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Abstract

Preimplantation factor (PIF) is an embryo derived peptide which exerts an immune modula-

tory effect on human endometrium, promoting immune tolerance to the embryo whilst main-

taining the immune response to invading pathogens. While bovine embryos secrete PIF, the

effect on the bovine endometrium is unknown. Maternal recognition of pregnancy is driven

by an embryo-maternal cross talk, however the process differs between humans and cattle.

As many embryos are lost during the early part of pregnancy in cattle, a greater knowledge

of factors affecting the embryo-maternal crosstalk, such as PIF, is needed to improve fertil-

ity. Therefore, for the first time, we demonstrate the effect of synthetic PIF (sPIF) on the

bovine transcriptome in an ex vivo bovine endometrial tissue culture model. Explants were

cultured for 30h with sPIF (100nM) or in control media. Total RNA was analysed via RNA-

sequencing. As a result of sPIF treatment, 102 genes were differentially expressed com-

pared to the control (Padj<0.1), although none by more than 2-fold. The majority of genes

(78) were downregulated. Pathway analysis revealed targeting of several immune based

pathways. Genes for the TNF, NF-κB, IL-17, MAPK and TLR signalling pathways were

down-regulated by sPIF. However, some immune genes were demonstrated to be upregu-

lated following sPIF treatment, including C3. Steroid biosynthesis was the only over-repre-

sented pathway with all genes upregulated. We demonstrate that sPIF can modulate the

bovine endometrial transcriptome in an immune modulatory manner, like that in the human

endometrium, however, the regulation of genes was much weaker than in previous human

work.

Introduction

The embryo preimplantation period is complex; it involves modulation of the maternal uterine

immune response and acceptance of the embryo, and embryo-maternal cross talk is essential

to the process. Preimplantation factor (PIF) is a peptide secreted by viable embryos as early as

the two-cell stage, identified in human, murine, bovine and porcine models [1, 2]. Secretion of
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PIF from murine embryos in culture is greater at the blastocyst development stage, compared

to the morula, demonstrating a role of PIF both in early and later developmental stages of the

preimplantation conceptus [1]. Furthermore, PIF has been detected in bovine serum at 20

days post fertilisation [3]. Human embryos that do not secrete PIF fail to implant, thus under-

pinning the importance of PIF in the embryo-maternal dialogue at the implantation stage [4].

In humans, PIF modulates the maternal uterine immune response which aids the acceptance

of the embryo [2]. Synthetic PIF (sPIF) interacts with decidualized human endometrial stro-

mal cells and first trimester decidual cells through three specific pathways: immune tolerance,

embryo adhesion and apoptosis/remodelling of the uterus, all of which are fundamental to

embryo implantation and maternal recognition of pregnancy [5]. Furthermore, sPIF targets

naïve CD14+ peripheral blood mononuclear cells and reduces secretion and mRNA expres-

sion of Th1/Th2 cytokines [6, 7]. In addition, sPIF modulates the uterine immune response to

aid in embryo acceptance by promoting a Th2 bias and inducing an anti-inflammatory effect,

whilst also preserving Th1 responses necessary for protecting the mother from invading patho-

gens [5, 6, 8, 9].

Interferon-τ (IFN-τ) is a well characterised, crucial embryo derived signal. Bovine concep-

tus secretion of IFN-τ begins around formation of the trophectoderm and peaks between day

15 and 17 of pregnancy, when the conceptus is an elongated filamentous structure, which insti-

gates maternal recognition of pregnancy in ruminants and thus, early pregnancy establishment

[10–13]. However, secretion of IFN-τ rapidly declines from day 21 onwards [13]. It is clear

that IFN-τ is imperative for the embryo-maternal crosstalk and modulation of the endometrial

immune profile [14], however, the establishment and recognition of pregnancy is more com-

plex than the presence of IFN-τ alone [10, 15, 16]. As the fertility of dairy cows has declined in

recent years, and a considerable proportion of pregnancy losses occur during early pregnancy

[11, 17], it is imperative to understand this critical window to improve fertility rates in cattle.

Several attempts have aimed at understanding the bovine preimplantation embryo-mater-

nal crosstalk on a global transcriptome level [10, 16, 18–23]. The dynamic modulation of the

maternal immune system is essential to aid in implantation, growth of the embryo and ulti-

mately, a successful pregnancy [24, 25]. The bovine preimplantation embryo has clear roles in

modulating endometrial gene expression, to both suppress the immune response for promo-

tion of maternal embryo tolerance, whilst also increasing innate immune related genes to pre-

vent vulnerability of the uterine environment to pathogens [19, 26]. Thus, there is the

potential that PIF may be involved in this cross talk.

Although it is known that PIF is secreted by viable bovine embryos and detectable in bovine

serum through early pregnancy [1, 3], there is currently limited evidence of any effect of PIF

on maternal bovine tissue and in the embryo-maternal crosstalk. We have previously reported

that sPIF reduces native IL-6 secretion in vitro from non-pregnant bovine endometrial tissue

during the early luteal and follicular stage of the oestrous cycle [27]. We report here for the

first time the effect of sPIF on the native endometrial global transcriptome through RNA-

sequencing. Synthetic PIF is hypothesised to have an immune modulatory role in cattle, simi-

lar to that described in the human. Although, due to differences in the maternal recognition of

pregnancy and the timings and mode of implantation in humans compared to cattle, it was

deemed likely that there would be some differences in the role of PIF between these species.

