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Model-based Learning Network for 3-D
Localization in mmWave Communications

Jie Yang, Student Member, IEEE, Shi Jin, Senior Member, IEEE, Chao-Kai Wen, Senior Member, IEEE,
Jiajia Guo, Michail Matthaiou, Senior Member, IEEE, and Bo Gao

Abstract—Millimeter-wave (mmWave) cloud radio access net-
works (CRANs) provide new opportunities for accurate coop-
erative localization, in which large bandwidths and antenna
arrays and increased densities of base stations enhance the
delay and angular resolution. This study considers the joint
location and velocity estimation of user equipment (UE) and
scatterers in a three-dimensional mmWave CRAN architecture.
Several existing works have achieved satisfactory results by using
neural networks (NNs) for localization. However, the black box
NN localization method has limited robustness and accuracy
and relies on a prohibitive amount of training data to increase
localization accuracy. Thus, we propose a model-based learning
network for localization to address these problems. In compar-
ison with the black box NN, we combine NNs with geometric
models. Specifically, we first develop an unbiased weighted least
squares (WLS) estimator by utilizing hybrid delay and angular
measurements, which determine the location and velocity of the
UE in only one estimator, and can obtain the location and velocity
of scatterers further. The proposed estimator can achieve the
Cramér-Rao lower bound under small measurement noise and
outperforms other state-of-the-art methods. Second, we establish
a NN-assisted localization method called NN-WLS by replacing
the linear approximations in the proposed WLS localization
model with NNs to learn the higher-order error components,
thereby enhancing the performance of the estimator, especially
in a large noise environment. The solution possesses the powerful
learning ability of the NN and the robustness of the proposed
geometric model. Moreover, the ensemble learning is applied
to improve the localization accuracy further. Comprehensive
simulations show that the proposed NN-WLS is superior to the
benchmark methods in terms of localization accuracy, robustness,
and required time resources.
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I. INTRODUCTION

Future networks should offer unlimited coverage to any
devices anywhere and anytime to stimulate the amalgamation
of localization and wireless communications [2]. Millimeter-
wave (mmWave) communication is a promising technology for
meeting such requirements in future wireless communications.
Localization is a highly desirable feature of mmWave commu-
nications [3], [4]. The user equipment (UE) location can be
used to provide location-based services, such as navigation,
mapping, social networking, augmented reality, and intelligent
transportation systems. Additionally, location-aware communi-
cations can be realized by the obtained location information to
improve communication capacity and network efficiency [5].

MmWave bands offer larger bandwidths than the presently
used sub-6 GHz bands, hence, higher resolution of the time
of arrival (TOA), time difference of arrival (TDOA), and
frequency difference of arrival (FDOA) can be consequently
achieved. In addition, the penetration loss from mmWave
bands is inherently large [6]–[8]. Thus, the difference between
the received power of the line-of-sight (LOS) path and the
non-LOS (NLOS) path is pronounced, thereby simplifying the
elimination of NLOS interference [9]–[11]. To compensate for
severe penetration loss and increased path-loss, large antenna
arrays and highly directional transmission should be combined
to facilitate the acquisition of the angle of arrival (AOA) and
the angle of departure (AOD) [12]. Moreover, cloud radio ac-
cess networks (CRANs) can enhance mmWave communication
by improving the network coverage [13]. CRANs provide a
cost-effective way to achieve network densification, in which
distributed low-complexity remote radio heads (RRHs) are
deployed close to the UE and coordinated by a central unit
(CU) for joint processing. The obtained location informa-
tion can be shared with network nodes. Therefore, mmWave
CRANs can offer accurate cooperative localization in urban
and indoor environments, wherein conventional GPS may
fail [14]–[16]. Channel parameters required in localization
can be measured accurately [17]–[21] in static and mobile
scenarios in the initial access and communication stages owing
to the remarkable delay and angular resolution of mmWave
communication systems without the need to install additional
expensive infrastructure.

Localization has become a popular research topic in recent
years. Different localization techniques have been summarized



2

in [22]. Currently, widespread localization methods apply the
principle in which the channel parameters (e.g., AOA, TOA,
TDOA, and FDOA) are initially extracted from the received
waveform and grouped together as a function of the location
parameters, and then different estimators are used to determine
the UE locations. The classical linear weighted least squares
(WLS) estimators were applied in [23]–[28]. In [23], [24],
several closed-form TOA-based WLS estimators have been
proposed. A few AOA-based methods were developed in
[25] and in the related references. AOA and its combination
with ranging estimates are expected to achieve high location
accuracy. Reference [26] considered the localization problem
of the three-dimensional (3-D) stationary targets in Multiple-
Input Multiple-Output (MIMO) radar systems that utilized hy-
brid TOA/AOA measurements, from which a computationally
efficient closed-form algorithm was developed with the WLS
estimator, to achieve the Cramér-Rao lower bound (CRLB)
under small measurement noise. Comparison shows that less
effort has been devoted to the localization of moving targets.
Reference [27] estimated location and velocity by introducing
two-stage WLS estimators and using the hybrid TDOA/FDOA
measurements. Reference [28] developed a WLS estimator
to estimate the location and velocity of a moving target
with a constant-velocity in a two-dimensional (2-D) scenario.
Nevertheless, the aforementioned studies have overlooked the
localization of scatterers. Recently, [29] advocated that future
communication systems will turn multipath channels “from foe
to friend” by leveraging distinguishable multipath components
that resulted from unparalleled delay and angular resolution in
mmWave systems. Thus, the information from reflected signals
can be exploited in the reconstruction of the 3-D map of the
surrounding environment. In this study, we consider the joint
location and velocity estimation of a moving UE, as well as
scatterers, in the 3-D scenario with mmWave communication
systems by using hybrid TDOA/FDOA/AOA measurements.
Unlike closed-form methods with multistage estimators, the
proposed method determines the location and velocity of the
UE in only one estimator.

All of the aforementioned localization techniques [23]–
[28] are geometric approaches, in which delay and angular
measurements are extracted and from which the location and
velocity of the UE, as well as the scatterers, are triangulated
or trilaterated. A function can be approximated by geometric
techniques given the existence of an underlying transfer func-
tion between the measurements and the locations. In recent
years, artificial intelligence (AI) has received considerable
attention because of its promising performance in solving com-
plicated problems. Researchers have utilized neural networks
(NNs) to learn underlying transfer functions. Meanwhile, AI-
based localization solutions, such as fingerprinting methods
[30], [31], have emerged. A deep learning-based indoor fin-
gerprinting system was presented in [30] to achieve meter-
level localization accuracy. The experiments in [31] showed
the feasibility of using deep learning methods for localization
in actual outdoor environments. AI-based fingerprinting meth-
ods have alleviated modeling issues and can provide better
performance than model-based localization techniques that
use geometric relationships by fitting real-life measurements

[32], [33]. However, extremely large amounts of training data
are required to meet the high requirements of localization
accuracy. Purely data-based and model-based, and hybrid data
and model-based wireless network designs are discussed in
[34]. To overcome the disadvantages of purely data- or model-
based localization methods, we conceive hybrid data- and
model-based localization methods by building and enhancing
our localization estimator on the geometric model with NNs.
At present, the literature on localization by combining NNs
with geometric models, which is the focus of the current work,
is scarce.

This study addresses the 3-D localization of moving UE
and scatterers in mmWave communication systems. To our
best knowledge, the present study is the first to combine the
WLS estimator and NNs in 3-D localization problems. The
contributions of this study are presented as follows:

• Localization Model: First, we establish a joint loca-
tion and velocity estimation model by utilizing hybrid
TDOA/FDOA/AOA measurements. Then, we develop
an efficient closed-form WLS estimator. Unlike other
closed-form WLS-based methods [27] with multistage
estimators, the proposed method can determine the UEs
location and velocity in only one stage. Second, we
exploit the single-bounce NLOS paths and the estimated
UE location and velocity to build the scatterer localization
model. Then, we deduce the closed-form WLS estimator
to determine the scatterers’ location and velocity. The
proposed estimator is proven asymptotically unbiased and
able to attain CRLB under small measurement noise
through simulations.

• Learning Network: Although the proposed WLS estima-
tor performs well, its performance starts deteriorating as
the noise level increases. Therefore, we propose a NN-
assisted WLS method called NN-WLS to improve the
localization accuracy further. The NN-WLS benefits from
the powerful learning ability of the NN and the robustness
of the geometric model. In addition, the proposed NN-
WLS is fast because it can eliminate iterations in the pro-
posed WLS algorithm. Furthermore, we embed ensemble
learning into the proposed NN-WLS method to enhance
localization accuracy. Simulation results show that NN-
WLS outperforms the WLS estimator significantly when
the measurement noise has an intrinsic relationship. In
addition, the proposed NN-WLS is superior in terms of
localization accuracy and robustness based on a compre-
hensive comparison with benchmark methods.

Notations—Uppercase boldface A and lowercase boldface
a denote matrices and vectors, respectively. For any matrix A,
the superscripts A−1 and AT stand for inverse and transpose,
respectively. For any vector a, the 2-norm is denoted by ‖a‖.
diag{·} denotes a diagonal matrix with entries in {·}, and
blkdiag(A1, . . . ,Ak) denotes a block-diagonal matrix con-
structed by A1, . . . ,Ak. E{·} denotes statistical expectation,
whilst | · | denotes the module of a complex value or the
cardinality of a set. The notation a◦ is the true value of the
estimated parameter a.
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TABLE I
NOTATIONS OF IMPORTANT VARIABLES.

