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Enhanced Normalized Conjugate Beamforming
for Cell-Free Massive MIMO

Giovanni Interdonato, Member, IEEE, Hien Quoc Ngo, Senior Member, IEEE and Erik G. Larsson, Fellow, IEEE

Abstract—In cell-free massive multiple-input multiple-output
(MIMO) the fluctuations of the channel gain from the access
points to a user are large due to the distributed topology of
the system. Because of these fluctuations, data decoding schemes
that treat the channel as deterministic perform inefficiently. A
way to reduce the channel fluctuations is to design a precoding
scheme that equalizes the effective channel gain seen by the
users. Conjugate beamforming (CB) poorly contributes to harden
the effective channel at the users. In this work, we propose a
variant of CB dubbed enhanced normalized CB (ECB), in that the
precoding vector consists of the conjugate of the channel estimate
normalized by its squared norm. For this scheme, we derive
an exact closed-form expression for an achievable downlink
spectral efficiency (SE), accounting for channel estimation errors,
pilot reuse and user’s lack of channel state information (CSI),
assuming independent Rayleigh fading channels. We also devise
an optimal max-min fairness power allocation based only on
large-scale fading quantities. ECB greatly boosts the channel
hardening enabling the users to reliably decode data relying
only on statistical CSI. As the provided effective channel is
nearly deterministic, acquiring CSI at the users does not yield a
significant gain.

Index Terms—Cell-free massive MIMO, conjugate beamform-
ing, max-min fairness power control, spectral efficiency, channel
hardening, downlink training.

I. INTRODUCTION

CELL-FREE massive multiple-input multiple-output
(MIMO) [2]–[4] is a practical and scalable embodiment

of network MIMO, and promises unprecedented levels of
SE by leveraging an extraordinary macro-diversity and an
aggressive spatial multiplexing of the users. The practicality
and the scalability of such a system comes from decentralizing
channel estimation and precoding/combining, enabled by
operating in time division duplex (TDD). The distributed
dense topology of cell-free massive MIMO enriches the
macro-diversity and allows to implement a user-centric
network wherein every user is in the center of a tailored
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virtual cell surrounded by serving cooperating access points
(APs). On the other hand, since the APs are geographically
spread out, they contribute quite differently to the effective
fading channel gain seen at each user, which is thereby
characterized by large fluctuations. Hence, the channel is far
to be deterministic. This behavior does not occur in co-located
massive MIMO where the channel is nearly deterministic
instead, under most relevant operating conditions [5]–[7], a
phenomenon known as channel hardening [8]–[10].

The lower degree of channel hardening in cell-free massive
MIMO compared to co-located massive MIMO was pointed
out in [11], and also analytically demonstrated in [12]–[14]
under different channel model assumptions. As the channel
does not sufficiently harden, the lack of CSI at the user
constitutes a significant limitation in the performance. In this
regard, a scalable pilot-based downlink training scheme for
cell-free massive MIMO was advocated in [11] to let the users
perform data decoding based on the acquired CSI rather than
relying on the statistical CSI.

Since deriving from the law of the large numbers, the chan-
nel hardening property depends on the number of antennas
in the system. In general, the more antennas the more the
channel hardens. Importantly, channel hardening at the users
does also depend on the adopted precoding scheme as the
effective downlink channel gain is given by the inner product
between the downlink channel vector and the precoding vector.
Hence, the channel hardening can be artificially boosted by
acting on the precoding scheme. In our preliminary work [1],
we proposed a different flavour of the conventional conjugate
beamforming (CB) dubbed normalized CB (NCB) for cell-
free massive MIMO systems with single-antenna APs. With
NCB, the precoding factor (in this case a scalar) consists of the
conjugate of the channel estimate normalized by its magnitude.
This scheme enables a reduction of the uncertainty due to
the user’s lack of CSI knowledge which in turn improves the
SE. Recently, the authors in [13] have extended the analysis
of [1] to multi-antenna APs, providing an exact closed-form
expression for an achievable downlink SE based on the popular
hardening bound [5], [6]. Another modified CB scheme for
cell-free massive MIMO was proposed in [15], where the
global CSI knowledge at the APs is exploited to compensate
for the channel fluctuations and focus the overall channel gain
around a desired mean target.