Materials and methods

Animals

Bovine uteri (n = 7) and corresponding blood samples were collected from heifers presented

for slaughter at a local abattoir. As post-slaughter material was used, licencing through the
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Animals (Scientific Procedures) Act 1986 and ethical review were not necessary. Based on pre-

vious work [27], uteri with stage IV ovaries were investigated to allow the study of sPIF on

endometrial tissues that were not under the immune suppressive effects of progesterone [28,

29]. Samples were staged by assessing ovarian morphology as previously described [30, 31].

Briefly, stage IV was defined as having a regressing corpus luteum with a diameter of< 1 cm

[30]. To ensure there was no underlying inflammation in the sampled tissue, cytology samples

were taken from the endometrium at the abattoir, using a modified cytobrush technique, and

assessed for percentage of polymorphonuclear cells (PMN), as previously described [27]. A

threshold of PMN percentage greater than 5% was set to exclude animals based on the guide-

line of detection of subclinical endometritis [32, 33], although all samples were below 5% PMN

and therefore none were excluded.

Uteri and blood samples were stored on ice during the one-hour transportation back to the

laboratory. Tissues were used for explant culture and blood serum for serum progesterone

concentration via ELISA (DRG Diagnostics, Marburg, Germany). To support ovarian mor-

phology staging, the blood sera were used for progesterone analysis. Samples were deemed to

have high progesterone if serum concentrations were above 1 ng/mL [34]. Based on this

threshold, samples were split into a high and low progesterone group. The limit of detection of

the progesterone assay was 0.01 ng/mL and the intra-assay CV was 5.5%.

Endometrial explant tissue culture

Tissue culture was established using the method described by Borges et al. [35]. Briefly, endo-

metrial tissue was sampled randomly from intercaruncular tissue in the first third (closest to

the utero-tubular junction) of the uterine horn ipsilateral to the staged ovary, using an 8 mm

biopsy punch. The endometrial tissue was then dissected away from the myometrium using

sterile scissors. Six biopsies were taken per animal. Samples were weighed (mean ± SD weight

was 42.47 ± 7.7 mg) and one biopsy placed per well in 6 well plates (Corning, Amsterdam, The

Netherlands) with 3 mL of RPMI 1640 media (Gibco, Life Technologies, Paisley, UK) supple-

mented with 50 IU/mL penicillin, 50 μg/mL streptomycin (Sigma-Aldrich, St. Louis, MO,

USA) and 2.5 μg/mL amphotericin B (Sigma-Aldrich). Explants were incubated in a sterile

incubator at 37 oC and 5% CO2 for 30 h.

Synthetic PIF (MVRIKPGSANKPSDD) was synthesised with> 95% purity by Bioincept

(New Jersey, USA). The amino acid structure of the human 15 amino acid PIF has previously

been analysed and the 3D structure predicted [6]. The sPIF used in the present study was iden-

tical to that used in all other published research on the peptide.

Whole explant biopsies from each animal were treated with either medium alone or with

sPIF (100nM) for 24 h in 6 well plates. As DMSO was used in the reconstitution of sPIF, the same

amount of DMSO was added to the control wells. Based on our previously described methodology

[27], following the 24 h incubation medium was removed and replaced with fresh medium con-

taining the same treatments for another 6 h. At the end of the 30 h period, explants were stored

individually in 1 mL RNAlater (Invitrogen, Life Technologies, Paisley, UK) at 4 oC for 24 h. The

RNAlater was then removed and explants stored at -80 oC until further processing.

Total RNA extraction

Total RNA was extracted from two explants (one for each treatment, control or sPIF) per ani-

mal, using the Total RNA purification plus kit (Norgen Biotek Corp., Ontario, Canada), to

give a total of 14 samples of RNA. Briefly, from each explant that RNA was to be extracted

from,� 20 mg of tissue was cut off whilst still frozen, using sterile scissors and placed in the

manufacturer’s lysis buffer. Samples were then subsequently subjected to bead beating, to aid
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tissue disruption, whereby a 5 mm stainless steel bead (Qiagen, Manchester, UK) was added

and samples placed in a TissueLyser (Qiagen, Manchester, UK) for 2 minutes at 50 oscillations

per second. Samples were centrifuged at 14,000 x g for 1 minute to pellet any remaining debris

and the supernatant extracted according to the manufacturer’s instructions.

The quality of all RNA extracted was assessed with a 2100 Bioanalyzer (Agilent Technolo-

gies, Santa Clara, USA) following the method described by the manufacturer. Samples were of

suitable quality, showing RNA integrity numbers (RIN) above 7.