Notation Definition Notation Definition
bn location of the n-th RRH Mn set of measurements of the n-th RRH
u◦ location of the UE Ma set of selected LOS measurements
u̇◦ velocity of the UE Mr,n set of remaining measurements of the n-th RRH
x◦ x◦ = [u◦T , u̇◦T ]T φ◦n azimuth AOA-related parameter

6-dimensional state vector of the UE for LOS path of the n-th RRH
s◦n,l location of the l-th scatterer θ◦n elevation AOA-related parameter

between the n-th RRH and the UE for LOS path of the n-th RRH
ṡ◦n,l velocity of the l-th scatterer φs◦n,l azimuth AOA-related parameter

between the n-th RRH and the UE for l-th NLOS path of the n-th RRH
xs◦
n,l xs◦

n,l = [s◦Tn,l, ṡ
◦T
n,l]

T , 6-dimensional state vector θs◦n,l elevation AOA-related parameter
of the l-th scatterer between the n-th RRH and the UE for l-th NLOS path of the n-th RRH

α◦
n,l complex gain for the l-th path of the n-th RRH m vector of noisy measurements in Ma

τ◦n,l delay for the l-th path of the n-th RRH m◦ true value of measurements corresponding to m

φ◦n,l azimuth AOA for the l-th path of the n-th RRH ∆m Gaussian noise vector corresponding to m

with zero mean and covariance matrix Q
θ◦n,l elevation AOA for the l-th path of the n-th RRH ms

n,l vector of noisy measurements in Mr,n

ν◦n,l Doppler shift for the l-th path of the n-th RRH ms◦
n,l true value of measurements corresponding to ms

n,l

r◦n1 TDOA-related parameter ∆ms
n,l Gaussian noise vector corresponding to ms

n,l

for LOS path of the n-th RRH with zero mean and covariance matrix Qs
n,l

rs◦n1,l TDOA-related parameter N number of RRHs
for l-th NLOS path of the n-th RRH

ṙ◦n1 FDOA-related parameter Na number of selected LOS paths
for LOS path of the n-th RRH

ṙs◦n1 FDOA-related parameter
for l-th NLOS path of the n-th RRH

II. SYSTEM MODEL

We study the moving UE and scatterer localization problems
in a mmWave CRAN with N RRHs [13] (Fig. 1). Each RRH is
equipped with a large antenna array with K antenna elements
and connected to the CU via an individual fronthaul link. We
assume that the clocks of different RRHs in the CRAN are
synchronized. For ease of expression, we consider the system
model with a single UE. The system model can be easily
extended to solve the case with multiple UE as long as the pilot
signals for different UE are orthogonal in time. The important
variables are summarized in Table I.

A. System Geometry

We consider a 3-D space R3 = {[x, y, z]T : x, y, z ∈ R}
with N known RRHs located at bn = [xbn, y

b
n, z

b
n]T , for

n = 1, 2, . . . , N . The geometry between the RRHs and the
UE is shown in Fig. 1. We assume that the unknown location
and velocity of the UE are represented by u◦ = [x◦, y◦, z◦]T

and u̇◦ = [ẋ◦, ẏ◦, ż◦]T , respectively. Note that u◦ is a function
of time with ∂u◦/∂t = u̇◦. We only consider the LOS and the
single-bounce NLOS paths because of the sparsity and high
path loss of the mmWave channel [9], [10]. The unknown lo-
cation and velocity of the l-th scatterer between the n-th RRH
and the UE are represented by s◦n,l = [xs◦n,l, y

s◦
n,l, z

s◦
n,l]

T and
ṡ◦n,l = [ẋs◦n,l, ẏ

s◦
n,l, ż

s◦
n,l]

T , respectively, with l = 1, 2, . . . , Ln,
where Ln is the number of scatterers between the n-th
RRH and the UE. Here, s◦n,l is a function of time with
∂s◦n,l/∂t = ṡ◦n,l. We aim to determine u◦, u̇◦, s◦n,l, and ṡ◦n,l,
where l = 1, 2, . . . , Ln and n = 1, 2, . . . , N by the signals
received at the RRHs.

B. Transmission Model

The UE sends a signal
√
pss(t), in which ps is the trans-

mitted energy, and E{|s(t)|2} = 1. Given that the mmWave
channel is sparse, we assume that Ln + 1 ≤ Q, where Q is
the number of RF chains for each RRH. The received signal
rn(t) ∈ CQ×1 at RRH n is given by [36]

rn(t) = A

(
Ln∑
l=0

α◦n,l
√
pss(t− τ◦n,l)a(φ◦n,l, θ

◦
n,l)e

j2πν◦
n,lt

)
+n(t),

(1)
where α◦n,l, τ

◦
n,l, φ

◦
n,l, θ

◦
n,l, and ν◦n,l denote the complex

gain, delay, azimuth AOA, elevation AOA, and Doppler shift
for the l-th path, respectively; a(·) is the array response
vector; A ∈ CQ×K is the combining matrix in the mmWave
hybrid architecture; and n(t) ∈ CQ×1 is the zero-mean white
Gaussian noise with a known power spectrum density. The
channel parameters (φ◦n,l, θ

◦
n,l, τ

◦
n,l, ν

◦
n,l), for l = 0, 1, . . . , Ln

and n = 1, 2, . . . , N can be extracted from (1) [17]–[19]. Here,
(l = 0) represents the LOS path, and (l > 0) represents the
NLOS path. Localization can be embedded in either the initial
access stage or data transmission stage without additional
overhead.

C. Relationship Between Channel and Location Parameters

In this subsection, we map the channel parameters to the
location parameters.

• TDOA: For the LOS path, the distance between the UE
and the RRH n is

r◦n = vc(τ
◦
n,0 − ω) = ||u◦ − bn||, (2)
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n l

n l
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x y
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Fig. 1. Illustration of the mmWave CRAN system model, in which RRHs are connected with the CU.

where vc is the signal propagation speed, and ω is the
unknown clock bias between CRAN and UE. Without
loss of generality, we define the TOA of LOS path
received by the RRH 1 τ◦1,0 as the reference time. Then,
the TDOA between the LOS path of the RRH n and the
reference time is τ◦n,0− τ◦1,0. Thus, we define the TDOA-
related parameter as

r◦n1 = vc(τ
◦
n,0 − τ◦1,0) = r◦n − r◦1 , (3)

where the unknown ω can be eliminated.
For the NLOS path, we have

rs◦n,l = vc(τ
s
n,l − ω) = ||u◦ − s◦n,l||+ ||s◦n,l − bn||. (4)

Then, the TDOA between the l-th NLOS path of the n-th
RRH and the reference time is τ◦n,l− τ◦1,0, and we define
the TDOA-related parameter as

rs◦n1,l = vc(τ
◦
n,l − τ◦1,0) = rs◦n,l − r◦1 . (5)

Therefore, r◦n1 and rs◦n1,l are the TDOA-related parame-
ters, which are used in our proposed algorithms and are
derived from the TDOA by multiplying with vc.

• FDOA: For the LOS path, we define the time derivative
of r◦n in (2) as ṙ◦n, and we have

ṙ◦n =
∂r◦n
∂t

=
u̇◦Tu◦ + u◦T u̇◦ − 2u̇◦Tbn

2
√

(u◦ − bn)T (u◦ − bn)

=
u̇◦T (u◦ − bn)

||u◦ − bn||
, (6)

which is the relative velocity between UE and RRH n.
Without loss of generality, we define the FOA or Doppler
shift of LOS path received by the RRH 1 ν◦1,0 as the
reference frequency. Then, the FDOA between the LOS
path of the RRH n and the reference frequency is ν◦n,0−

ν◦1,0. Thus, given the signal wavelength λc, we obtain the
FDOA-related parameter as

ṙ◦n1 = λc(ν
◦
n,0 − ν◦1,0) = ṙ◦n − ṙ◦1 . (7)

For the NLOS path, we define the time derivative of rs◦n,l
in (4) as ṙs◦n,l, and we have

ṙs◦n,l =
(u̇◦ − ṡ◦n,l)

T (u◦ − s◦n,l)

||u◦ − s◦n,l||
+

ṡ◦Tn,l(s
◦
n,l − bn)

||s◦n,l − bn||
. (8)

Then, the FDOA between the l-th NLOS path of the n-th
RRH and the reference frequency is ν◦n,l − ν◦1,0, and we
obtain the FDOA-related parameter as

ṙs◦n1,l = λc(ν
◦
n,l − ν◦1,0) = ṙs◦n,l − ṙ◦1 . (9)

Thus, ṙ◦n1 and ṙs◦n1,l are the FDOA-related parameters,
which are used in our proposed algorithms, and they are
derived from the FDOA by multiplying with λc.

• AOA: For the LOS path, we get

φ◦n = φ◦n,0 = arctan
y◦−ybn
x◦−xb

n
,

θ◦n = θ◦n,0 = arcsin
z◦−zbn
||u◦−bn|| .

(10)

Then, for the NLOS path, we have

φs◦n,l = φ◦n,l = arctan
ys◦n,l−y

b
n

xs◦
n,l−xb

n
,

θs◦n,l = θ◦n,l = arcsin
zs◦n,l−z

b
n

||s◦n,l−bn|| .
(11)

Thus, (φ◦n, θ
◦
n) and (φs◦n,l, θ

s◦
n,l) are the AOA-related pa-

rameters.

Summarizing, the relationships between TDOA/ FDOA/
AOA-related channel and location parameters are given in
(3), (5), (7), (9), (10), and (11). In the following sections,
we focus on developing effective algorithms to estimate the
unknown location and velocity of the UE and scatterers as
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accurate as possible by utilizing hybrid TDOA/FDOA/AOA
measurements. This task is not trivial given that the relations
are nonlinear and nonconvex functions of u◦, u̇◦, s◦n,l, and
ṡ◦n,l.

III. PROBLEM FORMULATION

A. Measurement Selection

Each RRH obtains a set of measurements, Mn =
{(φn,m, θn,m, τn,m, νn,m)|m = 1, 2, . . . ,Mn} for n =
1, 2, . . . , N , where Mn is the estimated number of paths,
which is Ln + 1 for a perfect value. In this subsection, we
propose a method to select measurements of Na LOS paths
from all obtained

∑N
n=1Mn paths.

