‘All in one’ photo-reactor pod containing TiO2 coated glass beads and LEDs for continuous photocatalytic destruction of cyanotoxins in water

Published in:
Environmental Science: Water Research & Technology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2019 Royal Chemistry Society.
This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date: 29. Sep. 2023
Blooms of blue-green algae (cyanobacteria) in water reservoirs frequently produce highly toxic secondary metabolites including microcystins which have resulted in both human and animal fatalities. To tackle this global problem, we present here a viable solution: utilising the photo-catalytic power of TiO₂ immobilised on glass beads that are encased in ‘photo-reactor pods’, equipped with UV LEDs, for the photocatalytic destruction of cyanotoxins. These reactor pods are designed in such a way that they can be used continuously with the aid of a power supply to facilitate the photocatalytic process. This process could be used to address one of the Global Challenges: providing safe drinking water around the globe.

Much of the accessible freshwater has suffered from the effects of industrialisation and population over the last century. Polluting chemicals have degraded the quality of water as industrial discharge and wastewater have allowed chemicals to accumulate. Eutrophication, the enrichment of waterbodies with the nutrients (chiefly nitrate and phosphate), has been observed in many parts of the world because of agricultural run-off, industrial processes and domestic wastewater. Eutrophication is now regarded as one of the significant problems affecting freshwater bodies. A direct correlation has been observed between rising nutrient levels and the occurrence of algal blooms which is responsible for lowering the water quality. Algal blooms cause a number of problems including oxygen depletion, elevated organic carbon load, decrease in biodiversity and limited water transparency.

Blooms of blue-green algae (cyanobacteria) also very frequently produce highly toxic secondary metabolites including microcystins, saxitoxins, anatoxins and cylindrospermopsins which have resulted in both human and animal health issues. Blue-green algal blooms and their toxins are of increasing global concern as they can dominate the microflora of freshwater supplies and it is becoming apparent that climate change is exacerbating the situation. Although these toxins have been detected in drinking water reservoirs in some parts of the world most conventional water treatment systems fail to remove them in the dissolved state and even advanced systems are known to experience breakthrough during times of high dissolved toxin influx. We have extensively explored the application of the photocatalyst TiO₂ for the removal of a range of blue-green algal (cyanobacterial) toxins. This advanced oxidation method has been found to very rapidly remove these compounds (c. 10 min) with no toxic by-products. The toxins are destroyed by high energy OH radicals produced when TiO₂ is excited by UV-light (see Figure 1A).

This effective method of oxidising water contaminants allows the catalyst to be repeatedly activated with OH radicals being continually generated without the addition of any further chemicals. In this communication, we present the design of a photochemical reactor pod with wired LED strips that houses TiO₂ coated glass beads for photo-catalytic destruction of undesirable compounds such as microcystins. The pod can be immersed in toxin containing water and operate continuously, removing these compounds very effectively from water.
We present here a model study on different pod designs where their performances were first assessed with organic dyes or sorbic acid as model substrates. Subsequently, microcystin-LR was used as a representative example of toxins that belongs to the class of microcystins having over 240 analogues. The general structure of one such microcystin (LR) is shown in figure 2A. They are cyclic peptides with seven amino acids including the unique and conserved amino acid, Adda (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid which contains an unconjugated diene. Microcystin-LR contains two carboxylic acid functionalities with one fully deprotonated due to the presence of guanidine unit. Carboxylic acids are known to have high affinity to TiO$_2$ surface via hydrogen bonding facilitating the more effective attack by the generated HO$_2$ radicals (see figure 2B).

Several photoreactor pods, viz P1, P2, P3 and P4, iteratively designed for this work are shown in Figure 3. These reactor pods were wired with UV LED strips on the inner side and provide adequate space for accommodating any type of TiO$_2$ support materials. The supports that are used for depositing TiO$_2$-NPs are glass beads, glass wool and a glass fibre woven tape with some degree of porosity.

Initially, the photocatalytic performance of each pod was assessed by the degradation studies of organic dyes and other related substances (see Scheme 1). Moreover, different supports for TiO$_2$ were also assessed. It is common practice to use organic dyes for this evaluation process5. The degradation of dyes could easily and accurately be monitored by UV-Visible spectrometry due to their relatively high extinction coefficients. It is also established that toxicity of the microcystins is attributed to the outer tail motif bearing the conjugated diene. Therefore, apart from the standard dyes we also selected an organic compound with a diene motif and a carboxylic acid functionality, viz, sorbic acid.

In pod P1, the photocatalytic degradation of methyl orange was carried out utilising TiO$_2$ deposited on glass wool where the reaction was monitored by UV-Visible spectrometry. The reaction profile with time is depicted in Figure 4. The visible band centred at 465, characteristic of methyl orange, decline with time, when the illuminated pod P1 (with TiO$_2$ coated glass wool) was immersed in the aqueous dye solution.

![Scheme 1: Compounds used for the photocatalytic degradation study](image)

Figure 2: (A), Cyclic heptapeptide structure of microcystin-LR with a pendant diene, guanidine side chain and two carboxylic acid groups which have high affinity towards TiO$_2$; (B), established mechanism for photo-generated OH radicals from TiO$_2$ with water and oxygen.