Contribution: In this paper, we propose a variant of the
NCB precoding scheme described in [1], [13] dubbed en-
hanced NCB (ECB), where the vector of the channel estimates
between a multi-antenna APs and a given user is normalized by
its squared norm. We provide an exact closed-form expression
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for an achievable downlink SE by using the popular hardening
bound. This expression accounts for channel estimation errors
at the AP, pilot contamination due to pilot reuse, and lack
of CSI at the user side. We assume independent Rayleigh
fading channels which is the best fading scenario for a channel
hardening perspective [16] and allows us to draw insightful
conclusions by inspecting the elegant derived closed-form
SE expression. Based on the latter, which depends only on
the large-scale fading quantities, we devise an optimal max-
min fairness (MMF) power allocation scheme re-adapting
the convex optimization framework used in [2]. This policy
demands for a centralized coordination but, importantly, does
not depend on the small-scale fading realizations. Hence, it
can be performed by a central processor where the channel
statistics are reasonably assumed to be available. The novelty
of this study consists of:

• We provide a comprehensive SE analysis for a normal-
ized CB scheme where the normalization term in the
precoding vector (which characterizes an AP-user pair)
is the squared norm of the respective channel estimate,
rather than just the norm of it, as in [1], [13]. Our
choice guarantees a better channel gain equalization at
the users, hence the term enhanced CB. This analysis is
novel in the context of cell-free massive MIMO. A similar
precoder was proposed in [17] for co-located massive
MIMO systems, but its analysis does not consider power
control and pilot contamination.

• We devise a “local” solution to greatly boost the channel
hardening. A substantial difference between the proposed
ECB and the modified CB in [15] is that the latter requires
CSI exchange among the APs which scales unfavorably
as the number of users and APs in the system grows.
Moreover, the “local” nature of ECB, namely that each
AP only needs its own channel estimates to construct
the precoding vectors, is preferable in applications where
latency is a concern and/or in systems with constrained
fronthaul network capacity where the additional overhead
due to the CSI exchange cannot be afforded.

• We give a rigorous formulation of the MMF power
control optimization problem for both ECB and NCB.
The latter extends the power control analysis of [1], [13].

• We derive an approximate closed-form expression of an
achievable downlink SE for CB assuming downlink train-
ing and multi-antenna APs along with the corresponding
formulation of the MMF power control optimization
problem. These results extend those in [11], and serve
as an upper bound in the performance evaluation.

Related work: As introduced earlier, the only studies
investigating the beamforming normalization are [1], [13],
[15], [17]. However, cell-free massive MIMO has recently
received great attention, and in general is a large research
topic. The research conducted over the last few years aimed to
analyze this concept and evaluate its performance in practical
implementations. [18]–[20] focus on the scalability and de-
centralization aspects of cell-free massive MIMO, while [21],
[22] propose an over-the-air signalling scheme to avoid the
exchange of CSI for centralized baseband processing. The

dynamic clustering approach enabling the user-centric net-
work implementation is discussed in [23]–[25]. Optimal and
heuristic downlink power allocation algorithms are devised
in [26]–[28] operating in centralized and distributed fashion,
respectively. The effectiveness of minimum mean-square error
(MMSE) combining with large-scale fading decoding (LSFD)
and suboptimal AP selection policies has been established
in [29], [30] and [31], respectively. Finally, a significant
effort has been spent to evaluate the performance of cell-
free massive MIMO under realistic operating assumptions:
finite fronthaul capacity [32], [33]; hardware impairments [34],
[35]; low-resolution analog-to-digital converters [36], [37];
and imperfect channel reciprocity [38].

II. SYSTEM MODEL

Let us consider a cell-free massive MIMO system with M
multi-antenna APs providing service to K single-antenna users
in the same time-frequency resources. Each AP is equipped
with N antennas, and it holds MN � K. A central processing
unit (CPU) masters all the APs through a fronthaul network.
It is responsible for data sharing, clock synchronization and
centralized operation for resource allocation tasks.

The system operates in TDD mode and we assume block-
fading model. The time-frequency resources are structured in
coherence blocks wherein the channel is approximately static
and frequency flat. The TDD coherence block is τc samples
long and is determined by the shortest user’s coherence time
and bandwidth in the system, as τc = TcBc. Conventionally,
a coherence block accommodates three phases: (i) uplink
training, (ii) uplink data transmission1, and (iii) downlink
data transmission.