First, select the m∗n-th path in Mn, which has the smallest
delay (probably the LOS path) among Mn paths, for n =
1, 2, . . . , N . Second, we define the rough estimate of u◦ by
the RRH n to further eliminate NLOS paths in the chosen N
paths as follows

ûn = bn + vcτn,m∗
n
[cos θn,m∗

n
cosφn,m∗

n
,

cos θn,m∗
n

sinφn,m∗
n
, sin θn,m∗

n
]T , (12)

for n = 1, 2, . . . , N . Points in set {ûn|n = 1, 2, . . . , N} are
close and dispersed to one another if they are generated by
LOS and NLOS measurements, respectively. Subsequently,
we classify ûn for n = 1, 2, . . . , N into two classes by K-
means algorithm and obtain two class centers, namely, cLOS

and cNLOS. As the energy of LOS paths is much greater
than that of NLOS paths in mmWave frequencies, we can
further eliminate the NLOS paths in cLOS. A threshold is set
according to the energy gap between the LOS and NLOS paths
to determine the value of Na. Then, the set of selected LOS
measurements is Ma. The set of remaining measurements is
Mr,n, where Mr,n ∩Ma = ∅ for n = 1, 2, . . . , N .

We aim to estimate the unknown u◦ and u̇◦ from the
measurements in Ma (LOS measurements) and the unknown
s◦n,l and ṡ◦n,l from the measurements in Mr,n (nearly all NLOS
measurements) for l = 1, 2, . . . , |Mr,n| and n = 1, 2, . . . , N
as accurately as possible.

B. Possible Solution

After the measurement selection process, the corresponding
measurements in sets Ma and Mr,n can be fed into black box
NNs and trained end-to-end using real datasets to learn x◦ =
[u◦T , u̇◦T ]T and xs◦n,l = [s◦Tn,l, ṡ

◦T
n,l]

T directly, respectively (Fig.
2(a)). However, the localization accuracy of this method is
limited, and a prohibitively large amount of training data is
required to improve the localization accuracy. To skip this
step, our strategy is based on the argument that the model is
mathematically well developed with fewer uncertainties [37].
However, the model generally relies on some approximations
and ideal assumptions, which worsen the performance when
the measurement noise increases. Motivated by the powerful
learning ability of the NN, its use to replace the approximate
operations in the model can further improve the performance.
Therefore, we combine NNs with geometric models in this
study. Specifically, we first develop an unbiased model-based

WLS localization estimator (Section IV). Then, we establish
a NN-assisted WLS localization method (Section V) by in-
troducing NNs into the developed WLS model (or estimator)
to learn the higher-order error components, thereby improving
the performance of the estimator, especially in a large noisy
environment.

IV. MODEL-BASED WLS LOCALIZATION

In this section, we devise a closed-form localization estima-
tor that approximates the maximum likelihood (ML) estimator
under small noise conditions. We improve the performance of
the traditional multi-stage WLS estimator [27] by exploiting
angular information and establishing a one-stage WLS es-
timator. We further extend the traditional WLS localization
estimator that can only be used for UE localization to the
scatterers’ localization.

Measurements in Ma are used to estimate the location and
velocity of the UE. According to (3), (7), and (10), we denote a
noise-free vector of hybrid TDOA/FDOA/AOA parameters as
m◦ = [r◦21, ṙ

◦
21, . . . , r

◦
Na1

, ṙ◦Na1
, φ◦1, θ

◦
1 , . . . , φ

◦
Na
, θ◦Na

]T .
Then, we model the hybrid measurements by the
additive noise model as m = m◦ + ∆m, where m =
[r21, ṙ21,. . ., rNa1, ṙNa1, φ1, θ1,. . ., φNa , θNa ]T, and ∆m =
[∆r21,∆ṙ21, . . . ,∆rNa1,∆ṙNa1,∆φ1,∆θ1, . . . ,∆φNa

,∆θNa
]T

is a Gaussian noise vector with zero mean and
covariance matrix Q. Measurements in Mr,n are used
to estimate the location and velocity of scatterers for
n = 1, 2, . . . , N . According to (5), (9), and (11), we
obtain the l-th noise-free vector of hybrid parameters as
ms◦
n,l = [rs◦n1,l, ṙ

s◦
n1,l, φ

s◦
n,l, θ

s◦
n,l]

T , and hybrid measurements
ms
n,l = ms◦

n,l+∆ms
n,l, where ms

n,l = [rsn1,l, ṙ
s
n1,l, φ

s
n,l, θ

s
n,l]

T ,
and ∆ms

n,l = [∆rsn1,l,∆ṙ
s
n1,l,∆φ

s
n,l,∆θ

s
n,l]

T with zero mean
and covariance matrix Qs

n,l, for l = 1, 2, . . . , |Mr,n|.

A. UE Localization

In this subsection, we present a closed-form method for
estimating the UE location and velocity. We first establish a
set of pseudo-linear TDOA and FDOA equations by nonlinear
transformation and AOA exploitation. Subsequently, AOA
equations are derived and combined with TDOA and FDOA
equations to obtain an accurate estimation.

First, we derive 2(Na−1) pseudo-linear TDOA and FDOA
equations. We rewrite (3) as r◦n1 + r◦1 = r◦n and square both
sides to yield (r◦n1)2 + 2r◦n1r

◦
1 = (r◦n)2 − (r◦1)2. According to

(2), we obtain

(r◦n1)2 + 2r◦n1r
◦
1 = bTnbn − bT1 b1 − 2(bn − b1)Tu◦. (13)

Equation (13) is pseudo-linear formula with respect to u◦ and
r◦1 . Then, by taking the time derivative of (13), we yield

ṙ◦n1r
◦
n1 + ṙ◦n1r

◦
1 + r◦n1ṙ

◦
1 = (b1 − bn)T u̇◦. (14)

Equation (14) is pseudo-linear formula with respect to u̇◦,
r◦1 , and ṙ◦1 . However, r◦1 and ṙ◦1 cannot be obtained directly
from the channel measurements TDOA and FDOA. A well-
known solution for localization that uses TDOAs and FDOAs
is to find u◦ and u̇◦ by using multi-stage WLS estimators
[27]. The conventional method is based on the estimation of
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Fig. 2. Block diagrams of (a) Black Box NN; (b) WLS; (c) NN-WLS, where x = [uT , u̇T ]T and xs
n,l = [sTn,l, ṡ

T
n,l]

T denote the estimated location and
velocity of UE and scatterer, respectively.

the redundant parameters, namely, r◦1 and ṙ◦1 , together with
the UE location and velocity. In the present study, we apply
a different approach, that is, we use AOA measurements to
eliminate the redundant parameters to estimate u◦ and u̇◦ in
only one stage.

To eliminate r◦1 and ṙ◦1 in (13) and (14), we define
a◦1 = [cos θ◦1 cosφ◦1, cos θ◦1 sinφ◦1, sin θ

◦
1 ]T , which is a unit-

norm angular vector that possesses the properties: a◦T1 a◦1 = 1
and ȧ◦T1 a◦1 = a◦T1 ȧ◦1 = 0. Multiplying both sides of (13) by
a◦T1 a◦1 and utilizing the geometric relationship u◦−b1 = r◦1a

◦
1

yield

(r◦n1)2 − 2r◦n1a
◦T
1 b1 − bTnbn + bT1 b1

= 2[(b1 − bn)T − r◦n1a◦T1 ]u◦. (15)

Multiplying both sides of (14) by a◦T1 a◦1 and utilizing the
geometric relationship u̇◦ = ṙ◦1a

◦
1 + r◦1 ȧ

◦
1 yield

ṙ◦n1r
◦
n1−ṙ◦n1a◦T1 b1 = −ṙ◦n1a◦T1 u◦+[(b1−bn)T−r◦n1a◦T1 ]u̇◦.

(16)
By collecting (15) and (16), for n = 2, . . . , Na, 2(Na − 1)
pseudo-linear TDOA and FDOA equations are obtained. Then,
we derive 2Na AOA equations for n = 1, 2, . . . , Na according
to (10), which is given by

c◦Tn bn = c◦Tn u◦, d◦Tn bn = d◦Tn u◦, (17)

where c◦n = [− sinφ◦n, cosφ◦n, 0]T and d◦n =
[− sin θ◦n cosφ◦n,− sin θ◦n sinφ◦n, cos θ◦n]T . Collecting (15),
(16) for n = 2, . . . , Na and (17) for n = 1, 2, . . . , Na yields
the following matrix equation,

h = Gx◦, (18)

where x◦ = [u◦T , u̇◦T ]T is an unknown six-dimensional

vector of location and velocity of the UE, and

h = [qT2 , . . . ,q
T
Na
,hT1 , . . . ,h

T
Na

]T ,

G = [PT2 , . . . ,P
T
Na
,GT

1 , . . . ,G
T
Na

]T ,
(19)

qn=

(
(r◦n1)2−2r◦n1a

◦T
1 b1−bTnbn+bT1 b1

ṙ◦n1r
◦
n1 − ṙ◦n1a◦T1 b1

)
,

hn=

(
c◦Tn bn
d◦Tn bn

)
,

(20)

Pn=

(
2[(b1−bn)T−r◦n1a◦T1 ] 0T

−ṙ◦n1a◦T1 (b1−bn)T−r◦n1a◦T1

)
,

Gn=

(
c◦Tn 0T

d◦Tn 0T

)
,

(21)

where 0 is a 3 × 1 zero vector. Equation (18) is the noise-
free matrix representation of the joint location and velocity
estimation model.

