 4.3 and
Section 4.4 using single thread and multiple threads.

4.1 Clustering performance

Unless otherwise stated, we use default parameters µ = 50,
α = 512, and β = 4, 096.
The pruning power of IncAnyDBC. Figure 9 shows the
numbers of queries and object nodes of IncAnyDBC for
the dataset GasSensor with different parameters µ and ε.
IncAnyDBC requires much fewer queries to build clusters
than DBSCAN (from 4.0 to 74.3 times). Moreover, the num-
ber of object nodes is also much smaller than the number
of objects (from 76.5 to 1,866.1 times). The bigger the values
of ε and µ (and the denser and well-separated clusters), the
lower the numbers of nodes. The same results are observed
for all the datasets. Consequently, IncAnyDBC is much
faster than DBSCAN as shown below.
Performance comparisons. Figure 10 shows the perfor-
mance of IncAnyDBC compared to DBSCAN [7] and its
fastest variants including ρ-DBSCANv2 [11] and AnyDBC
[14], [17] using different parameters ε and µ. As suggested
from [18], [19], we vary the parameter ε from very small to

1. https://tinyurl.com/ikonos-tadco-farms
2. http://www.cru.uea.ac.uk/
3. http://www.osfp.fr
4. https://nqvhung.github.io/multicore dbscan/
5. https://www.openmp.org/

https://nqvhung.github.io/multicore_dbscan/
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very large to study the performance of these algorithms.
For example, when ε = 100, 79% objects are noise for
Sdss2Mass. For Household, there is only one cluster con-
taining 99.99% objects when ε = 20, 000. For indexing, we
use kd-tree implementation from [20].

Compared to DBSCAN, IncAnyDBC is much faster in
most cases due to its pruning power. E.g., the speedup
factor ranges from 7.0 to 238.5 times for Sdss2Mass and
from 0.57 to 853.5 times for Household. However, when the
number of used queries is too large (e.g., when ε = 2, 000
for Household), IncAnyDBC will run slightly slower than
DBSCAN due to its active clustering overheads such as
object selections in Step 4. When ε is large, AnyDBC and
IncAnyDBC acquires comparable performance on all the
datasets. However, when ε is very small, both IncAnyDBC
and AnyDBC need to spend more queries to go to the
termination stage as demonstrated in Figure 9. Thus, the
overhead increases. However, since IncAnyDBC does not
need to merge clusters and queries like AnyDBC, its over-
head is much smaller. Thus it is much faster. When the
dimension d of the data is low (e.g., the Farm and House-
hold datasets), the performances of IncAnyDBC and ρ-
DBSCANv2 are comparable. However, when d is larger,
IncAnyDBC runs much faster since it does not rely on

the grid structure like ρ-DBSCANv2, where the number of
cells increases exponentially wrt. to the dimension d and
causes significant overheads. E.g., IncAnyDBC is from 1.6
to 8.3 times, from 3.7 to 11.6 times, and from 0.53 to 52.8
times faster than ρ-DBSCANv2 on the datasets Sdss2Mass,
GasSensor, and PAMAP2, respectively.

Effects of parameter α and β. Generally, when α increases,
there will be more nodes due to the block processing scheme
in Step 1. Thus, more core objects will be revealed at an
early stage, making the algorithm to finish earlier. However,
when the number of nodes increases, there are chances that
two nodes from different clusters are placed close enough to
each other, thus creating a cross-edge between them. Clarify-
ing these cross-edges requires more queries to be performed,
thus decreasing performances. The parameter β is used for
balancing the overheads of IncAnyDBC and its pruning
power. Smaller β means that better objects are selected to
build clusters (Steps 3 to 5). Thus, fewer queries are required
compared to bigger values of β. However, the overheads
of the active clustering scheme are bigger due to more
iterations. These facts affect the runtime of IncAnyDBC as
shown in Figure 12. It typically goes down and up again
when increasing α and β. We suggest to set α from 400 to
800 and β from 4,000 to 8,000 in our experiments.

Anytime properties. One major advantage of IncAnyDBC is
that it can be interrupted at any time to provide approximate
results, while other methods like [7], [11], [12] can only
provide either an exact result or an approximate result as
shown in Figure 12. Due to the monotonicity property (c.f.
Section 3.2), the number of clusters reduces very quickly at
each iteration to the final number of clusters of DBSCAN at
the end. AnyDBC is the only existing algorithm that has the
same property. However, it usually has larger initial over-
heads due to its cluster intersection and merge strategies.