Let gmk ∈ CN denote2 the channel response vector between
user k and multi-antenna AP m. We assume independent
Rayleigh fading channels, thereby gmk ∼ CN (0, βmkIN ),
where βmk is the large-scale fading coefficient capturing the
path loss and the effects of correlated shadowing.

A. Uplink Training

Uplink training takes place via pilot transmission. The
length of the pilot, τu,p samples, determines the training
duration as well as the number of mutually orthogonal pilots.
Ideally, every user should use an orthogonal pilot sequence to
prevent interference from pilot contamination in the channel
estimates. However, the share of coherence block reserved
to the training is limited and pilot reuse is unavoidable. Let√
τu,pϕk ∈ Cτu,p be the pilot sequence sent by user k,
‖ϕk‖ = 1. We assume that the pilots of any pair of users can
be either identical or orthogonal, i.e., for any k 6= j it holds

ϕT
kϕ
∗
j =

{
1, if ϕk = ϕj ,

0, otherwise.
(1)

The overall pilot signal received at AP m is given by

Yp,m =
√
τu,pρu

∑K

k=1
gmkϕ

T
k + Ωp,m ∈ CN×τu,p , (2)

1The uplink data transmission phase is out of the scope of this work and
thereby its analysis is herein omitted.

2Table I summarizes the most relevant notation.
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TABLE I
LIST OF RELEVANT NOTATIONS

M number of APs τc length of the coherence block
N number of AP’s antennas τu,p uplink training length
K number of users τd,p downlink training length

gmk channel response vector between user k and AP m ρu normalized SNR of the uplink pilot symbol
βmk mean-square of any element of gmk ρd,p normalized SNR of the downlink pilot symbol
ĝmk MMSE estimate of gmk ρd normalized SNR of the downlink data symbol
γmk mean-square of any element of ĝmk ϕk uplink pilot sequence related to user k
g̃mk channel estimation error, gmk − ĝmk ψk downlink pilot sequence related to user k
akk effective downlink channel at user k xm data signal transmitted by AP m

âkk MMSE estimate of akk wmk precoding vector used by AP m to user k
ãkk downlink channel estimation error, akk − âkk ηmk downlink power control coefficient

where ρu is the normalized signal-to-noise ratio (SNR) of the
uplink pilot symbol, and Ωp,m is a matrix of additive noise
whose elements are independent and identically distributed
(i.i.d.) CN (0, 1). AP m de-spreads the pilot signal by using
the pilot sequences as

yp,mk ,Yp,mϕ
∗
k

=
√
τu,pρugmk+

√
τu,pρu

K∑
j 6=k

gmjϕ
T
jϕ
∗
k+ωp,mk (3)

∈ CN , where ωp,mk = Ωp,mϕ
∗
k ∼ CN (0, IN ). Due to the

pilot sequence design in (1), yp,mk constitutes a sufficient
statistic. Provided that {βmk} are known a priori at the AP,
linear MMSE channel estimation can be performed, and it
is optimal—in the sense that it minimizes the mean square
error—due to the Gaussian distribution of the channels. Chan-
nel estimation is carried out locally at each AP and the MMSE
estimate of gmk is given by

ĝmk = E
{
gmky

H
p,mk

} (
E
{
yp,mky

H
p,mk

})−1
yp,mk

= cmkyp,mk, (4)

where
cmk ,

√
τu,pρuβmk

τu,pρu
∑K
j=1 βmj |ϕH

kϕj |2 + 1
. (5)

The MMSE channel estimate is distributed as

ĝmk ∼ CN (0, γmkIN )

where
γmk =

√
τu,pρucmkβmk. (6)

In the channel estimate, the interference from pilot contami-
nation is captured by the terms that are proportional to ϕH

kϕj
and for which this inner product gives 1. Note that, if user k
and user j share the same pilot, then the respective channel
estimates as well as their mean-squares are proportional to
each other:

ĝmk =
βmk
βmj

ĝmj , (7)

γmk =
β2
mk

β2
mj

γmj . (8)

Finally, let us define the channel estimation error

g̃mk = gmk − ĝmk,

which is distributed as

g̃mk ∼ CN (0, (βmk − γmk)IN ),

and independent of ĝmk.