The noise-free parameters in vector h and matrix G in
(18) are not available. Let the noisy measurements replace
the noise-free parameters in h and G (i.e., let ri1 =r◦i1+∆ri1,
ṙi1 = ṙ◦i1 + ∆ṙi1, φj = φ◦j + ∆φj , and θj = θ◦j + ∆θj replace
r◦i1, ṙ◦i1, φ◦j , and θ◦j , for i = 2, . . . , Na and j = 1, . . . , Na),
we define the error vector

e = h̃− G̃x◦, (22)

where h̃ and G̃ are the noisy counterparts. The WLS solution
[38] of x◦ can be obtained as

x = (G̃TWG̃)−1G̃TWh̃, (23)

where the weighting matrix W = (E{eeT })−1. In view of
the nonlinearity of e, obtaining the weighting matrix W is
difficult in general. By ignoring the second- and higher-order
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noise terms, we approximate e with its linear terms as

e ≈ B∆m, (24)

where

B =

[
B1 B2

O B3

]
,

B1 = blkdiag
([

2r◦2 0
ṙ◦2 r◦2

]
, . . . ,

[
2r◦Na

0
ṙ◦Na

r◦Na

])
,

B2 =
[
B21 O

]
, (25)

B21 =
[
0 0; a2 b2; . . . ; 0 0; aNa

bNa

]
,

B3 = diag
(
r◦1 cos θ◦1 , r

◦
1 , . . . , r

◦
Na

cos θ◦Na
, r◦Na

)
,

in which the “;” operator separates the rows in a matrix;
an = r◦1r

◦
n1φ̇
◦
1 cos2 θ◦1 and bn = r◦1r

◦
n1θ̇
◦
1 for n = 2, . . . , Na;

φ̇◦1 = c◦T1 u̇◦/(r◦1 cos θ◦1) and θ̇◦1 = u̇◦Td◦1/r
◦
1 are the time

derivatives of (10) with n = 1. The detailed derivations of
(24) are listed in Appendix A. As we approximate e up to
its linear noise term B∆m, it follows from the distribution of
∆m that e is a zero-mean Gaussian vector with covariance
matrix BQBT . Therefore, the weighting matrix can be easily
calculated as

W =
(
BQBT

)−1
, (26)

where the weighting matrix W is dependent on the unknown
location u◦ and velocity u̇◦ via the matrix B. Hence, we
initialize W = Q−1 to provide the initial location and velocity
estimates. Updating this initial solution in B can construct a
more accurate weighting matrix by (26) to derive the final
solutions of u◦ and u̇◦.

B. Scatterer Localization
In this subsection, we present a closed-form method for

estimating the scatterers’ location and velocity. We take the
l-th scatterer between the n-th RRH and the UE for example,
where 1 6 l 6 |Mr,n|. First, let d◦1,n,l = ||s◦n,l−bn||, d◦2,n,l =
||u◦ − s◦n,l||, and we have rs◦n,l = d◦1,n,l + d◦2,n,l. By rewriting
(5) as rs◦n1,l + r◦1 − d◦1,n,l = d◦2,n,l, squaring both sides, and
making some simplifications, we obtain

(rs◦n1,l + r◦1)2 − 2(rs◦n1,l + r◦1)d◦1,n,l

= u◦Tu◦ − 2u◦T s◦n,l + 2bTns
◦
n,l − bTnbn. (27)

Then, by taking the time derivative of (27), we have

(rs◦n1,l+r
◦
1)(ṙs◦n1,l+ṙ

◦
1)−(ṙs◦n1,l+ṙ

◦
1)d◦1,n,l−(rs◦n1,l+r

◦
1)ḋ◦1,n,l

= u̇◦Tu◦ − u̇◦T s◦n,l − u◦T ṡ◦n,l + bTn ṡ
◦
n,l, (28)

where ḋ◦1,n,l is the time derivation of d◦1,n,l. By utilizing the
AOA parameters, together with estimated u◦ and u̇◦ in Section
IV-A, we can eliminate the redundant parameters (d◦1,n,l and
ḋ◦1,n,l) in (27) and (28) to estimate s◦n,l and ṡ◦n,l in one stage.
r◦1 and ṙ◦1 are obtained by estimated u◦ and u̇◦, thus, rs◦n,l =
rs◦n1,l+r

◦
1 and ṙs◦n,l= ṙs◦n1,l+ ṙ

◦
1 are obtained. By defining as◦n,l=

[cos θs◦n,l cosφs◦n,l, cos θs◦n,l sinφ
s◦
n,l, sin θ

s◦
n,l]

T, eliminating d◦1,n,l
and ḋ◦1,n,l in (27) and (28), and combining AOA equations,
we obtain the following matrix representation,

hsn,l = Gs
n,lx

s◦
n,l, (29)

where

hsn,l=


(rs◦n,l)

2+2rs◦n,la
s◦
n,l
Tbn−u◦Tu◦+bTnbn

rs◦n,lṙ
s◦
n,l + ṙs◦n,la

s◦
n,l
Tbn − u̇◦Tu◦

cs◦n,l
Tbn

ds◦n,l
Tbn

,

Gs
n,l=


2(bn−u◦+rs◦n,las◦n,l)T 0T

(ṙs◦n,la
s◦
n,l − u̇◦)T (rs◦n,la

s◦
n,l+bn−u◦)T

cs◦n,l
T 0T

ds◦n,l
T 0T

,
cs◦n,l = [− sinφs◦n,l, cosφs◦n,l, 0]T , ds◦n,l =

[− sin θs◦n,l cosφs◦n,l,− sin θs◦n,l sinφ
s◦
n,l, cos θs◦n,l]

T , and
xs◦n,l = [s◦Tn,l, ṡ

◦T
n,l]

T . However, four measurements are
not enough for six unknowns. We assume that the moving
scatterers are vehicles that move along the same road as
the UE and we can regard the road as straight within a
short distance. Thus, the direction of the scatterer velocity
is aligned with the UE within a short distance. Let a unit
vector nv = u̇◦/‖u̇◦‖ denote the direction of the UE velocity.
When u̇◦ is estimated in Section IV-A, nv is obtained. We
have ṡ◦n,l = ṡ◦n,lnv , where ṡ◦n,l represents the magnitude of
velocity. With a transformation matrix,

T =

(
I3×3 0
O3×3 nv

)
, (30)

we obtain
hsn,l = Gs

n,lTx̃s◦n,l, (31)

where x̃s◦n,l = [s◦Tn,l, ṡ
◦
n,l]

T is an unknown four-
dimensional vector of location and velocity magnitude
of the scatterer. 1 Replacing the noise-free parameters
{rs◦n1,l, ṙs◦n1,l, φs◦n,l, θs◦n,l,u◦, u̇◦} in (31) by the noisy
measurements {rsn1,l, ṙsn1,l, φsn,l, θsn,l} and estimated {u, u̇}
results in the error vector

esn,l = h̃sn,l − G̃s
n,lT̃x̃s◦n,l. (32)

By approximating esn,l up to the linear noise term, we have
esn,l ≈ Bs

n,l∆ms
n,l, where

Bs
n,l =

2d◦2,n,l 0 0 0

ḋ◦2,n,l d◦2,n,l −rs◦n,ld◦1,n,lφ̇s◦n,l cos2 φs◦n,l −rs◦n,ld◦1,n,lθ̇s◦n,l
0 0 d◦n1 cos θs◦n 0
0 0 0 d◦n1

 ,

(33)

and φ̇s◦n,l = cs◦Tn,l ṡ
◦
n,l/(d

◦
1,n,l cos θs◦n,l), θ̇s◦n,l = ṡ◦Tn,ld

◦
1/d
◦
1,n,l.

The derivations of (33) are similar to those in Appendix A,
and we omit these details because of lack of space in this

1A scatterer can be in the opposite direction of a UE, because ṡ◦n,l can be
negative. Moreover, we can judge whether the assumption that the scatterer
is on the same road as the UE is met by comparing the estimated scatterer
location with a rough offline map. If the assumption is satisfied, then we will
believe the corresponding velocity estimate.
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paper. Thus, the WLS solution of x̃s◦n,l is given by

x̃sn,l =
(

(G̃s
n,lT̃)TWs

n,lG̃
s
n,lT̃

)−1
(G̃s

n,lT̃)TWs
n,lh̃

s
n,l,

(34)

where Ws
n,l =

(
Bs
n,lQ

s
n,lB

sT
n,l

)−1
. The weighting matrix

Ws
n,l is dependent on s◦n,l and ṡ◦n,l through Bs

n,l. At the
beginning, we can use Ws

n,l = (Qs
n,l)
−1 in (34) to produce a

solution from which to generate a better Ws
n,l to yield a more

accurate solution.

C. Discussion

The proposed model-based localization method is summa-
rized in Algorithm 1 and Fig. 2(b). Repeating the solution
computation one to two times in Algorithm 1 (b) and (c) is
sufficient to yield an accurate solution that reaches the CRLB
for small Gaussian noise.

Remark 1. Ignoring the second- and higher-order noise
terms, we yield E{x} ≈ x◦ and E{x̃sn,l} ≈ x̃s◦n,l. Thus, the pre-
sented estimator is asymptotically unbiased. The covariance
matrices are given by cov(x) ≈

(
(B−1G)TQ−1B−1G

)−1
and cov(x̃sn,l)≈

(
(Bs

n,l
−1Gs

n,lT)TQs
n,l
−1Bs

n,l
−1Gs

n,lT
)−1

,
which approach to their corresponding CRLB under small
Gaussian noise levels. Refer to Appendix B.

Remark 2. The weighting matrix in WLS provides the relative
importance of the components of an error vector to be min-
imized [38]. In the proposed method, the derived weighting
matrices ignore the second- and higher-order error terms,
which are non-negligible when the noise is large. To increase
the robustness of the algorithm, the weighting matrices should
include the second- and higher-order error components. An
additional refinement mechanism is proposed in the following
section to learn higher-order noise terms in a large noise
environment by embedding NNs.

V. NN-ASSISTED WLS LOCALIZATION

The model-based WLS estimator proposed in Section IV is
proven asymptotically unbiased and effective in achieving the
CRLB under small noise conditions. The general assumption
is that the measurement noise follows a Gaussian distribution.
However, in reality, the measurement errors are not completely
random. Moreover, an underlying relationship exists between
them. Thus, by utilizing the powerful learning ability of NNs,
this underlying relationship can be learned to further improve
the localization performance of the proposed WLS estimator,
especially at high noise levels.