RNA-sequencing library preparation and next generation sequencing

Following assessment of RNA quality, all samples were prepared for sequencing and sequenced

at the Translation Genomics facility in IBERS, Aberystwyth University. Total RNA samples were

prepared for sequencing using the TruSeq v2 kit (Illumina, San Diego, USA), using the manufac-

turer’s protocol, up to the validate library step. Following the enrichment of cDNA fragments

with adapters, the cDNA was quantified using a Qubit 2.0, dsDNA broad range assay (Invitro-

gen), following the protocol supplied by the manufacturer. Each sample was diluted to 10 nM

with 10 nM Tris HCl and 0.5% Tween-20 in nuclease free water. The use of adapters allowed

multiple indexing of samples and so, samples were pooled and subsequently diluted to 2 nM

with elution buffer (Qiagen, Manchester, UK) and then to 1 nM with 0.1 M sodium hydroxide,

before being held at room temperature for 5 minutes to denature the DNA. Following denatur-

ation, the samples were diluted to 10 pM in hybridisation buffer and loaded onto a cBot (Illu-

mina, San Diego, USA) to cluster cDNA onto the Flow cell. The 14 samples were clustered onto

2 lanes of a V4 High output flow cell and subsequently paired-end sequenced on a HiSeq 2500

(Illumina, San Diego, USA). Base pairs (bp) per read were set to 126 bp. Six samples (from 3

cows) on one lane were sequenced twice due to a sample loading error, which resulted in low

reads compared to the 8 samples on the other lane. Both reads were included in the subsequent

sequencing analysis pipeline and were processed separately until after the featureCounts step.

Sequencing analysis pipeline

A previously described RNA-seq pipeline was adapted for use in the study [36]. All work up to

the statistical analysis was completed on the open source platform Galaxy [37–39], hosted by

IBERS, Aberystwyth University.

Read quality assessment and trimming. Raw paired-end data were submitted to FastQC

analysis (Galaxy version 0.69; Babraham Bioinformatics). Based on the quality of the reads out-

lined by FastQC, samples were trimmed using Trimmomatic [40], utilising an initial Illumina-

clip, headcrop, crop and Minlen (to remove any reads below 50 bp) functions. The quality of

the resulting paired-end data was again assessed via FastQC.

Alignment to the bovine genome. Bowtie 2 (Galaxy version 2.2.6) [41, 42] was used to

map reads to the reference bovine genome. Samples were mapped to the UMD 3.1 assembly of

the Bos taurus genome from Ensembl (version 89; http://www.ensembl.org/).

Gene expression data and statistical analysis. Read abundance for annotated genes was

calculated using the featureCounts package (Galaxy version 1.4.6.p5) [43]. Reads for the two

sequencing runs for six samples were joined together after the featureCounts step by adding

together the raw counts for each gene from each run. The raw counts of sequencing reads gen-

erated by featureCounts were used for all statistical analyses.

The Bioconductor package deSeq2 was used to determine the differential expression of

genes as part of the R software package (version 3.4.0) [44]. Prior to the statistical modelling,

deSeq2 analysis removed any genes that had less than 10 counts for any one sample. The statis-

tical model was set to recognise that all samples were paired, with control and sPIF treated
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explants originating from the same animal. This was completed by running a multifactorial

design, thus controlling for extra variation in the data set and subsequently improving the sen-

sitivity of the analysis. To assess if the effect of sPIF treatment differed between lanes, lane was

added into the data frame as a factor and interaction terms used. The same interaction terms

analysis was completed for serum progesterone concentration, with samples being split into a

high and low progesterone as described, to determine if the effect of sPIF differed between pro-

gesterone groups. To determine significant differentially expressed genes (DEG), the P

adjusted value Padj<0.1 was used, based on the Benjamini-Hochberg false discovery rate [45].

To determine if DEGs were involved in separate biological functions and pathways, gene

ontology (GO) categories and KEGG pathways [46] were investigated using STRING (version

11.0) and the genes used in the DESeq analysis used as the statistical background [47]. P

adjusted values for over-represented GO categories and over-represented KEGG pathways

were identified and significance set at Padj<0.05.

Protein to protein interactions within the DEGs network were evaluated using STRING

(version 11.0) and the B. taurus genome used as the statistical background [47]. Initially all

prediction methods within the STRING analysis were used (neighbourhood, gene fusion, co-

occurrence, co-expression, experiment databases and textmining), however due to the discov-

ery of several non-specific results, the textmining prediction was subsequently removed, which

demonstrated a more focussed network.

Results

Progesterone concentration and endometrial cytology

Progesterone concentrations were below 1ng/mL in three animals and were therefore assigned

to a low progesterone group, with a mean concentration of 0.69 ng/mL ± 0.06 (standard error

of the mean) and a range of 0.59–0.81 ng/mL. The remaining four animals had progesterone

concentrations greater than 1 ng/mL and were assigned to a high progesterone group, with a

mean concentration of 3.1 ng/mL ± 0.86 (standard error of the mean) and a range of 1.44–5.41

ng/mL. There was no evidence of subclinical inflammation in any of the uterine samples,

with< 5% PMN in all cytobrush smears.