Figure 3: P1 the inner perforated tube contains two LED strips with TiO$_2$ coated glass wool placed in between; P2 rectangular shape pod, made of Perspex, with LED strips attached to inner walls where any TiO$_2$ supported materials can be housed; P3 TiO$_2$ coated glass fibre tape placed between two UV LED strips; P4 a pod made up of fibre glass mesh where wired UV LED strips are attached inside. TiO$_2$ coated glass beads or glass wool may be placed inside.

Figure 4: (A), Degradation of the methyl orange dye is seen, with time, by the demise of the absorption band centred at 465 nm; (B), red and blue curves show the kinetic profile for two repeated cycles using the TiO$_2$ supported glass wool. Ct and Co refer to OD (465 nm) at time=t and time=0, respectively.
The two repeated cycles with the same pod/coated material gave very similar results, as seen from figure 4B, indicating the recyclability of our system. This was further supported by the fact that same pod P1 system when used in another experiment where it was immersed in an aqueous dye solution of phenol red, the degradation occurred efficiently (see ESI-figure S1). Our notion of the ability to use these pods continuously, immersed in a water medium, remains justified. TiO₂ was coated on glass wool using a standard sol-gel solution of titania¹⁰ and then heated to 550 °C to facilitate the activation. This TiO₂ coated glass wool was characterised by SEM and EDX spectroscopy (see Figure 5).

Moreover, no shedding of the photocatalyst from glass wool surface was observed, even after several photocatalytic cycles indicating the robustness of the adhesion of TiO₂ on amorphous glass.¹¹ The pod P2 was assessed similarly using the same batch of TiO₂ coated glass wool. For all three model compounds given in scheme 1, very similar photocatalytic degradation results were obtained, as in the case of pod 1 (see ESI figures S2 and S3 for details). The ‘open nature’ of the design of pod 2 does not warrant the use of other supports like glass beads. Next, we examine the performance of pod 3 where the design and the support for TiO₂ was distinctly different in comparison to P1 and P2. Tightly woven fibre glass tape was utilised as the support for TiO₂. The deposition of TiO₂ on the glass tape was carried out utilising the same protocol as the one used for glass wool and the thermal activation procedure is also the same. The flexibility of the fibre glass tape remained unaffected after the deposition of TiO₂. The characterisation of the glass tape was carried by removing a few strands of fibres and subjecting it to SEM and EDX spectroscopy. The EDX analysis is given in Figure 6 which indicates the presence of a reasonably high loading of titanium on the surface of the fibre glass tape.

The photocatalytic activity of the tape assessed by the degradation efficiency of sorbic acid in an aqueous solution where the photodestruction was monitored by UV spectrometry (see figure 7). The degradation kinetics were followed by monitoring the reduction of the UV-band at 255 nm.

Figure 5: On the left: SEM image of TiO₂ coated glass wool; on the right: EDX analysis of the glass wool indicating high content of deposited photocatalyst.

Figure 6: The EDX analysis of few fibre glass threads taken from the TiO₂ coated glass tape.

Figure 7: Top: collection of UV spectra recorded at various times while irradiating an aqueous sorbic acid solution with the pod 3 carrying a TiO₂ coated glass tape immersed in it. Initial [Sorbic acid] = 3.478x10⁻² M. Bottom: Degradation kinetic of sorbic acid as seen by the reduction of the UV band at 255 nm. Ct and Co refer to t=0 (256 nm) at time=t and time=0, respectively.
It is noteworthy that the set of UV spectra obtained for the destruction of sorbic acid show no well-defined isosbestic points12 suggesting the identifiable products formed in photodissociation process are further decomposed swiftly into unidentified products. Judging from the previous body of work on TiO\textsubscript{2} catalysed photodecomposition of organic substances13, it is plausible to assume the occurrence of full mineralisation of sorbic acid. Mechanistically, an initial attack of the photo-generated HO• radical on the alkene function of sorbic acid can be envisaged. The resulting (multi-)hydroxyl functionalised compounds could be further attacked by the hydroxyl radicals leading to full mineralisation. Some evidence for the initial formation of hydroxylated compounds can be obtained by a 1H NMR spectroscopic analysis of a D\textsubscript{2}O solution of sorbic acid when subjected to TiO\textsubscript{2} (P25) catalysed photolysis. A 1H NMR stack plot is shown in figure 8 where the photolysis was monitored by NMR at different time intervals. The NMR signals belonging to olefinic protons of sorbic acid disappears within 1 hour. The signal at δ 1.7 that belongs to the methyl group in sorbic acid is shifted upfield to δ 1.25 indicating the loss of double bonds. Moreover, the appearance of new peaks around δ 5.6 is also indicative of the presence of -CH-OH functionalities14. Continued irradiation of 4h resulted in almost complete disappearance of all peaks, indicating full mineralisation. Even though, sorbic acid has no direct similarity to the complex structures of microcystins, it carries a diene motif and a carboxylic acid functionality which are common to all microcystins. This NMR study also shed some light into the photo-destruction reaction.