In this section, we design a NN-assisted WLS (coined
as NN-WLS) localization method that embeds NNs into the
proposed WLS estimators in (23) and (34), thereby improving
the localization performance. Different from treating the NN
as a black box (Black Box NN) that directly learns location
and velocity, the NNs in our approach are used to learn the
residual vectors e in (22) and esn,l in (32), respectively. Then,
the estimated ê and êsn,l are used to construct the weighting
matrices W and Ws

n,l in (23) and (34) and then estimate
x◦ and x̃s◦n,l, respectively (Fig. 2(c)). The proposed NN-WLS

Algorithm 1 : Pseudocode of the Proposed Model-based
Localization Method
(a) Measurement Selection (Separate LOS and NLOS
Measurements):
Require: Mn for n = 1, 2, . . . , N .
Ensure: Ma and Mr,n for n = 1, 2, . . . , N .

1: Choose the m∗n-th path in Mn which has the smallest
delay among Mn paths, for n = 1, 2, . . . , N .

2: Calculate ûn for n = 1, 2, . . . , N , according to (12).
Classify ûn for n = 1, 2, . . . , N into two classes by K-
means algorithm, and obtain two class centers cLOS and
cNLOS.

3: Calculate distance dn = ||cLOS−ûn||, and sort dn for n =
1, 2, . . . , N in ascending order. Choose measurements of
Na paths corresponding to the first Na smallest distances,
and the set of selected measurements is Ma. The set of
remaining measurements is Mr,n, for n = 1, 2, . . . , N .

(b) UE Localization (Use LOS Measurements):
Require: Ma.
Ensure: x = [uT , u̇T ]T .

1: Find x from (23) with W = Q−1.
2: repeat
3: Calculate the matrix B in (25) by the obtained x.
4: Update the weighting matrix W in (26) by the ob-

tained B.
5: Find x from (23) with new W.
6: until convergence

(c) Scatterer Localization (Use NLOS Measurements):
Require: u, u̇, and Mr,n, for n = 1, 2, . . . , N .
Ensure: x̃sn,l = [sTn,l, ṡn,l]

T , for l = 1, 2, . . . , |Mr,n| and n =
1, 2, . . . , N .

1: for n = 1 to N do
2: for l = 1 to |Mr,n| do
3: Find x̃sn,l from (34) with Ws

n,l = (Qs
n,l)
−1.

4: repeat
5: Calculate the matrix Bs

n,l in (33) by the ob-
tained x̃sn,l.

6: Update the weighting matrix Ws
n,l by the

obtained Bs
n,l.

7: Find x̃sn,l from (34) with new Ws
n,l.

8: until convergence
9: end

10: end

method can derive more accurate results than the model-based
WLS estimator and the Black Box NN method by learning the
residual vectors. We also apply ensemble learning to improve
the performance of the proposed NN-WLS method further.

A. NN-WLS

As shown in Fig. 2(c), the NN-WLS method is a revised
version of the WLS estimator derived by introducing learnable
vectors e and esn,l. We provide a general introduction here
by taking e as an example. According to [38], the weighting
matrix is given by W = (E{eeT })−1. In the WLS estimator
proposed in Section IV, the vector e is approximated by the
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Fig. 3. Block diagram of two ensemble learning-based NN-WLS localization methods.

linear term. Thus, the approximation error increases with the
noise level, thereby compromises the algorithm performance.
Therefore, we propose the NN-WLS method, in which we
learn the vector e by a NN. The input of the NN is a
measurement vector m ∈ R2(Na−1)+2Na , which is generated
by measurements in set Ma and given by

m = [r21, ṙ21, . . . , rNa1, ṙNa1, φ1, θ1, . . . , φNa , θNa ]T . (35)

Here, the measurement noise is not necessarily Gaussian
distributed. The output of the NN is the estimated residual
vector ê. Then, the estimated ê is used to construct W by

W = (êêT + εI)−1, (36)

where ε is a value to ensure that the inverse of (êêT + εI)
exists. Finally, we obtain the estimate x by using the model
in (23). In practice, the training dataset is constructed during
an offline phase, in which a site survey is conducted to collect
the vectors of the received signals of all RRHs from different
UEs at numerous reference points of known locations, as
given in (1). Then, the channel parameters are extracted from
the received signals with signal processing methods. The
extracted channel parameters construct measurement vector
m. Hence, we obtain label e corresponding to the known

location with (22). Finally, training is performed on the basis
of the Ttrain samples, with the structure of each sample as
(m, e). For simulations, the location and velocity of the UE
are randomly generated for each sample, then the measurement
vector m is obtained accordingly by (35), and e is generated
by (22). We consider the fully connected (FC) NN, and the
input and output layers both have 4Na − 2 neurons. The
input (4Na − 2)-dimensional real-valued vector is initially
normalized with the value of the element in [0, 1]. As for the
rectified linear unit (ReLU), ReLU(x) = max(x, 0) is used as
the activation function for middle layers. The sigmoid function
σ(x) = 1/(1 + e−x) is used as the activation function in the
final layer because the output is the normalized vector that has
elements scaled within the [0, 1] range. We generate the final
estimation ê by rescaling. The set of parameters is updated
by the ADAM algorithm. The loss function refers to the mean
square error (MSE), which is given by

L(Θ) =
1

Ttrain

Ttrain∑
t=1

‖êt − et‖2. (37)

Similarly, for the learnable vector esn,l, the input of the
NN is a measurement vector ms

n,l, which is generated by
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measurements in set Ms
n,l and given by

ms
n,l = [rsn1,l, ṙ

s
n1,l, φ

s
n,l, θ

s
n,l]

T . (38)

The output of the NN is the estimated residual vector êsn,l.
Then, the estimated êsn,l is used to construct Ws

n,l by

Ws
n,l = (êsn,lê

sT
n,l + εsn,lI)

−1, (39)

where εsn,l is a value to ensure the existence of the inverse of
(êsn,lê

sT
n,l + εsn,lI). The previously predicted UE location and

velocity in vector x are also used to construct the estimation
model (34), by which we obtain the estimate x̃sn,l. This part
must be executed

∑N
n=1Mn−Na times in parallel to localize

all possible scatterers. The similar FC-NN architecture and
training process are considered, except that the input and the
output layers have four neurons.

Remark 3. The proposed NN-WLS combines the NNs with
the geometric model, thereby consolidating the powerful com-
puting ability of NNs and the robustness of models. The
particular advantages are presented as follows. First, the NNs
can provide a more accurate estimation of e and esn,l than
the first-order approximation in the previously proposed WLS
algorithms. Thus, in some practical scenarios, the NN-WLS
can achieve good performance and can be executed even
without knowing the covariance matrix Q and Qs

n,l, whereas
the Q and Qs

n,l in the WLS algorithms are assumed to be
known to initialize the weighting matrix W and Ws

n,l, respec-
tively. Moreover, the WLS algorithm is iterative, which implies
slow reconstruction, whereas the NN-WLS does not need any
iterations, thereby reducing the required time resources.

B. Ensemble Learning-based NN-WLS

Training the NN with the loss function defined in (37)
cannot guarantee that the NN-WLS outputs the globally op-
timal estimator, even for sufficient data. According to [39],
[40], the ensemble learning methods often provide additional
performance enhancement. Ensemble methods correspond to
learning algorithms that construct a set of learners and gen-
erate a new prediction by taking a vote of the predictions,
which may be weighted. In the backpropagation algorithm
for training the NNs, the initial weights of the networks are
set randomly. If the algorithm is applied to the same training
dataset but with different initial weights, then the resulting
predictions may vary. NNs that are independently trained with
the same training dataset have high probabilities of not making
the same prediction error. Therefore, we can improve the
performance of the NN-assisted WLS algorithm further by
introducing an ensemble of P -independently trained NNs.

In this study, we propose two ensemble learning-based NN-
WLS localization methods, namely, ENN-A-WLS and ENN-
B-WLS, as illustrated in Fig. 3(a) and Fig. 3(b), respectively.
The following instructions use the localization of UE x◦ as an
example. The similarity between the ENN-A-WLS and ENN-
B-WLS lies in that both of them consist of P independently
trained NNs by the same training dataset. The input of each
NN is a measurement vector m given in (35) generated
by measurements in set Ma, and the output of each NN

is the estimated êp, for p = 1, . . . , P . The difference is
described as follows: As depicted in Fig. 3(a), the ENN-
A-WLS repeats the NN-WLS P times, because P NNs are
trained independently and in parallel, such that output of each
NN-WLS is an independent prediction xp, for p = 1, . . . , P .
Accurate predictions of UE location are clustered together, and
the wrong predictions are located far apart; such approach is
also applied in UE velocity. We implement the core part of
the ENN-A-WLS, which determines the voting mechanism, by
the subtractive clustering. Unlike the simple averaging method,
the performance of which seriously deteriorates by the effect
of extremely abnormal predictions. The subtractive clustering
method is based on a density measure. The density measure
for the p-th location prediction is defined as

Dp =

P∑
j=1

exp
(
−‖up − uj‖2/(ra/2)2

)
, (40)

where ra is a positive value to denote the radius. The data
points outside this radius only contribute slightly to the density
measure. Therefore, by setting a proper ra, the subtractive
clustering method can find the point where the predicted values
are most clustered. The point with the highest density measure
is selected as the final estimate of UE location. UE velocity is
obtained in the same way. As shown in Fig. 3(b), the ENN-B-
WLS combines the output êp of each NN, for p = 1, . . . , P ,
to construct the weighting matrix as

W =

(
1

P

P∑
p=1

êpêpT

)−1
, (41)

which uses the average of finite P samples to approximate
statistical W = (E{eeT })−1. Then, we obtain the estimate x
by using the model in (23) with the constructed W in (41).
Scatterers are localized in a similar way and further details are
omitted.