Other distance functions. While other grid-based methods
like [11]–[13] can only work under Euclidean distance, In-
cAnyDBC can work under arbitrary distance metrics. Figure
13 shows the performance of IncAnyDBC and AnyDBC
on Precipitation and OSFP using Manhattan and Jaccard
distance metrics [21] (α = 128 and β = 1, 024). IncAnyDBC
is comparable to AnyDBC and is from 1.4 to 135.5 times
faster than DBSCAN on both datasets.

4.2 Parallel clustering

Scalability over multiple threads. Figure 14 illustrates the
performance of IncAnyDBC, AnyDBC [17], HPDBSCAN
[22], and PDSDBSCAN [20] on different datasets using 16
threads. Due to its grid-based scheme, HPDBSCAN can only
work on low dimensional datasets Farm and Household
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with large values of ε (e.g., ε ≥ 4, 000 for Household). PDS-
DBSCAN, on the other hand, consumes too much memory
due to its object storing scheme when the neighborhoods of
objects overlap. Thus, when ε is large enough, it runs out of
memory (e.g., ε > 1, 000 for Household). Since both HPDB-
SCAN and PDSDBSCAN do not focus on workload reduc-
tion like IncAnyDBC, their performance is much worse than
that of IncAnyDBC. E.g., HPDBSCAN is from 90.9 to 679.6
times slower than IncAnyDBC on the Household dataset
and PDSDBSCAN is from 3.4 to 49.8 times slower than
IncAnyDBC on the GasSensor dataset. The bigger the value
of ε, the larger the performance gap. Compared to AnyDBC,
IncAnyDBC is faster in most cases6, especially when ε is
small, e.g., 55.4 times when ε = 2, 000 for GasSensor and
212.4 times when ε = 5, 000 for Household. Moreover, since
AnyDBC uses bit vectors to merge clusters and queries, it
consumes much memory than IncAnyDBC, e.g., up to 19.7
times on Household. In terms of scalability, IncAnyDBC also
performs better than AnyDBC in most cases and much bet-
ter than HPDBSCAN and PDSDBSCAN. It reaches speedup
factors of 9.5, 10.3, 7.5, 7.7, and 14.2 over 16 threads on

6. We slightly modified AnyDBC to make it faster. However, its
scalability becomes slightly worse than the original version [17].
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the datasets Farm, Household, Sdss2Mass, GasSensor, and
PAMAP2, respectively.
Other distance functions. Figure 15 shows the scalability
of IncAnyDBC using 16 threads on Precipitation (L1) and
OSFP (Jaccard distance). It has very good performance and
comparable to AnyDBC. The speedup factors are from 9.1 to
10.9 (Precipitation) and from 8.1 to 11.5 (OSFP). HPDBSCAN
[22] and PDSDBSCAN [20] can only work on Euclidean
distance and are thus excluded.
Parallel anytime properties. One interesting property of
IncAnyDBC is that each step can be parallelized, making it
a unique anytime parallel algorithm. As shown in Figure 17,
using 16 threads, we can acquire the same clustering result
at each iteration of IncAnyDBC faster (9.5 to 10.1 times).
Effects of parameters α and β. Figure 16 shows the effects
of parameters α and β on the performance of IncAnyDBC.
Increasing β makes the overall workload at each iteration
larger. This helps to balance threads better. And thus, the
scalability of IncAnyDBC typically increases as we can see
from Figure 11 (right). The role of α, however, is unclear. On
different datasets, it shows different behaviours. E.g., when
ε increases from 200 to 1,000, the speedup factor increases
from 8.1 to 8.7 times on PAMAP2 but decreases significantly
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Fig. 19. Performance of IncAnyDBC and IncDBSCAN for various real datasets

from 12.2 to 4.3 times on Household. Unfortunately, there is
no known way to predict such behaviors.

4.3 Dynamic clustering
We study the performance of IncAnyDBC for both inser-
tion and deletion cases. For each dataset D, we randomly
remove a set D′ of 100,000 objects from it and use the
remainder n objects for clustering. Then we randomly delete
m objects from D and randomly insert m objects from D′

into D. This process mimics the real behaviors of dynamic
data. Unless otherwise stated, we use default parameters
µ = 20, α = 512, β = 4, 096, and m = 2, 000.
The query pruning scheme of IncAnyDBC. Figure 18
(left) shows the number of queries and reverse queries of
IncAnyDBC and IncDBSCAN over 2000 insertions. Since
IncDBSCAN needs to determine all change core objects
before further processing, it requires at least 2,000 queries
regardless the parameter ε. However, the total number of
used queries does not vary much (from 2,003 to 2,428
over 1,158,127 points), meaning that IncDBSCAN works
quite stable and very efficient compared to the re-clustering
choice. By using reverse queries to detect potential changes
and updating clusters under the active scheme, IncAnyDBC
uses much less queries than IncDBSCAN (from 0 to 1,485).
Since reverse queries are significantly faster than full
queries, IncAnyDBC is faster than IncDBSCAN as show
in Figure 19. Moreover, when ε grows bigger, the cluster
structure tends to be more stable and there are fewers border
objects (that may change to cores). Thus, the number of
queries is typically reduced.