RNA-sequencing overview

RNA-sequencing resulted in a total of 245,924,502 million paired-end reads across all fourteen

samples. Following mapping of the reads to the reference genome B. taurusUMD3.1, 15,681 tran-

scripts were analysed for differential expression in the bovine endometrial tissue samples following

sPIF treatment. The overall mean counts for each gene included in the differential expression anal-

ysis was 1,272.9 counts ± 5,885.6 (standard deviation). The mean gene count data were skewed

with the majority of genes (74.7%) having under 10,000 counts, however the majority (58.8%) of

DEGs were also located within this range of count data. To ensure that there was no difference in

the two sequencing runs, mean counts and variability was assessed. There was limited difference

between mean counts for genes included in the differential gene analysis between the samples from

the two different RNA-seq lanes, with 1,231.9 counts ± 5,212.5 (standard deviation) and 1,302.6

counts ± 7,009.7 (standard deviation) for cows 1–4 (lane 1) and cows 5–7 (2 sequencing runs

summed together), respectively. Furthermore, PCA analysis on the data prior to the two sequenc-

ing runs for cows 5–7 being summed together, demonstrated that the technical replicates for each

sample clustered together and so were appropriate for combination in the analysis (S1 Fig).

Sample variability

Variability between animal replicates and individual samples was assessed. There was a

strong effect of animal replicates on the dataset variability, more so than sPIF treatment (Fig
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1). The heat map (Fig 1A) and PCA (Fig 1B) show clear differentiation between the samples

in each lane (cows 1 to 4 lane 1, cows 5 to 7 lane 2), although there was no significant effect

of lane on DEGs in the data set. When principle component (PC) 1 was compared against

PC2, 3 and 4 it was noted that there was a clear grouping of samples from the different lanes,

but this was not evident when PC1 was not included in the PCA plots (Fig 1B and S2 Fig). It

is clear from Fig 1B that the variability was not attributed to serum progesterone concentra-

tion (High progesterone group cows 2–5; Low progesterone group cows 1, 6–7). As PC1 and

PC2 only accounted for 52.2% of the variation, PC 1–4 were further examined (PC1, PC2,

PC3 and PC4 accounted for 36.6%, 15.6%, 13% and 8.5% of the variation, respectively).

However, none demonstrated a clear clustering of the low or high progesterone groups

(S2 Fig).

Fig 1. Large variances were detected between samples. (a) Heat map depicting the Euclidian distances between

individual animal replicates and samples treated with or without sPIF (100nM), calculated from the regularised log

transformation. (b) PCA plot showing the variance between individual animal replicates and samples treated with or

without sPIF (100nM) in the first two principle components.

https://doi.org/10.1371/journal.pone.0242874.g001
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Identification of differentially expressed genes

Synthetic PIF treatment induced differential expression of 102 genes in bovine endometrial tis-

sue explants (Padj<0.1; of which 33 were differentially expressed Padj<0.05); 78 of which

were down-regulated and 24 up-regulated. No genes were up- or down-regulated greater than

two-fold change. The full list of differentially expressed genes (DEG) is displayed in the supple-

mentary material (S1 Table). The top 10 most significantly DEGs are displayed in Table 1.

Two genes involved in immune pathways were among the most significantly downregulated

genes following sPIF treatment (Table 1; NFKB1; Padj = 4.7 x 10−3 and IRF1; Padj = 5.8 x

10−3). There was no effect of lane or serum progesterone concentration on the whole data set

nor an interaction with sPIF treatment (Padj>0.1), thus all differences found within this study

were attributed to sPIF treatment.

Gene ontology analysis

The biological pathway plasma membrane was over-represented with DEGs, following sPIF

treatment which is within the cellular component ontology (Padj<0.05). The ‘plasma mem-

brane’ (GO:0005886) was over-represented with the 17 DEGs (Padj = 0.013; ADA, CALCRL,

CD40, EMP3, GJC1, GNA14, ICAM1, IFNAR2, LPL, PTGDR, RAB8B, RGS16, RGS2, RHOF,

SLC1A5, SLC34A2, TSPAN5).

Pathway analysis

A total of forty KEGG pathways were over-represented with DEGs, following sPIF treatment

(Padj<0.05). Pathways were organised into biological categories using the KEGG BRITE

Functional Hierarchies database, organising each pathway into a class and subclass (S2 Table).

The overrepresented pathways fitted into six classes, Human diseases; Environmental informa-

tion processing; Organismal systems; Metabolism; Cellular processes and Genetic information

processing (S2 Table). Twenty-two pathways were classed as ‘Human disease’ pathways, largely

due to DEGs involved in the NF-κB and TNF signalling pathways and the immune gene C3.

As such, these pathways were discarded as they were deemed irrelevant to the dataset. A fur-

ther pathway was discarded, ‘Osteoclast differentiation’, which was in the class ‘Organismal

Systems’ and subclass ‘Development’, as it was irrelevant for the tissue studied and appeared as

Table 1. Top 10 most significantly DEGs from the control, following sPIF treatment.