VI. NUMERICAL RESULTS

A. Model-based WLS Localization

In this subsection, we analyze the performance of the
proposed WLS estimator. We consider a scenario with N = 18
RRHs, and their locations are given in Table II. 2 The
UE is located at u◦ = [250, 450, 0]T m with the velocity
u̇◦ = [−10, 2, 5]T m/s. The CU selects Na LOS paths from
RRHs to locate the UE. Although the presented algorithm
is derived for Gaussian noise model with general covariance
matrix, we consider the following form of the covariance
matrix of the noise terms ∆m for simplicity,

Q = blkdiag(

(Na−1)︷ ︸︸ ︷
Qd, . . . ,Qd,

Na︷ ︸︸ ︷
Qa, . . . ,Qa), (42)

where Qd = diag(δ2d, (0.1δd)
2), Qa = diag(δ2a, δ

2
a), and δd,

0.1δd, and δa are the standard deviations of TDOA, FDOA,

2Our proposed method (i.e., TDOA/FDOA/AOA) can work with either a
randomized selection of z-axis coordinates for different RRHs or the same
value of z-axis coordinates for all RRHs. To compare the performance of
different methods, we choose a randomized selection of the z-axis coordinates
for the first six RRHs.
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TABLE II
LOCATIONS OF THE RRHS IN METERS.

1 2 3 4 5 6 7 8 9
x 235.5042 287.5042 235.5042 287.5042 235.5042 287.5042 235.5042 287.5042 235.5042
y 389.5038 389.5038 489.5038 489.5038 589.5038 589.5038 851.5038 851.5038 651.5038
z 26 32 10 40 14 50 26 26 26

10 11 12 13 14 15 16 17 18
x 287.5042 235.5042 287.5042 235.5042 287.5042 235.5042 287.5042 235.5042 287.5042
y 651.5038 751.5038 751.5038 851.5038 851.5038 951.5038 951.5038 1051.5038 1051.5038
z 26 26 26 26 26 26 26 26 26

Fig. 4. RMSE performance of the proposed algorithm in location estimation
with different numbers of selected LOS paths.

and AOA measurements. The order of the elements in (42)
is the same as that in ∆m, in which the first (Na − 1)
pairs are TDOA and FDOA pairs (the covariance matrix for
each pair is Qd), and the last Na pairs are AOA pairs (the
covariance matrix for each pair is Qa). Similarly, we consider
the covariance matrix of the ∆ms

n,l for the (n, l)-th scatterer in
the form of Qs

n,l = diag(δ2d, (0.1δd)
2, δ2a, δ

2
a). The localization

accuracy is assessed via the root mean square error (RMSE),

e.g., RMSE(u) =
√∑TMC

t=1 ||ut − u◦||2/TMC , where ut is
the estimate of u◦ at the t-th Monte Carlo simulation.

In the first simulation scenario, we evaluate the performance
of the proposed UE localization algorithm with different
numbers of selected LOS paths. Fig. 4 and Fig. 5 depict the
RMSEs versus Na. Here, the numerical results are obtained
from TMC = 5000 independent Monte Carlo simulations.
Note that having a larger number of LOS paths is beneficial to
achieve localization accuracy. For location estimation (Fig. 4),
the proposed WLS algorithm requires Na > 2 LOS paths. The
localization accuracy is significantly enhanced as Na increases
to 3 and is saturated when Na > 6. For velocity estimation
(Fig. 5), the proposed WLS estimator requires Na > 4
LOS paths. The performance improves gradually with Na and
reaches saturation for Na > 6. In all cases, the CRLBs can be
attained, and the bounds are tighter for smaller Na, δd, and δa.

Fig. 5. RMSE performance of the proposed algorithm in velocity estimation
with different numbers of selected LOS paths.

Fig. 6. SR performance of the proposed measurement selection method.

These results demonstrate that as long as 4-6 LOS paths are
available, the proposed algorithm can realize UE localization
with acceptable performance.

In the second simulation scenario, we want to reveal
that four to six LOS paths can be obtained in mmWave
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CRAN communication systems by densely deploying RRHs
and designing appropriate measurement selection methods.
We analyze the performance of the proposed measurement
selection method by using the following simulation settings.
The detection probability Pd for each RRH is set to 0.5. Each
scatterer is distributed uniformly in a 3-D space {[x, y, z]T :
240 6 x 6 280, 450 6 y 6 850, 0 6 z 6 20} in meters,
whilst the magnitude of velocity follows U [0, 10] m/s. Success-
ful selection is the phenomenon in which all of the selected Na
paths are LOS paths. Thus, the success rate (SR) TSR/TMC

signifies that TSR times successful selection out of TMC

Monte Carlo simulations, and we set TMC = 100000. TOA
and AOA measurements used in this study follow Gaussian
distributions with mean given by (2) and (10), respectively,
and standard deviations given by δd and δa, respectively. Fig.
6 shows the SR performance versus Na by setting (1) δd = 0.1
m and δa = 0.0175 rad, (2) δd = 1.1 m and δa = 0.0525 rad,
(3) δd = 2.1 m and δa = 0.0875 rad. (0.0175 rad = 1◦, 0.0525
rad = 2◦, 0.0875 rad = 3◦, respectively). We also considered
clock bias setting ωυc = 0 m and ωυc = 100 m for each
noise level configuration. In all cases, the SR achieves 85%
when Na = 4, and the SR is larger than 80% for Na 6 6 in
most cases. The SR can be further improved by increasing the
detection probability of RRH and by considering the energy
gap between the LOS and NLOS paths 3. However, this topic
is not the focus of this study, hence, we will not go into further
details.

In the third simulation scenario, we evaluate the perfor-
mance of the proposed TDOA/FDOA/AOA based WLS es-
timator by comparing it with AOA-only, TDOA-only [24],
TDOA/AOA [26], TDOA/FDOA [27] WLS estimators, and
the corresponding CRLBs. We set Na = 6, TMC = 5000,
δd = 0.22ρ, and δa = 0.0175ρ, where ρ is a noise scaling
factor (See Table III for specific values). The RMSEs and
CRLBs of different estimators are shown in Fig. 7 and Fig. 8
as functions of the noise scaling factor. The results in Fig. 7
show that the proposed TDOA/FDOA/AOA based WLS esti-
mator has the best performance, followed by TDOA/FDOA,
TDOA/AOA, TDOA-only, and AOA-only. For velocity estima-

3For example, let Pmax denote the energy of the strongest path, set the
threshold as Pthre = Pmax/2, and the paths with energy less than Pthre

are filtered out. Note that Pmax/2 is an empirical setting based on a general
ray-tracing dataset for mmWave massive MIMO [35].

TABLE III
MEASUREMENT NOISE SETTINGS.

ρ 0.1 1 10
δd (m) 0.022 0.22 2.2
δa (rad) 0.00175 0.0175 0.175

TABLE IV
MAE PERFORMANCE COMPARISON.

Method Location (m) Velocity (m/s)

Black Box 0.1782 0.2109
WLS 0.0200 0.0143

NN-WLS 0.0104 0.0054

Fig. 7. Comparison of the RMSE of the proposed algorithm in location esti-
mation with that of the AOA-only, TDOA-only, TDOA/AOA, TDOA/FDOA
algorithms, and the corresponding CRLBs.

Fig. 8. Comparison of the RMSE of the proposed algorithm in velocity esti-
mation with that of the AOA-only, TDOA-only, TDOA/AOA, TDOA/FDOA
algorithms, and the corresponding CRLBs.

tion in Fig. 8, we only compare the proposed estimator with
the TDOA/FDOA WLS estimator because velocity cannot be
obtained without FDOA measurements. Fig. 8 shows that the
performance of the proposed estimator is slightly remarkable.
Furthermore, the proposed TDOA/FDOA/AOA localization
can achieve the CRLB for small noise level. Increasing the
noise level results in a slow deviation from the CRLB for
both location and velocity estimations because the nonlinear
terms in e in the derivation of the proposed algorithm have
been ignored. TDOA/FDOA algorithm uses two-stage WLS
estimators and has larger deviation from CRLB than the
proposed estimator as the noise level increases. The proposed
scatterer localization performance is also depicted in Fig. 7 and
Fig. 8. The unknown scatterer is located at [240, 600,−19]T in
meters. The velocity direction of the scatterer is the same as u̇◦
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TABLE V
MAE (m) PERFORMANCE COMPARISON OF UE LOCATION ESTIMATION.

Method δd = 3 m, δa = 0.0525 rad δd = 3 m, δa = 0.0175 rad δd = 0.1 m, δa = 0.0525 rad

Ratio=0.1 Ratio=0.01 Ratio=0.001 Ratio=0.1 Ratio=0.01 Ratio=0.001 Ratio=0.1 Ratio=0.01 Ratio=0.001

WLS 11.42 11.23 11.17 3.86 3.85 3.85 2.12 2.10 2.10
Black Box 3.44 1.72 2.92 3.38 2.06 1.54 3.03 1.23 1.42
NN-WLS 2.58 0.55 0.16 2.24 0.55 0.09 0.25 0.05 0.03

TABLE VI
MAE (m/s) PERFORMANCE COMPARISON OF UE VELOCITY ESTIMATION.

Method δd = 3 m, δa = 0.0525 rad δd = 3 m, δa = 0.0175 rad δd = 0.1 m, δa = 0.0525 rad

Ratio=0.1 Ratio=0.01 Ratio=0.001 Ratio=0.1 Ratio=0.01 Ratio=0.001 Ratio=0.1 Ratio=0.01 Ratio=0.001

WLS 3.12 2.98 2.83 2.88 2.80 2.79 0.18 0.18 0.18
Black Box 1.29 1.39 1.20 1.27 1.12 1.11 1.18 1.00 1.09
NN-WLS 0.68 0.25 0.22 0.59 0.15 0.13 0.12 0.07 0.06

with a magnitude of 5 (m/s). The results in Fig. 7 demonstrate
that, for the scatterer location, the RMSE can achieve the
CRLB. However, the CRLB of the scatterer is higher than that
of the UE because the number of measurements used in scat-
terer localization is less than that in the UE localization. For
the scatterer velocity observed in Fig. 8, the RMSE can achieve
the CRLB when ρ 6 1. Since velocity is mainly determined
by the FDoA measurements, and only one measurement can
be used for each scatterer, the proposed algorithm can ensure
good performance with relatively small noise and is greatly
affected by large noise caused by insufficient measurements.