The deletion case is much expensive than the insertion
case shown in Figure 18 since clusters may be broken and
need to be re-clustered. Thus, the total number of queries
IncDBSCAN used is much higher, ranging from 1.6 to
10.1 millions (from 676.8 to 5,064.6 times higher than the
insertion case). Compared to the data size, it is better to
recluster from scratch rather than updating results in this
batch mode. Since IncAnyDBC processes deleted objects in
a bulk, it does not need to repeatedly re-verify a cluster
many times. Together with its active clustering scheme, it
needs only from 0 to 5,965 full queries to update clusters
(from 180.3 to 1,442,212 times lower than IncDBSCAN). This
dramatically improves the performance as shown in Figure
19. The bigger the ε, the fewer queries it uses typically.
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Performance comparisons. Figure 19 (top) shows the run-
times of IncAnyDBC and cumulative runtimes IncDBSCAN
[3] over 2,000 insertions. When ε becomes bigger, the run-
times of IncAnyDBC fluctuates rather than increasing like
IncDBSCAN due to its query pruning scheme as discussed
above. Due to its active bulk processing scheme, IncAnyDBC
significantly outperforms IncDBSCAN in most case, e.g.,
from 2.3 to 41.0 times faster on Sdss2Mass. The bigger ε,
the larger the performance gaps. However, in some cases,
e.g., Household (ε = 1, 000) or PAMAP2 (ε = 10, 000),
IncAnyDBC runs slower than IncDBSCAN. The reason is
that we must update some no edges to unknown states in
Step I8 and I9 to let the algorithm re-update clusters for
capturing all possible cluster merges. In the worst cases,
if the changed edges are cross-edges, it will be hard to
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break them as discussed in Section 4.1. Thus, IncAnyDBC
consumes more queries than IncDBSCAN and is slower.

The major difference between IncAnyDBC and IncDB-
SCAN is on the deletion case (c.f. Figure 19 (bottom)), where
IncAnyDBC completely outperforms IncDBSCAN in all
cases, e.g., from 35.8 to 10,755.9 times on Sdss2Mass. Since
the deletion case is much expensive than the insertion case,
the overall performance of IncAnyDBC (both insertions and
deletions) fully dominates IncDBSCAN, e.g., from 22.5 to
10,172.8 times for Sdss2Mass. With m = 2, 000 changes,
updating clusters using IncAnyDBC is also more efficient
than re-clustering the whole database using IncAnyDBC
(e.g., from 2.1 to 21.7 times on GasSensor) or DBSCAN (e.g.,
from 13.3 to 5,134.2 times on GasSensor).
Other distance metrics. Figure 20 shows the performance of
IncAnyDBC for OSFP and Precipitation using Jaccard and
Manhattan distances (α = 128, β = 1, 024, and m = 1, 000).
The same results are observed.
Scalability wrt. the numbers of object changes? Figure 21
shows how IncAnyDBC and IncDBSCAN scale when the
numbers of inserted and deleted objects vary from 1,000
to 100,000 for GasSensor (ε = 1, 000). The performance
gap between IncAnyDBC and IncDBSCAN increases with
ε, especially for the deletion case. E.g., the speedup fac-
tors of IncAnyDBC over IncDBSCAN changes from 10.4
times to 20.5 times when m increases from 1,000 to 5,000.
With 5, 000 changes, updating clusters using IncAnyDBC
is 10.3 times and 47.1 times faster than fully reclustering
using IncAnyDBC and DBSCAN, respectively. With 100, 000
changes, updating clusters still 2.0 and 9.1 times faster than
re-doing whole results using IncAnyDBC and DBSCAN.
Effect of parameters µ and ε. Figure 19 and Figure 22 show
the effects of parameters µ and ε on the performance of
IncAnyDBC. As discussed in Section 4.1, the performance
of IncAnyDBC depends strongly on the cluster structure of
the data that changes wrt. different input parameters. Thus,
the actual runtimes of IncAnyDBC fluctuates considerably.
However, when the cluster structure remains stable, we can
theoretically expect the number of queries decreases with ε
and increases with µ as seen in Figures 9 and 18.
Effect of parameters α and β. Figure 23 shows the robust-