B. Downlink Data Transmission
By leveraging the channel reciprocity deriving from the

TDD operation, the channel estimates obtained in the uplink
are then employed to construct the precoding vectors. Let
wmk ∈ CN be the precoding vector used by AP m in the
service of user k. We assume that wmk solely depends on local
channel estimates. Hence, there is no CSI exchange among the
APs over the fronthaul network. The data signal that AP m
transmits to the users is

xm =
√
ρd
∑K

k=1

√
ηmkwmkqk, (9)

where qk is the data symbol intended for user k, E
{
|qk|2

}
= 1

and E
{
qkq
∗
j

}
= 0 for k 6= j. ρd is the normalized SNR

of the downlink data symbol, and {ηmk} are power control
coefficients satisfying the per-AP power constraint

E
{
‖xm‖2

}
≤ ρd, m = 1, . . . ,M. (10)

By setting ηmk = 0, AP m does not participate in the service
of user k. Hence, these coefficients are also useful to set up
clustering policies aiming to preserve the scalability of the
system.
The signal received at user k resulting from the joint coherent
transmission by multiple APs is

rk =

M∑
m=1

gT
mkxm + ωk

=
√
ρd

M∑
m=1

√
ηmkg

T
mkwmkqk

+
√
ρd

K∑
j 6=k

M∑
m=1

√
ηmjg

T
mkwmjqj + ωk, (11)

where ωk ∼ CN (0, 1) is additive noise.
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III. PERFORMANCE ANALYSIS - NO CSI AT THE USER

When evaluating the capacity that this system can achieve,
we must bear in mind the lack of CSI at the user, which
employs the channel statistics to perform data decoding. An
achievable downlink spectral efficiency for user k can be
obtained by using the popular hardening bound [5], [6]. We
rewrite (11) as

rk = DSkqk + BUkqk +
∑K

j 6=k
UIkjqj + ωk, (12)

where

DSk =
√
ρd
∑M

m=1

√
ηmk E

{
gT
mkwmk

}
, (13)

BUk =
√
ρd
∑M

m=1

√
ηmk gT

mkwmk

−√ρd
∑M

m=1

√
ηmk E

{
gT
mkwmk

}
, (14)

UIkj =
√
ρd
∑M

m=1

√
ηmjg

T
mkwmj , (15)

emphasizing that user k can detect qk by exploiting only the
knowledge of the channel statistics, that is the knowledge
of E

{
gT
mkwmk

}
. Hence, DSk represents the desired signal

for user k, BUk (beamforming gain uncertainty) is a self-
interference contribution capturing user’s uncertainty of the
instantaneous channel gain, while UIkj describes the inter-
user interference. The term BUk constitutes a measure of
the channel hardening degree at user k. Specifically, BUk
quantifies how much the instantaneous effective downlink
channel deviates from its mean. The smaller BUk is, the more
hardening the channel offers. By treating the sum of the last
three terms in (12) as uncorrelated effective noise, a lower
bound on the downlink capacity is given by

SEk = ξ

(
1− τu,p

τc

)
log2(1 + SINRk), (16)

where 0 < ξ < 1 is the share of the coherence block reserved
to the downlink, the pre-log factor 1−τu,p/τc accounts for the

pilot overhead, and the signal-to-interference-plus-noise ratio
(SINR) at user k is

SINRk =
|DSk|2

E {|BUk|2}+
∑K
k 6=j E {|UIkj |2}+ 1

. (17)

Expression (17) is valid for any precoding scheme and channel
model. We next report the closed-form expression of SINRk
assuming multi-antenna APs and independent Rayleigh fading
channels for both CB [39], NCB [13] and the proposed ECB.