Gene ID Gene symbol Gene name Log2 fold change FDR�

Under-expressed by sPIF
ENSBTAG00000013705 NFKBIE NFKB inhibitor epsilon -0.635 1 x 10−4

ENSBTAG00000012178 NR1D1 nuclear receptor subfamily 1 group D member 1 -0.87 3.4 x 10−4

ENSBTAG00000012343 TSPAN5 tetraspanin 5 -0.768 3.7 x 10−3

ENSBTAG00000020270 NFKB1 nuclear factor kappa B subunit 1 -0.573 4.7 x 10−3

ENSBTAG00000031231 IRF1 interferon regulatory factor 1 -0.767 5.8 x 10−3

ENSBTAG00000011207 CNN1 calponin 1 -0.684 8.3 x 10−3

Over-expressed by sPIF
ENSBTAG00000014149 LCN2 lipocalin 2 1.177 1.4 x 10−4

ENSBTAG00000018843 SERPINA1 serpin family A member 1 1.203 1.8 x 10−3

ENSBTAG00000009725 AOX1 aldehyde oxidase 1 0.51 7.4 x 10−3

ENSBTAG00000016255 PLEK2 pleckstrin 2 0.655 7.4 x 10−3

� Based on P adjusted values (False discovery rate: FDR; Padj<0.1) as assessed by the Bioconductor package, deSeq2 statistical analysis.

https://doi.org/10.1371/journal.pone.0242874.t001

PLOS ONE PIF and the bovine endometrial transcriptome

PLOS ONE | https://doi.org/10.1371/journal.pone.0242874 December 7, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0242874.t001
https://doi.org/10.1371/journal.pone.0242874


over-represented again due to DEGs involved in the TNF and NF-κB signalling pathways. Once

these irrelevant pathways were removed, a total of seventeen KEGG pathways were deemed rel-

evant to the dataset (Table 2), which fitted into five KEGG BRITE Functional Hierarchies clas-

ses. Within these four classes, the Organismal Systems class and the subclass ‘Immune system’

had the greatest number of over-represented KEGG pathways in the dataset (seven pathways).

The TNF (Fig 2) and NF-κB (Fig 3) signalling pathways, both of the Environmental Informa-

tion Processing class and Signal transduction subclass, were highly significantly over-repre-

sented following sPIF treatment (Padj = 9.8 x 10−7; 5.5 x 10−7, respectively), with all genes in

each pathway downregulated. The importance of these pathways within the whole dataset was

clear due to the central signalling roles in a number of over-represented biological pathways,

such as the IL-17, MAPK and TLR signalling pathways (Table 2), and explained the over-repre-

sentation of a number of disease and infection pathways, which rely on these signalling path-

ways. Therefore, there was a clear indication of downregulation of immune factors following

sPIF treatment, although it was noted that the complement component C3 gene expression was

upregulated (Log2 fold change 0.59; Padj = 0.09). Steroid biosynthesis was the only pathway

with all DEGs upregulated (CYP24A1, DHCR7, SQLE; Padj = 3.5 x 10−3).

Protein interaction networks

Known and predicted protein interactions within the DEGs dataset were analysed using

STRING. All defined prediction methods were used apart from textmining (neighbourhood,

Table 2. Relevant KEGG pathways significantly over-represented following sPIF treatment.

KEGG pathway Number of

DEGs

Observed DEGs FDR�

Downregulated Upregulated

TNF signalling pathway 10 CSF1, CXCL3, VCAM1, ICAM1, MAPK11, NFKB1, TNFAIP3,

TRAF1, TRAF2
3.8 x

10−7

NF-kappa B signalling pathway 8 CD40, VCAM1, ICAM1, NFKB1, NFKB2, TNFAIP3, TRAF1, TRAF2 5.5 x

10−7

IL-17 signalling pathway 6 CXCL3, MAPK11, NFKB1, TNFAIP3, TRAF2 LCN2 5.8 x

10−4

Steroid biosynthesis 3 CYP24A1, DHCR7,

SQLE
4 x 10−3

NOD-like receptor signalling pathway 6 CXCL3, IFNAR2, MAPK11, NFKB1, TNFAIP3, TRAF2 4.6 x

10−3

Prolactin signalling pathway 4 IRF1, MAPK11, NFKB1, STAT5A 8.2 x

10−3

Cell adhesion molecules (CAMs) 4 CD40, VCAM1, ICAM1 NEO1 9.1 x

10−3

Necroptosis 5 HIST1H2AC, IFNAR2, STAT5A, TNFAIP3, TRAF2 0.01

MAPK signalling pathway 7 CSF1, GADD45G, IGF2, MAPK11, NFKB1, NFKB2, TRAF2 0.01

Th1 and Th2 cell differentiation 4 MAPK11, NFKB1, NFKBIE, STAT5A 0.01

Toll-like receptor signalling pathway 4 CD40, NFKB1, MAPK11, IFNAR2 0.02

Leukocyte transendothelial migration 3 VCAM1, ICAM1, MAPK11 0.02

Protein processing in endoplasmic

reticulum

5 DNAJB1, ERO1B, HYOU1, PPP1R15A, TRAF2 0.02

Th17 cell differentiation 4 MAPK11, NFKB1, NFKBIE, STAT5A 0.02

RIG-I-like receptor signalling pathway 3 MAPK11, NFKB1, TRAF2 0.03

Adipocytokine signalling pathway 3 NFKB1, NFKBIE, TRAF2 0.04

Apoptosis 4 GADD45G, NFKB1, TRAF1, TRAF2 0.04

�Based on P adjusted values (False discovery rate: FDR; Padj<0.05) as assessed by STRING analysis.