B. NN-assisted WLS Localization

In this subsection, we explore the performance of the pro-
posed NN-assisted WLS localization methods. First, we utilize
a general dataset for mmWave massive MIMO constructed
on the basis of the ray-tracing data from Remcom Wireless
InSite [35] to verify the effectiveness of the proposed algo-
rithms because this approach can simulate real-world scenarios
accurately. Specifically, we evaluate the performance of the
Black Box NN (Section III-B), the proposed WLS (Section
IV), and the proposed NN-WLS (Section V-A) through the
same revised ray-tracing dataset.4 The training, validation, and
testing datasets contain 60000, 20000, and 20000 samples,
respectively. All testing samples are excluded from the training
and validation samples. The inner architecture of the networks
used for the Black Box NN and proposed NN-WLS is identical
and consists of a three-layer FC-NN. The first two FC layers
use 32 neurons, and the third FC layer uses 22 neurons. The
localization accuracy is assessed via the mean absolute error
(MAE), e.g., MAE(u) =

∑Ttest

t=1 ||ut − u◦t ||/Ttest, where
ut is the estimation of u◦t in the test dataset, and Ttest
is the size of test dataset. The MAE results of the Black
Box NN, WLS, and NN-WLS are given in Table IV. The

4We utilize the first 6 RRHs in the ray-tracing dataset, and each sample is
generated with a different UE location distributed in a 3D space {[x, y, z]T :
240 6 x 6 280, 410 6 y 6 740, z = 2} in meters. There are no FDoA
measurements given in the ray-tracing dataset. For each UE, we generate
its velocity in a random way, and then calculate its corresponding FDoA
measurements.

result shows that the NN-WLS is more accurate in terms of
location and velocity estimation than the WLS algorithm. The
Black Box NN is the simplest to operate but has the worst
accuracy. The results verify that the measurement errors are
not completely random, that is, an underlying relationship
exists between them, and this relationship can be learned
by the NN, which motivates our research. For an in-depth
analysis, we explore the performance of the proposed NN-
assisted WLS localization methods with different noise levels
and training dataset sizes in the following.

1) Localization Accuracy to Noise Level: We increase
the noise level of measurements to analyze the performance
of the NN-assisted WLS algorithm. By observing the ray-
tracing dataset, we find that the measurement errors include a
dominant part and a fluctuating part. We define the dominant
part as the unknown fixed error and the fluctuating part as
the Gaussian random error. We define three dominant error
settings: (1) δd = 3 m, δa = 0.0525 rad; (2) δd = 3
m, δa = 0.0175 rad; (3) δd = 0.1 m, δa = 0.0525 rad.
Three radios are available for each setting, and the standard
deviation of the fluctuating error are 0.1, 0.01, and 0.001 times
of that of the dominant error. Therefore, nine noise settings
have been identified. Training and testing are conducted under
the same noise setting. The training, validation, and testing
sets contain 12000, 4000, and 4000 samples, respectively. All
testing samples are excluded from the training and validation
samples. The MAE results for different methods are shown
in Table V and Table VI. The performance of the proposed
NN-WLS outperforms the WLS algorithm and the black box
NN in the given simulation scenarios. Moreover, by decreasing
the ratio of the error standard deviation of the random part to
that of the fixed part, the MAE of NN-WLS and black box
NN decreases. That is, as the proportion of the random part
decreases, the ability of the NNs increases. This is due to
the fact that the NNs can learn the dominant error and the
correlation between measurement errors, but WLS algorithm
cannot.

2) Network Performance to Training Dataset Size: We
reduce the size of training dataset from 12000 to 1200, and
the performance of the NN-WLS and Black Box is shown
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Fig. 9. MAE performance comparison of location estimation between the
black box and NN-WLS algorithms for varying training dataset sizes.

in Fig. 9 and Fig. 10. In all simulations, the ratio is set
to 0.1. For a relatively large noise level, where δd = 3 m
and δa = 0.0525 rad, the performance of NN-WLS saturates
with 6600 and 1200 training data for location and velocity
estimation, respectively, whereas the black box NN requires
more training data to increase accuracy. In addition, reducing
the noise level can bring gains to NN-WLS, but not to the
black box NN, since the latter is purely data driven and lacks
the assistance of the geometric model. When δd = 0.1 m
and δa = 0.0525 rad, NN-WLS adds 1200 and 3000 training
samples on the basis of WLS, the estimation accuracy of UE
location and velocity can be improved by 86% and 19%,
respectively. When δd = 3 m and δa = 0.0525 rad, NN-
WLS adds 6600 and 1200 training samples, the estimation
accuracy of UE location and velocity can be improved by
88% and 76%, respectively. The performance of the proposed
WLS estimator is enhanced by the NN, especially in a large
noise environment.

3) Network Robustness to Measurement Noise: We study
the robustness of the proposed NN-WLS to the varying mea-
surement noise conditions. For comparison, we define the NN-
LS algorithm. In particular, after obtaining the estimated resid-
ual vector ê from the NN (the same way as that implemented
in the NN-WLS), we deduct ê from (22). Then, by directly ap-
plying the LS algorithm, we obtain x = (G̃T G̃)−1G̃T (h̃−ê).
The black box NN, NN-WLS, and NN-LS are executed using
the same datasets. Fig. 11 illustrates the performance of the
black box NN, NN-WLS, and NN-LS trained for a specific
noise level and deployed in different noise levels. We have
five different measurement noise settings: (1) δd = 0.1 m
and δa = 0.0175 rad, (2) δd = 0.6 m and δa = 0.035 rad,
(3) δd = 1.1 m and δa = 0.0525 rad, (4) δd = 1.6 m and
δa = 0.07 rad, (5) δd = 2.1 m and δa = 0.0875 rad. In all
simulations, the ratio is set to 0.1. The black box NN, NN-
WLS, and NN-LS in Figs. 11(a1) and (a2) are trained in the
noise setting (1) and are tested in noise settings (1) to (5),
where Fig. 11(a1) shows the MAE performance of location

Fig. 10. MAE performance comparison of velocity estimation between the
black box and NN-WLS algorithms for varying training dataset sizes.

estimation and Fig. 11(a2) shows the MAE performance of
velocity estimation. Figs. 11(b1) and (b2), Figs. 11(c1) and
(c2), Figs. 11(d1) and (d2), and Figs. 11(e1) and (e2) are
trained in noise settings (2), (3), (4), and (5), respectively.
The size of the training dataset is 1200 in Figs. 11(a1) and
(a2) to Figs. 11(e1) and (e2). Moreover, the training dataset in
Figs. 11(f1) and (f2) includes all (1)-(5) measurement noise
settings, and the size of the training dataset is 8000.

The results indicate that NN-WLS is robust for small noise
settings and outperforms the black box NN in most cases in
terms of location estimation. In addition, NN-WLS is robust
for all the noise settings in terms of velocity estimation,
whereas the black box NN shows great performance fluc-
tuations. When the noise setting of test dataset is the same
as that of the training dataset, the performance of NN-LS is
comparable to NN-WLS. However, in terms of both location
and velocity estimation, NN-LS performs poorly when tested
by using a different noise setting from the training dataset. NN-
LS requires the estimated ê to be highly accurate, so that the
LS algorithm can be used to derive good results. By contrast,
in NN-WLS, the weighting matrix is W = (êêT + εI)−1,
which contains the information of the dominant (ê is the
learned mean of the dominant error) and the random error parts
(εI is the covariance matrix of the Gaussian random error).5

Under a test dataset with measurement noise setting different
from the training dataset, it is difficult for NN to predict a very
accurate ê, but it can predict a relatively accurate weighting
matrix W, which makes the NN-WLS more robust than the
NN-LS. Therefore, the robustness of the proposed NN-WLS
outperforms the NN-LS and the black box NN in the given
simulation scenarios.

4) Ensemble Learning-based NN-WLS Methods: We ana-
lyze the MAE performance of the proposed ensemble learning-
based NN-WLS methods by setting δd = 3 m and δa = 0.0175

5In the simulations, ε is an adjustable parameter for ensuring that the matrix
is invertible, which should be as small as possible. For example, we set ε =
0.1 for measurement noise setting (1).
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Fig. 11. MAE performance comparison among the WLS, black box, NN-WLS, and NN-LS algorithms for various noise conditions.

rad. The radius ra for the subtractive clustering algorithm in
ENN-A-WLS is set to 0.1, 0.01, and 0.001 for ratios 0.1,
0.01, and 0.001, respectively. The number of emsembled NNs
is P = 100. The size of the training dataset for NN-WLS,
ENN-M-WLS, ENN-A-WLS, and ENN-B-WLS is 12, 000.
Here, ENN-M-WLS has the same structure as ENN-A-WLS
but uses a simpler averaging method to replace the subtractive
clustering algorithm in ENN-A-WLS. The MAE results are
presented in Table VII and Table VIII. The proposed ENN-B-
WLS has the best performance in terms of location estimation.
The reason is that the combination of the predictions of multi-
ple NNs by (41) can approximate the statistical characteristic
of W remarkably. However, the ensemble learning-based NN-
WLS method has no evident advantages over NN-WLS in
terms of velocity estimation. Not much space for improvement
is needed because the values of the velocity in simulations are
relatively small, indicating that the estimation error of NN-
WLS is also small.

5) Time Resources: We compare the time resources con-
sumed by different localization methods. The model-based
WLS estimator needs 0.06 seconds when executed on a
desktop computer with a 3.3 GHz Intel(R) Xeon(R) W-2155

TABLE VII
MAE (m) PERFORMANCE COMPARISON OF UE LOCATION

ESTIMATION.

Method δd = 3 m, δa = 0.0175 rad

Ratio=0.1 Ratio=0.01 Ratio=0.001

WLS 3.86 3.85 3.85
NN-WLS 2.24 0.55 0.09

ENN-M-WLS 2.41 0.53 0.13
ENN-A-WLS 1.99 0.53 0.11
ENN-B-WLS 0.60 0.24 0.05

TABLE VIII
MAE (m/s) PERFORMANCE COMPARISON OF UE

VELOCITY ESTIMATION.