A. Conjugate Beamforming
CB consists in setting wCB

mk = ĝ∗mk. By inserting this
into (17) and computing the corresponding expectations, the
effective SINR per user is given by [39] and (18) at the bottom
of this page, where

ςkj ,
∑M

m=1
ηmjβmkγmj . (19)

Importantly, ρdNςkk is the power of the beamforming gain
uncertainty which equals the variance of the effective down-
link channel,

∑M
m=1

√
ρdηmkg

T
mkĝ

∗
mk. Finally, by inserting

wmk = wCB
mk into (9), the per-AP power constraint in (10)

results in
K∑
k=1

ηmkγmk ≤
1

N
, m = 1, . . . ,M. (20)

B. Normalized Conjugate Beamforming
NCB consists in setting wNCB

mk = ĝ∗mk/‖ĝmk‖. By inserting
this into (17) and computing the corresponding expectations,
the effective SINR per user is given by [13] and (21) at the
bottom of this page. In this case, the power of the beamforming
gain uncertainty is equal to

E
{
|BUNCB

k |2
}

=ρd

M∑
m=1

ηmk
[
βmk+(N−1−α2)γmk

]
, (24)

and the per-AP power constraint for NCB is∑K

k=1
ηmk ≤ 1, m = 1, . . . ,M. (25)

SINRCB
k =

ρdN
2

(
M∑
m=1

√
ηmkγmk

)2

ρdN
K∑
j=1

ςkj + ρdN2
K∑
j 6=k

(
M∑
m=1

√
ηmjγmj

βmk
βmj

)2∣∣ϕH
kϕj

∣∣2 + 1

, (18)

SINRNCB
k =

ρdα
2

(
M∑
m=1

√
ηmkγmk

)2

ρd(N − 1− α2)
M∑
m=1

ηmkγmk + ρd
K∑
j=1

M∑
m=1

ηmjβmk + ρd
K∑
j 6=k

Υkj |ϕH
kϕj |2 + 1

, (21)

where

Υkj , (N − 1)

M∑
m=1

ηmjγmj
β2
mk

β2
mj

+ α2
M∑
m=1

M∑
n 6=m

√
ηmjηnjγmjγnj

βmkβnk
βmjβnj

, (22)

α ,
Γ(N + 1/2)

Γ(N)
. (23)
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C. Enhanced Normalized Conjugate Beamforming

ECB consists in setting

wECB
mk =

ĝ∗mk
‖ĝmk‖2

. (26)

The reason why this normalization should enhance the nor-
malization ĝ∗mk/‖ĝmk‖ and provide higher SE is intuitive.
Consider the effective downlink channel at user k and neglect
the channel estimation error,

akk =

M∑
m=1

√
ηmkg

T
mkwmk ≈

M∑
m=1

√
ηmkĝ

T
mkwmk. (27)

If wmk = wECB
mk , then akk ≈

∑M
m=1

√
ηmk is ideally

deterministic. Conversely, if wmk = wNCB
mk as in [13], then

akk ≈
∑M
m=1

√
ηmk‖ĝmk‖, so that the fluctuations of the

channel gain are reduced but not entirely equalized.
By inserting (26) into (17) and computing the corresponding

expectations, the effective SINR per user is given by (28) at
the bottom of this page, where

Θkj,
N − 2

N − 1

M∑
m=1

ηmj
β2
mk

β2
mj

+

M∑
m=1

M∑
n 6=m

√
ηmjηnj

βmkβnk
βmjβnj

. (29)

Proof: See Appendix A.
For ECB, the power of the beamforming gain uncertainty is
equal to

E
{
|BUECB

k |2
}

=
ρd

N − 1

M∑
m=1

ηmk

(
βmk
γmk

− 1

)
. (30)

By inserting wmk = wECB
mk into (9), the per-AP power

constraint in (10) becomes

K∑
k=1

ηmk E

{
1

‖ĝmk‖2

}
≤ 1 =⇒

K∑
k=1

ηmk
γmk

≤ N − 1, (31)

m = 1, . . . ,M . Importantly, equations (28), (31) are defined
if N > 1. In fact, E

{
1/|x|2

}
does not converge if x is a scalar

circularly symmetric Gaussian random variable.

IV. PERFORMANCE ANALYSIS OF CONJUGATE
BEAMFORMING WITH DOWNLINK TRAINING

In this section we analyze the performance of CB when
downlink training is carried out. Downlink training takes
place via pilot beamforming as described in [11], and herein
we extend the analysis in [11] to multi-antenna APs. By
conjugate beamforming the pilots, the estimation overhead is
independent of the number of APs. The channel estimation
overhead rather scales with K and does not require any

feedback from the users to the APs as the channel is reciprocal
in TDD mode.