https://doi.org/10.1371/journal.pone.0242874.t002
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Fig 2. Putative changes in the TNF signalling pathway induced by sPIF treatment. Red boxes are proteins encoded for

by DEGs, with reduced expression following sPIF treatment, as identified by STRING analysis, based on P adjusted values

(Padj = 3.8 x 10−7).

https://doi.org/10.1371/journal.pone.0242874.g002

Fig 3. Putative changes in the NK-κB signalling pathway induced by sPIF treatment. Red boxes are proteins

encoded for by DEGs, with reduced expression following sPIF treatment, as identified by STRING analysis, based on P

adjusted values (Padj = 5.5 x 10−7).

https://doi.org/10.1371/journal.pone.0242874.g003
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gene fusion, co-occurrence, co-expression and experiment databases). The overall network

was significantly enriched (Padj = 9.24 x10-9; B. taurus genome used as background gene list)

with a total of 40 edges signifying connections between 34 proteins transcribed by DEGs fol-

lowing sPIF treatment. Fig 4 displays the proteins that are connected within the network of

DEG following sPIF treatment and demonstrates which associations are stronger through the

thickness of the edges between nodes. It was noted that there was a strong interaction network

between NF-κB and TNF signalling related proteins (Fig 4).

Discussion

This is the first study to demonstrate the effect of sPIF on the global endometrial bovine tran-

scriptome. The investigation showed interaction of sPIF with the bovine endometrium, specif-

ically that 102 genes were differentially expressed following sPIF treatment, with the majority

(78 of 102 DEGs) downregulated. Furthermore, pathway analysis demonstrated sPIF to work

in an immune modulatory manner on the bovine endometrium, as originally hypothesised.

However, in the present study, no genes were modulated greater than two-fold following sPIF

treatment. Thus, the bovine endometrial response to sPIF was much weaker than that demon-

strated in decidualized human endometrial stromal cells and first trimester decidual cells,

where some genes were modulated as much as 53 fold following sPIF treatment [5, 48, 49].

The present study used an ex vivo tissue explant method to model the effects of sPIF on the

bovine endometrium. The use of whole tissue samples allowed assessment of sPIF in a model

which maintains the tissue architectures of the endometrium, more akin to an in vivo state

[35]. However, it is accepted that the ex vivo model likely adds variability into the dataset with-

out a characterisation of populations of epithelial and stromal cells within each sample. Assess-

ing the response on the whole tissue may partially explain the weaker response to sPIF in the

bovine endometrium, compared to that demonstrated in individual cell types in humans [5,

48, 49]. Indeed, sPIF may have differing effects on bovine endometrial epithelial and stromal

cells, and this warrants further study. However, a recent study used a similar methodology to

assess the effect of bovine conceptuses and IFN- τ on the bovine endometrium, without char-

acterising the populations of epithelial and stromal cells within each sample [16]. Therefore, in

this study, we present the effect of sPIF on the whole bovine endometrial tissue structure.

We note that analysis of gene transcription alone does not account for possible post tran-

scriptional changes that alter protein expression of the DEGs following sPIF treatment. Thus,

further functional experiments, such as an assessment of the proteome, are needed to verify

the effect of sPIF on the bovine endometrium in pregnancy. Furthermore, the present study

set out to assess the general effect of sPIF on the bovine endometrial transcriptome, but assess-

ing the effect of sPIF alone in vitro ignores the effect of other mediators within the uterine

environment that may be maternal or conceptus derived. Therefore, the effect of other media-

tors in bovine pregnancy, such as IFN-τ, must be considered to fully understand the relation-

ship with PIF and bovine pregnancy.

Variation between animal replicates

Variation between animal replicates had a strong effect on the data set and more so than that

of sPIF treatment. It is acknowledged that a difficulty in endometrial transcriptome studies is

the variability introduced by animal status and management [50]. Indeed, increased progester-

one levels can alter the endometrial transcriptome in heifers during early pregnancy [51].

However, despite some samples having higher than expected serum progesterone concentra-

tions, indicating that they were in the luteal phase, there was no effect on the data set in the

present study. Lactation status has been shown not to affect endometrial gene expression in
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Fig 4. Predicted protein interaction networks from the DEGs following sPIF treatment. Interactions are based on the prediction methods

of: neighbourhood, gene fusion, co-occurrence, co-expression and experiment databases in STRING version 11.0. Only connected nodes

within the DEGs dataset are displayed. Edges between nodes represent predicted protein-to-protein interactions coded by DEGs. Thicker

lines demonstrate a greater strength of data support from the prediction methods.

https://doi.org/10.1371/journal.pone.0242874.g004
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postpartum dairy cattle [52, 53], but heifers and cows exhibit differing endometrial transcrip-

tome responses during early pregnancy [53]. It is for this reason that only heifers were used in

the present study to eliminate the effect of previous pregnancies on the data collected. How-

ever, as uteri were collected at a local abattoir, heifers were likely from different farms and

management backgrounds. Previous studies have demonstrated that nutritional management

can also alter endometrial gene expression [54, 55], which could help to explain the variation

between animal replicates. Furthermore, the lack of characterisation of the proportions of stro-

mal and epithelial cells within each endometrial explant may also help to explain the strong

variation between cattle. Nevertheless, the variation within the data set does not detract from

the findings that overall, effects of sPIF on the bovine endometrial transcriptome were rela-

tively small, with no genes being regulated over two-fold.