ness of IncAnyDBC over two parameters β and especially
α. When α varies from 100 to 900 and β varies from 1,000 to
9,000, the runtimes of IncAnyDBC changes negligible. Com-
pared to the clustering phases in Section 4.1, the changes
are harder to see since IncAnyDBC updates clusters very
efficiently. But we can see the runtime increases with β due
to redundant queries during the re-clustering phases I11
and D13 of IncAnyDBC. Changes caused by α could not be
clearly observed since the number of newly created nodes
in Steps I3 and D3 are typically too small to have any visible
effects on the overall performance of IncAnyDBC.
Anytime cluster update. Similar to the clustering phase,
IncAnyDBC can update clusters in an anytime fashion as
seen in Figure 28. The deletion case typically starts with
high numbers of clusters (due to the removal of yes edges in
Step D8 and D9). But the numbers of clusters reduce very
quickly at each iteration. On the other hand, the insertion
case usually starts with closer numbers of clusters to the
final ones since the number of newly created objects in Step
I3 is usually small. These mean we can stop the algorithm
at early iterations while still having a very close result to
the final one of DBSCAN. None of existing methods for
dynamic clustering has this anytime property.

4.4 Parallel dynamic clustering
Scalability wrt. the number of threads. Figure 24 shows
the scalability of clustering, deletion, and insertion phases
of IncAnyDBC over different datasets using 16 threads.
Though the results fluctuate with different values of ε, large
values of ε typically bring up higher speedup factors due to
the increasing of the parallelizable workload compared to
the non-parallel one (Amdahl’s law). Overall, IncAnyDBC
scales very well on 16 threads. The speedup factors are
up to 11.3 (9.1), 9.7 (9.2), 8.4 (9.2), 9.1 (7.4), and 15.2 (15.3)
times for the insertion (deletion) case on Farm, Household,
Sdss2Mass, GasSensor, and PAMAP2, respectively.
Scalability for other data. On OSFP and Precipitation, In-
cAnyDBC still has very good scalability as seen in Figure 25.
However, the speedup factor decreases with ε. The reason
is that we do not use indexing technique. Thus, the query
processing time is well-balanced for threads regardless of
ε. In this case, bigger ε means bigger object nodes and
overheads. This drags the overall scalability goes down in
many cases, especially when the dataset is small like OSFP.
Scalability wrt. the numbers of object changes? When
the number of changes increases from 1,000 to 100,000 as
illustrated in Figure 26, the overall workload of IncAnyDBC
increases. Thus, it leads to the improvement of the scalabil-
ity of IncAnyDBC. E.g., for Household, the speedup factor
is 6.6, 10.4, and 12.6 times over 16 threads when m changes
from 1,000 to 10,000 and 100,000, respectively.
Effect of parameters α and β. When α and β increases
as demonstrated in Figure 27, the scalability of IncAnyDBC
over 16 threads remains quite stable, especially for the dele-
tion case. Theoretically, increasing β will balance workload
of threads better, thus leading to better speedup factor as we
have seen in Figure 16. However, since the overall update
times are too small, the effect is thus not visible clearly.
Anytime cluster update. Since IncAnyDBC is an parallel
anytime method, multiple threads can be used to have
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Sdss2Mass

intermediate results faster as shown in Figure 28. During
the execution time, the intermediate speedup factor changes
slightly at each iteration like the clustering phase shown in
Figure 17. However, it does not show clear increasing or
decreasing trend due to small update times.

5 RELATED WORKS AND DISCUSSION

Incremental density-based clustering. Finding clusters in
dynamic databases has been an important research focus
for many years [3], [4], [6], [23]–[27]. Most work focuses
on incrementally updating existing clusters when changes
occur in the databases instead of reclustering from scratch.