The downlink training phase is τd,p samples long. This
increases the pilot overhead up to τu,p + τd,p. Let √τd,pψk ∈
Cτd,p be the downlink pilot sequence intended for user k,
‖ψk‖ = 1, and ρd,p be the normalized SNR of the downlink
pilot symbol. AP m beamforms the pilots as

Xm,p =
√
τd,pρd,p

K∑
k=1

√
ηmkĝ

∗
mkψ

T
k ∈ CN×τd,p , (32)

subject to the following power constraint:

E
{
‖Xm,p‖2F

}
= τd,pρd,p TrE


K∑
k=1

K∑
j=1

√
ηmkηmj ĝ

∗
mkĝ

T
mjψ

T
kψ
∗
j


= τd,pρd,p Tr

(
K∑
k=1

ηmkγmkIN

+

K∑
k=1

K∑
j 6=k

√
ηmkηmjE

{
ĝ∗mkĝ

T
mj

}
ψT
kψ
∗
j


(a)
= τd,pρd,pN

K∑
k=1

ηmkγmk ≤ τd,pρd,p, (33)

where in (a) we have assumed that the pilot assignment is
constrained such that

ψT
kψ
∗
j = 0 if ϕk = ϕj . (34)

This limitation is not significant in cases of practical in-
terest since the number of assignable uplink and downlink
pilot pairs satisfying (34) is larger than the number of ac-
tive users, as shown in [11]. Importantly, this ensures that
TrE

{
ĝ∗mkĝ

T
mj

}
ψT
kψ
∗
j = 0,∀j 6= k. From (32)–(33), we have

E
{
‖Xm,p‖2F

}
≤ τd,pρd,p =⇒

K∑
k=1

ηmkγmk ≤
1

N
.

It is observed that the data power constraint in (20) and the
above pilot power constraint are identical. The pilot signal
received at user k is given by

ydp,k=

M∑
m=1

gT
mkXm,p + ωdp,k

=
√
τd,pρd,p

K∑
j=1

M∑
m=1

√
ηmjg

T
mkĝ

∗
mjψ

T
j +ωdp,k (35)

∈ Cτd,p , where ωdp,k is an additive noise vector whose
elements are i.i.d. CN (0, 1).

SINRECB
k =

ρd

(
M∑
m=1

√
ηmk

)2

ρd
N−1

M∑
m=1

ηmk

(
βmk
γmk
−1

)
+

ρd
N−1

K∑
j 6=k

M∑
m=1

ηmj
βmk
γmj

+ρd
K∑
j 6=k

Θkj |ϕH
kϕj |2 + 1

, (28)
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From ydp,k, user k separates its channel observation as

y̌dp,k = ydp,kψ
∗
k

=
√
τd,pρd,pakk+

√
τd,pρd,p

K∑
j 6=k

akjψ
T
jψ
∗
k+ωdp,kψ

∗
k, (36)

where
akj ,

∑M

m=1

√
ηmjg

T
mkĝ

∗
mj

denotes the effective downlink channel seen by user k but
intended for user j. Based upon y̌dp,k, user k estimates akk
by MMSE estimation. Following the same approach as in [11],
we can compute the MMSE downlink channel estimate âkk
as well as its variance in closed form,

κk,Var {âkk}=
τd,pρd,pN

2
(∑M

m=1 ηmkγmkβmk

)2
1+τd,pρd,pN

M∑
m=1

K∑
j=1

ηmjγmjβmk|ψH
kψj |2

=
τd,pρd,pN

2ς2kk

1 + τd,pρd,pN
∑K
j=1 ςkj |ψH

kψj |2
. (37)

A closed-form expression for an approximate3 achievable
downlink SE can be derived by using the so-called capac-
ity bound with side information [5, Section 2.3.5], and by
following the same methodology as in [11]:

SEk = ξ

(
1− τu,p + τd,p

τc

)
log2(1 + SINRk), (38)

where SINRk is given by (39), (40) at the bottom of this page.
Proof: See Appendix B.