Immune signalling

Pathway analysis demonstrated that sPIF plays a coordinated role downregulating genes in the

TLR, IL-17, MAPK, TNF and NF-κB signalling pathways, of which the latter two are known to

be modulated during the preimplantation period in several species [56–59]. NF-κB signalling

is a key component of the TLR, IL-17 and TNF pathways and MAPK signalling is involved in

TNF signalling; thus, several of the downregulated genes were common between these key

immune related KEGG pathways. Furthermore, from analysis of the DEGs in the TLR and

NF-κB KEGG pathway, it became apparent that the TNF receptor superfamily was likely tar-

geted through the downregulation of CD40, as well as other intracellular signalling molecules.

Synthetic PIF is recognised to act through a TLR-4 dependent pathway in immune cells

[60], but the peptide targets downstream proteins such as thymosin-α1, rather than TLR-4

[61]. The pleiotropic peptide, thymosin-α1 acts on innate immune cells, including CD14

+ cells [62, 63], which sPIF is known to target [6, 7] and would likely have been present in the

tissue explants in the present study. Modulation of the TLR signalling pathway was largely

attributed to DEGs in both the TNF and NF-κB signalling pathways, including downregula-

tion of CD40. TLR ligands, including that of TLR-4, modulate CD40 gene expression in

immune cells [64, 65]. Thus, it is hypothesised that if sPIF interacts with cells in bovine endo-

metrial tissue in a TLR-4 dependent manner, CD40 may link TLR and TNF receptor super-

family signalling. This hypothesis needs further elucidation from functional studies.

Furthermore, sPIF induced invasiveness of in vitro human extravillous trophoblast cells is

blocked through inhibition of the MAPK signalling pathway [66]. As MAPK signalling is also

involved in TNF signalling [67], and genes in both pathways were targeted by sPIF in the pres-

ent study, this adds to evidence that there may be an effect of sPIF on the TNF receptor super-

family signalling pathway.

Downregulation of CD40 and several of the downstream signalling molecules following

sPIF treatment, supports the immune suppressive role of sPIF in bovine endometrium. As a

member of the TNF receptor superfamily, CD40 is involved in inflammatory signalling as part

of the adaptive immune response [68–71]. Furthermore, it is suggested that during early preg-

nancy in mice, increased CD40-CD40L interaction leads to a favouring of the proinflamma-

tory Th1 response, over the predominant Th2 pregnancy response [72]. Thus, this study

supports previous research that has identified sPIF to help create a Th2 bias to modulate the

maternal uterine immune system, without suppressing the whole system [6, 8].

Excessive exposure to TNF-α has deleterious effects on bovine oocyte development in cul-

ture [73] and is associated with pregnancy loss in rat models and human pregnancies [24]. It is

suggested that an upregulation of TNFR2 receptors on the bovine endometrium in early preg-

nancy [59] reduces free TNF protein in uterine fluid [74] which may protect the embryo [59].
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Synthetic PIF treatment led to a downregulation of DEGs involved in intracellular signalling

following activation of TNF receptors, such as TRAF1 and 2, which are recruited to the recep-

tors following ligand binding [68, 69, 75]. Therefore, although there is an increased capacity

for ligand binding within the TNF pathway, immune modulators such as PIF, may act on

downstream targets to prevent over activation of the maternal TNF pathway and thus, the

immune response in early pregnancy.

The NF-κB signalling pathway is activated following TNF and TLR receptor activation [68,

75, 76]. Genes involved in NF-κB signalling are downregulated in early pregnant human

decidua [56], mice uteri [57] and porcine endometrium [58] compared to non-pregnant tissue,

supported by a downregulation of NF-κB-p65 protein in early pregnancy uterine fluid [74].

Although DEGs following sPIF treatment in the present study were not homologues to those

modulated in other species [56–58], the data does support the concept of an immune suppres-

sive state during early bovine pregnancy. Indeed, IFN-τ has also been demonstrated to reduce

activation of NF-κB and secretion of proinflammatory cytokines in lipopolysaccharide stimu-

lated RAW264.7 cells [77], suggesting anti-inflammatory actions. Downregulation of the NF-

κB signalling pathway in this study therefore suggests a mechanistic explanation for our previ-

ous work that demonstrated a reduction in native IL-6 secretion from sPIF treated bovine

endometrial explants [27]. Conversely, day 15 bovine conceptuses drive upregulation of the

inflammatory response in the endometrium, largely related to TNF and NF-κB signalling [16].

However, sPIF may have a modulatory role within the milieu of conceptus derived factors that

act upon the endometrium, preventing overregulation and an imbalance of the inflammatory

response, supporting the previously established role of the peptide in promoting a Th2 bias

whilst preserving Th1 responses [5, 6, 8, 9].