In [3], the locality nature of DBSCAN is exploited to
limit the update areas, thus saving computation costs. Gan
and Tao [6] introduces a grid-based approach for updating
clusters very efficiently. However, their algorithm can only
approximate the result of DBSCAN when the data dimen-
sion d > 2. Its grid-based scheme also limits it to low-
dimensional data under Euclidean distance only, thus reduc-
ing its applicability. Both IncDBSCAN [3] and ρ-DBSCAN
[6] work in a batch scheme. They update clusters with each
change. In contrast, IncAnyDBC can update clusters in a
bulk mode to reduce overheads. Thus, it is much faster
than IncDBSCAN. Moreover, IncAnyDBC can work under
arbitrary time constraints and can provide both exact and
approximate results of DBSCAN. Besides, it can work with
arbitrary distance metrics like IncDBSCAN. Density-based
methods for streaming data such as DenStream [28] and
[29] has an incremental natur like IncAnyDBC. However,
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they follow different cluster notions to DBSCAN and thus
are out of scopes of this work.
Parallel incremental clustering. To the best of our knowl-
edge, IncAnyDBC is the first parallel method for incremen-
tally updating DBSCAN’s clusters on multicore CPUs. It
not only tries to increase the computation throughput like
other traditional parallel algorithms but also tries to reduce
the overall workload. Combined with the anytime property,
IncAnyDBC is a unique anytime work-efficient technique for
finding clusters in dynamic databases.
Density-based clustering. ρ-DBSCAN [12] and other meth-
ods such as [11], [13], [30], [31] rely on different grid-based
schema to improve the performance of DBSCAN. However,
since the number of cells grows exponential with the data
dimension, they all suffer from performance degradation for
high dimension data. Moreover, they can only work with
Euclidean distance. Other methods such as [32]–[34] exploit
lower-bounding distances to reduce the clustering time of
DBSCAN under filter-refinement schema. However, they
are more suitable for small datasets with very expensive
distance functions. AnyDBC [14] is the closest work to
IncAnyDBC. Both of them are based on the active clus-
tering approach for reducing the used queries. However,
they follows two completely different algorithmic schema.
AnyDBC merges connected sub-groups into a single one at
each iteration. Thus, it suffers from higher overheads than
IncAnyDBC which only changes the connectivity statuses
of subgroups. Moreover, AnyDBC looses important infor-
mation on local subgroup connections that can be exploited
to efficiently update clusters as presented in IncAnyDBC.
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There are many other methods aiming at improving DB-
SCAN’s performance such as BRIDGE [35], IDBSCAN [36]
and DBR [37]. However, they can only produce (coarse)
approximate results instead of exact results of DBSCAN like
IncAnyDBC. On the other hand, HDBSCAN [38], [39] does
not focus on runtime improvement but it tries to extract high
quality clusters from density-based clustering hierarchy.

Parallel density-based clustering. Parallelizing DBSCAN
is one of the most active research topics for enhancing
DBSCAN with many proposed techniques such as [17],
[20], [22], [40]–[50]. Most of them focus on parallelizing
DBSCAN on distributed systems including MPI-based [40],
[44], [51], MapReduce [45], [46], or Spark [41], [50], [52].
Few algorithms aim at extending DBSCAN on Graphic
Processing Units (GPUs) such as [43], [47], [48]. There are
some methods that are designed to work with multicore
CPUs including [17], [20], [22], [42].

PDSDBSCAN [20] employs a Disjoint Set data structure
to merge two points if they belong to the same cluster in
a bottom-up clustering scheme. However, it must perform
all queries, thus suffering from much higher workload than
IncAnyDBC. Pardicle [42] can only produce approximate
results of DBSCAN. HPDBSCAN [22] exploits the data grid
structures to build clusters in parallel. However, it suffers
from performance degradation on high dimensional data
due to the exponential number of cells. None of these meth-
ods has an anytime property like IncAnyDBC. Moreover,
since they do not focus on workload reduction, they are not
work-efficient and thus run much slower than IncAnyDBC
using single or multiple threads. AnyDBC-MC [17] is the
closest work of IncAnyDBC. However, it differs significantly
with IncAnyDBC in its algorithmic operation as discussed
above. Moreover, since it uses bit vectors to find cluster
intersections and to merge them in its parallel mode, it
consumes much memory than IncAnyDBC.

6 CONCLUSION

In this paper, we introduce the first and unique anytime
work-efficient parallel algorithm, called IncAnyDBC, to effi-
ciently update density-based clusters for very large complex
data on multicore CPUs. For data clustering, IncAnyDBC
actively chooses a subset of objects to build clusters in an
iterative manner. As a result, it consumes fewer queries to
build the same clustering results as DBSCAN. Thus, it is
orders of magnitude faster than DBSCAN and its variants.
IncAnyDBC reserves local cluster structures of data and
exploits them to actively update clusters when there are
changes in the database such as inserted or deleted objects.
Thus, it needs much fewer queries than the state-of-the-
art method IncDBSCAN for updating results. Moreover,
changes are enforced in bulks rather than batches like ex-
isting techniques for reducing overhead. Hence, it is much
efficient than IncDBSCAN, especially for the deletion case.
IncAnyDBC, due to its anytime property, can work under ar-
bitrary time constraints and provides exact or approximate
results of DBSCAN on demand. Its block processing scheme
allows it to be parallelized efficiently on multicore CPUs.
Experiments with 16 CPU cores show that IncAnyDBC
scales very well with the number of threads (up to ≈ 15
times over 16 threads).
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