Method δd = 3 m, δa = 0.0175 rad

Ratio=0.1 Ratio=0.01 Ratio=0.001

WLS 2.88 2.80 2.79
NN-WLS 0.59 0.15 0.13

ENN-M-WLS 0.59 0.20 0.17
ENN-A-WLS 0.59 0.14 0.13
ENN-B-WLS 0.71 0.18 0.15
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CPU and 64 GB of RAM, using Windows 10 and MATLAB
2018b (64-bit). The time needed by the NN-WLS consists of
two parts. The test time of the NN is 1.6×10−7 seconds when
tested on the 1080 Ti GPU, and the time required to input the
results of the NN into the WLS estimator and obtain the final
estimation is 0.011 seconds when using MATLAB. Thus, the
total time needed by the NN-WLS is 0.011 seconds, which is
17% of the time needed by the model-based WLS estimator.
The ensemble learning-based NN-WLS takes more time than
the NN-WLS because the ensemble time is 1.6×10−3 seconds
when using MATLAB. Thus, the total time needed by the
ensemble learning based NN-WLS is 0.013 seconds, which is
22% of the time needed by the model-based WLS estimator.
This result is reasonable because the WLS algorithm requires
initialization and several update processes, which are time
consuming, whereas the NN-WLS and the ensemble learning
based NN-WLS do not need to execute such processes.

VII. CONCLUSION

This study considered the joint location and velocity estima-
tion problem in a 3-D mmWave CRAN architecture. First, we
embedded the cooperative localization into communications
and established the joint location and velocity estimation
model with hybrid TDOA/FDOA/AOA measurements. Then,
an efficient closed-form WLS solution, which was subse-
quently proven asymptotically unbiased under small noise
levels, was deduced. Second, we built the scatterer localization
model by exploiting the single-bounce NLOS paths and the
estimated UE location and deduced the closed-form WLS solu-
tion. The simulation results indicated that the WLS-based joint
estimation algorithm can achieve the CRLB and outperform
the benchmarks.

Furthermore, the NN-WLS algorithm was proposed by
embedding the NNs into the proposed WLS estimators to
replace linear approximation. This study is the first to combine
the WLS estimator and NN in 3-D localization methods
in the existing literature. The combination harnesses both
powerful learning ability of the NN and the robustness of
the proposed geometric model. In addition, ensemble learning
was introduced to improve performance. A revised ray-tracing
dataset was used in the simulations to test the performance
of the NN-WLS algorithm. Simulation results showed that
NN-WLS is fast because it can eliminate iterations in the
proposed WLS algorithm, and significantly outperforms the
WLS algorithm when the measurement error vector exhibits
some correlation pattern. In addition, through a comprehensive
comparison with the black box NN and the NN-LS method, the
proposed NN-WLS is more excellent in terms of localization
accuracy and robustness.

APPENDIX A
In this section, we approximate e up to the linear noise term

in (24). For the differentiable function f(x1, . . . , xn) on the
variables x1, . . . , xn, there holds

f(x1 + ∆x1, . . . , xn + ∆xn)− f(x1, . . . , xn)

=
∂f

∂x1
∆x1 + . . .+

∂f

∂xn
∆xn + o(η), (43)

where η =
√

(∆x1)2 + . . .+ (∆xn)2 → 0. According to (18)
and (22), we get

e = (h̃− G̃x◦)− (h−Gx◦). (44)

Applying (43) with (44), firstly, for i = 2, . . . , Na, we yield
the (2i−3)-th entry in e as

e(2i−3)≈[2r◦i1+2a◦T1 (u◦−b1)]∆ri1

+

[
−2r◦i1

∂a◦T1
∂φ◦1

b1+2r◦i1
∂a◦T1
∂φ◦1

u◦
]
∆φ1

+

[
−2r◦i1

∂a◦T1
∂θ◦1

b1 + 2r◦i1
∂a◦T1
∂θ◦1

u◦
]
∆θ1,

where ∂a◦T
1

∂φ◦
1

(u◦−b1) = 0, ∂a
◦T
1

∂θ◦1
(u◦−b1) = 0, and a◦T1 (u◦−

b1) = r◦1 , hence, we have

e(2i− 3) ≈ 2r◦i ∆ri1. (45)

Similarly, we have

e(2i−2) ≈ ṙ◦i ∆ri1+r◦i ∆ṙi1+r◦1r
◦
i1 cos2 θ◦1φ̇

◦
1∆φ1+r◦1r

◦
i1θ̇
◦
1∆θ1.
(46)

For j = 1, . . . , Na, we have

e(2Na−3+2j) ≈

(
∂c◦Tj
∂φ◦j

bj −
∂c◦Tj
∂φ◦j

u◦

)
∆φj = r◦j cos θ◦j∆φj .

(47)
and

e(2Na − 2 + 2j) ≈
∂d◦Tj
∂φ◦j

(bj − u◦) ∆φj

+
∂d◦Tj
∂θ◦j

(bj − u◦) ∆θj = r◦j∆θj . (48)

Finally, transforming the expressions (45), (46), (47), and
(48) for i = 2, . . . , Na and j = 1, . . . , Na into matrix
representation, we obtain the first-order approximation of e
as e ≈ B∆m in (24).

APPENDIX B

In this section, we take the state of UE x◦ as an example.
We first calculate the partial derivatives required for CRLB.
According to [38], the CRLB of x◦ for the Gaussian noise
model can be defined as

CRLB(x◦) = (DTQ−1D)−1, (49)

where D = ∂m◦/∂x◦T . The partial derivatives are given by

∂m◦

∂x◦T
=

[
(
∂r◦21
∂x◦T

)T , (
∂ṙ◦21
∂x◦T

)T , . . . , (
∂r◦Na1

∂x◦T
)T , (

∂ṙ◦Na1

∂x◦T
)T ,

(
∂φ◦1
∂x◦T

)T , (
∂θ◦1
∂x◦T

)T , . . . , (
∂φ◦Na

∂x◦T
)T , (

∂θ◦Na

∂x◦T
)T
]T
, (50)

and
∂r◦i1
∂x◦T

=

[
∂r◦i1
∂u◦T

,
∂r◦i1
∂u̇◦T

]
,
∂ṙ◦i1
∂x◦T

=

[
∂ṙ◦i1
∂u◦T

,
∂ṙ◦i1
∂u̇◦T

]
, (51)

∂φ◦j
∂x◦T

=

[
∂φ◦j
∂u◦T

,
∂φ◦j
∂u̇◦T

]
,
∂θ◦j
∂x◦T

=

[
∂θ◦j
∂u◦T

,
∂θ◦j
∂u̇◦T

]
, (52)
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where i = 2, . . . , Na and j = 1, . . . , Na. Firstly, from (2) and
(3), we obtain

∂r◦i1
∂u◦T

=
(u◦ − bi)

T

r◦i
− (u◦ − b1)T

r◦1
,

∂r◦i1
∂u̇◦T

= 0. (53)

Secondly, from (6) and (7), we get

∂ṙ◦i1
∂u◦T

=
ṙ◦1(u◦ − b1)T

(r◦1)2
− ṙ◦i (u◦ − bi)

T

(r◦i )2
+

u̇◦T

r◦i
− u̇◦T

r◦1
,

(54)
∂ṙ◦i1
∂u̇◦T

=
(u◦ − bi)

T

r◦i
− (u◦ − b1)T

r◦1
. (55)

Thirdly, according to (17), we have (bj − u◦)T∂c◦j/∂u
◦T =

c◦Tj . Since a◦Tj [cosφ◦j , sinφ
◦
j , 0]T = cos θ◦j , we yield (bj −

u◦)T∂c◦j/∂u
◦T = −r◦ja◦Tj ∂c◦j/∂u◦T = r◦j cos θ◦j∂φ

◦
j/∂u

◦T ,
that is,

∂φ◦j
∂u◦T

=
c◦Tj

r◦j cos θ◦j
,

∂φ◦j
∂u̇◦T

= 0, (56)

for j = 1, . . . , Na. Similarly, from (17), we obtain (u◦−

bj)
T∂d◦j/∂u

◦T + d◦Tj = 0, that is, (u◦−bj)T [
∂d◦j
∂θ◦j

∂θ◦j
∂u◦T

+

∂d◦j
∂φ◦j

∂φ◦j
∂u◦T

] = −d◦Tj . Since (u◦ − bj)
T = r◦ja

◦T
j ,

a◦Tj ∂d◦j/∂θ
◦
j = −1 and a◦Tj ∂d◦j/∂φ

◦
j = 0, we get

∂θ◦j
∂u◦T

=
d◦Tj
r◦j

,
∂θ◦j
∂u̇◦T

= 0. (57)

Next, we prove that cov(x) ≈ CRLB(x◦) under small noise
levels. The proof relies on the following two key identities, for
i = 2, . . . , Na,

(a) : r◦i

[
(u◦ − bi)

T

r◦i
− (u◦ − b1)T

r◦1

]
= (b1 − bi)

T − r◦i1a◦T1 , (58)

(b) : ṙ◦i

[
(u◦ − bi)

T

r◦i
− (u◦ − b1)T

r◦1

]
+ r◦i

[
ṙ◦1(u◦ − b1)T

(r◦1)2
− ṙ
◦
i (u◦ − bi)

T

(r◦i )2
+
u̇◦T

r◦i
− u̇◦T

r◦1

]
+ r◦i1φ̇

◦
1 cos θ◦1c

◦T
1 + r◦i1θ̇

◦
1d
◦T
1 = −ṙ◦i1a◦T1 . (59)

Since (u◦ − bj)
T = r◦ja

◦T
j , u̇◦ = ṙ◦1a

◦
1 + r◦1 ȧ

◦
1, and

φ̇◦1∂a
◦T
1 /∂φ◦1 + θ̇◦1∂a

◦T
1 /∂θ◦1 = ȧ◦T1 , by some tedious deriva-

tion, we can prove that (a) and (b) hold.
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