Genes involved in downstream effects of the NF-κB and TNF signalling pathways were also

downregulated in this study following sPIF treatment. Chemokines CXCL3 and CX3CL1 [78–

80] and adhesion molecules VCAM1 and ICAM1 [81, 82], have roles in recruitment and adhe-

sion of leukocytes and are induced in endothelial inflammation [83–86]. The present findings

support previous in vivo work in mice, whereby sPIF impaired leucocyte recruitment and

adhesion in a TNF-α induced inflammatory environment [7]. Furthermore, in vivo work has

demonstrated that there is a reduction in leukocyte infiltration into the bovine endometrium

in early pregnancy [59, 87]. Moreover, VCAM1 is downregulated in the preimplantation

period in pregnant compared to non-pregnant mice uteri, although ICAM1 is slightly upregu-

lated [57]. Thus, based on the downstream DEGs related with the NF-κB and TNF pathways,

it was deemed that sPIF has an immune modulatory effect on the bovine endometrium¸ which

supports previous work in cattle [27], horses [88] and humans [5, 49].

The overall immune response to pregnancy is dynamic, whereby the immune tolerant

state towards the embryo is also accompanied by some inflammatory responses [24] as protec-

tion for the dam, such as increased complement activation [19, 22, 89]. We demonstrated sPIF

to upregulate complement component C3 within the bovine endometrium. C3 is integral to

complement activation, is upregulated in the implantation window in cattle [19] and is sug-

gested to be involved in the maternal to foetal crosstalk around maternal recognition of preg-

nancy [10]. Furthermore, LCN2 was upregulated following sPIF treatment. Lipocalin 2 is

upregulated around the conceptus fixation site in the endometrium of pregnant mares, with

expression likely induced by either the conceptus or its secretory products [90] and also has an

innate immune role in the endometrium in response to E. coli [91]. Therefore, the present

study suggests that sPIF aids protection of the embryo through both immune suppression, to

allow the acceptance of the embryo, and also inflammatory responses against invading

pathogens.
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Interferon related genes

During early pregnancy in ruminants, the effects of conceptus derived IFN-τ on the maternal

endometrium are mediated by the expression of the two receptor subunits, IFNAR1 and

IFNAR2, which comprise the type I interferon receptor [12, 92]. Yet in the present study,

IFNAR2 was downregulated following sPIF treatment, which also corresponded with the

downregulation of IRF-1 and STAT5a, transcription factors involved in interferon signalling

[11, 93]. In contrast to the present study, endometrial expression of IRF-1 is upregulated by

the conceptus in early pregnancy [19, 94] and IRF-1 and STAT5a upregulated by IFN-τ stimu-

lation in the ovine endometrium [93, 95]. PIF is only a small part of the cross talk between the

conceptus and endometrium, and therefore other factors are more likely important in the

modulation of interferon related genes compared to PIF. Furthermore, the main effects of PIF

may be mediated slightly before that of IFN- τ, as at present there are no data to demonstrate

the level of secretion of PIF from the elongated filamentous bovine conceptus, compared to

earlier developmental stages. However, it must be noted that although involved in IFN-τ sig-

nalling, both IFNAR2 and IRF-1 were linked to immune networks in the present study

(Table 2 and Fig 4), furthermore, IRF-1 was one of the top 10 most significantly downregulated

DEGs. IRF-1 is also involved in activation of the immune response and apoptosis [96, 97] and

has a role in activating genes such as VCAM-1 [98]. Thus, the downregulation of IRF-1 in the

present study supports the general response of immune related genes and suggests that the

downregulation of VCAM-1 following sPIF treatment could have been controlled by several

pathways, further to those described previously.

Steroid biosynthesis pathway

The steroid biosynthesis pathway was the only upregulated over-represented KEGG path-

way following sPIF treatment, with three genes encoding for enzymes, CYP24A1, DHCR7
and SQLE being upregulated. These findings are in line with previous work which has

shown sPIF to upregulate the expression of genes involved in the cortisol biosynthesis path-

way in non-stimulated bovine adrenocortical cells [99]. Furthermore, Binelli et al. [21] iden-

tified steroid biosynthesis to be an overrepresented pathway in early pregnancy in cattle and

also identified DHCR7 as being upregulated in the pregnant endometrium. Both DHCR7
and SQLE are anabolic enzymes involved in sterol synthesis reactions thus suggesting a

need for endometrial anabolic activities in the embryo-maternal crosstalk [21]. CYP24A1
catalyses the hydroxylation and degradation of calcitriol. Calcitriol has progesterone-like

activity in the early stages of gestation in humans, acting on endometrial receptivity and

implantation [100]. Circulating concentrations of calcitriol are increased during pregnancy

[101] and are suggested to also increase CYP24A1 expression in a negative feedback system

to prevent over activation of the calcitriol system in pregnancy [100]. Thus, in the present

study, sPIF had effects on steroid biosynthesis that would be expected in pregnant

endometrium.

Conclusions

In conclusion, sPIF interacts with the bovine endometrium in a manner that suggests that PIF

plays a role in early bovine pregnancy. There are some similarities between the mechanisms

PIF uses in the bovine endometrium and those defined in the human endometrium, in that

sPIF has clear immune modulatory roles to promote tolerance to the embryo, whilst also main-

taining the ability to fight invading pathogens. However, the gene expression response to sPIF

was much smaller and muted compared to human studies. Further research is now warranted
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to better understand the role and, more importantly, the significance of PIF at this critical

period of bovine pregnancy.
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