As shown in Figure 9A, a film of TiO\textsubscript{2} distributed on the glass beads’ surface uniformly. The binding between TiO\textsubscript{2} coating and glass beads appears stable, although the film cracked during annealing. The fact, that no shedding of catalyst was observed in the catalytic test illustrates the robustness of the coating film. Ti peaks present in EDX spectrum in Figure 9B confirm the existence of TiO\textsubscript{2}. The elemental quantity counting shows the weight percentage of TiO\textsubscript{2} is about 32% on the glass beads surface.

Even though photodegradation of dyes and sorbic acid occurred in all 4 pods, the designs of P1, P2 and P3 were not suitable to house TiO\textsubscript{2} coated glass beads. Moreover, as far as the supports for TiO\textsubscript{2} was concerned, the fragility of glass wool deemed unsuitable due to safety concerns. The glass beads employed for the purpose of support for TiO\textsubscript{2} were robust and relatively inexpensive. It was observed no cloudiness in the solution indicating a negligible amount of shedding of the catalyst from the coated glass beads. Having taken into account all these factors, we have selected to perform the key experiments with toxins in P4 with TiO\textsubscript{2} coated glass beads.

Finally, we carried out a performance study on the pod 4, containing aforementioned glass beads, by monitoring the photodegradation of the model compounds given in scheme 1. As expected, not only efficient degradation of sorbic acid and

Unlike pods P1, P2 and P3, the pod P4 made from the fibre glass mesh was able to house the TiO\textsubscript{2} coated glass beads with some degree of buoyancy. A similar analysis that was carried out for other pods was performed on the Pod 4. Activity was measured using dyes and sorbic acid degradation. The coated glass beads were fully characterised by SEM and EDX spectroscopy (see figure 9).
others occurred on illumination by the ‘in-house’ LED strips but also robust reusability of the system was demonstrated. The results obtained on photocatalytic degradation of sorbic acid, including reuse/recycling of pod/beads, using pod 4 is summarised in figure 10 (see ESI for similar results on dye degradation with pod 4). Reuse/recycling experiments exemplify the longevity of our photocatalytic degradation system. With all these analyses, we have clearly demonstrated the versatility of the TiO$_2$ supported materials and the inbuilt LED system in comparison to experiments done with suspended TiO$_2$ powder in water with external illumination.15 much higher than the its levels expected to be present in general water bodies. The photocatalytic destruction of microcystin-LR was monitored by HPLC equipped with a photodiode array detector. The kinetic profile of the photo-decomposition is depicted in figure 11. Previously, microcystin-LR was photocatalytically destroyed by employing TiO$_2$ nano-powder (P25)18 that was suspended in an aqueous solution where recycling of the photocatalyst became cumbersome.7 The activity of the supported system compares well to the parent system with an added advantage of being able to reuse/recycle in a straightforward manner.

![Figure 10: (A), a set of UV-spectra obtained for the 1st run of sorbic acid degradation utilising pod 6 with glass beads. Initial [Sorbic acid] = 3.488×10^{-6} M; (B), kinetic profiles of 3 photocatalytic degradation runs carried out with pod 4 with the same coated glass beads. Ct and Co refer to OD (256 nm) at time=t and time=0, respectively.](image)

![Figure 11: The kinetic profile of photocatalytic degradation microcystin-LR (1mg in 200 cm3 of artificial fresh water) performed with pod 4 containing TiO$_2$ coated glass beads. The loading of TiO$_2$ is 250 mg per 1g of coated glass beads. The LED array was operated at V_i = 12 dcV and I_i = 0.09 A (1.1 W). The delay time for dark absorption was 10 min.](image)

Conclusions

In conclusion, we have developed an unprecedented photocatalytic reactor system which can be deployed in water reservoirs to be used continuously facilitating the removal of cyanobacteria and related toxins from drinking water. We envisage the power for the reactor system may be harnessed by attaching them to floating solar panels. It is envisaged that the mixing would be realised by the natural movement of water in reservoirs. This process would be ideal for global regions with long sunshine hours. It has been shown here the availability of several choices of diverse and viable supports for the photocatalyst TiO$_2$ for the construction of pod photoreactor devices. All the supports for TiO$_2$ demonstrated their robustness and longevity in relation to their realistic use in water bodies. Effectively, we have presented a model system based on green chemistry and chemical engineering principles to address one of the key Global Challenges, \textit{i.e.} providing clean and safe water globally.
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Authors wish to thank EPSRC Global Challenges program for providing the funding for this project (Grant number EP/P029280/1). NS wishes to thank ‘Energy Pioneering Research Program (PRP)’ at QUB. JTS and JH wish to acknowledge EPSRC Capital for Great Technologies (Grant EP/LP017008/1 and EP/R02375/1). HQNG thanks Dr. Rachel Whiteside for assisting with SEM measurements.

Notes and references

§ Microcystin-LR reference material used in our experiments was isolated from pure *Microcystis aeruginosa* cultures using preparative HPLC achieving > 98 % purity.

§§