The SINR gain over the case where the users do not have
access to the CSI is noticeable. Compared to (18), in (40) the
coherent gain (namely the numerator of the SINR) is increased
by ρdκk which is at most equal to the variance of the effective
downlink channel, ρdNςkk. Importantly, downlink training
reduces the uncertainty at the user which now can employ
its CSI knowledge when performing data decoding. In fact,
the channel uncertainty, ρdNςkk, is significantly decreased by
ρdκk. This residual self-interference represents the variance of
the downlink channel estimation error.

V. MAX-MIN FAIRNESS POWER CONTROL

Max-min fairness (MMF) power control is an egalitarian
policy that ensures maximized identical SE throughout the
network. This policy perfectly suits cell-free massive MIMO

3The approximation comes from the non-Gaussian nature of {akj}, and
from [40]. See [11] for further details.

which by nature guarantees a more uniform quality of service
than co-located massive MIMO [3]. Such a sophisticated
power control requires a centralized approach and solving
a convex optimization problem. However, requirements on
latency, computational complexity, and fronthauling load, can
be relaxed by two factors: (i) if relying on closed-form SE
expressions, power control can operate at the large-scale fading
time scale; (ii) if combined with clustering, the coordination
can be confined within few APs. These two aspects are key
in all our implementations.

In general, the optimization problem for the MMF power
control subject to per-AP power constraint can be formulated
as

max
{ηmk≥0}

min
k

SINRk (41a)

s.t. E
{
‖xm‖2

}
≤ ρd, ∀m. (41b)

Next, we give rigorous formulations for the MMF opti-
mization problem with NCB and ECB. These problems have
structural similarity to that in [2], hence they admit global
optimal solutions that can be computed by solving a sequence
of second-order cone programs.

A. Problem Formulation for NCB

Through some simple mathematical manipulations we re-
shape the SINR expression in (21). Firstly, we rewrite (22) as

Υkj = (N − 1)

M∑
m=1

ηmjγmj
β2
mk

β2
mj

+ α2
M∑
m=1

M∑
n 6=m

√
ηmjηnjγmjγnj

βmkβnk
βmjβnj

+ α2
M∑
m=1

ηmjγmj
β2
mk

β2
mj

− α2
M∑
m=1

ηmjγmj
β2
mk

β2
mj

= (N − 1− α2)

M∑
m=1

ηmjγmj
β2
mk

β2
mj

+

(
α

M∑
m=1

√
ηmjγmj

βmk
βmj

)2

, (42)

and by inserting (42) into (21), we obtain

SINRNCB
k =

ρdα
2
(∑M

m=1

√
ηmkγmk

)2
T1k + T2k + 1

, (43)

SINRk ≈
ρdE

{
|âkk|2

}
ρdE {|ãkk|2}+ ρd

∑K
j 6=k E {|akj |2}+ 1

(39)

=
ρdN

2
(∑M

m=1

√
ηmkγmk

)2
+ ρdκk

ρd(Nςkk − κk) + ρd
K∑
j 6=k

[
Nςkj +N2

∣∣ϕH
kϕj

∣∣2( M∑
m=1

√
ηmjγmj

βmk
βmj

)2
]

+ 1

. (40)



INTERDONATO et al.: ENHANCED NORMALIZED CONJUGATE BEAMFORMING FOR CELL-FREE MASSIVE MIMO 7

where

T1k = ρd

K∑
j=1

M∑
m=1

ηmj
[
βmk + (N−1−α2)γmk|ϕH

kϕj |2
]

= ρd

K∑
j=1

M∑
m=1

ηmjϑmkj , (44)

ϑmkj , βmk + (N−1−α2)γmk|ϕH
kϕj |2, (45)

T2k = ρdα
2
K∑
j 6=k

(
M∑
m=1

√
ηmjγmj

βmk
βmj

)2

|ϕH
kϕj |2

(a)
= ρdα

2
K∑
j 6=k

(
M∑
m=1

√
ηmjγmk

)2

|ϕH
kϕj |2. (46)

Note that −π/4 < N − 1−α2 < 0, thus ϑmkj is always
positive since βmk ≥ γmk. The equality (a) follows from (7).
By using (43) the MMF optimization problem in (41) can be
formulated in epigraph form for NCB as

maximize
{ηmk≥0}, ν

ν (47a)

s.t. ‖sk‖ ≤ γT
kkuk, ∀k, (47b)

‖u′m‖ ≤
√
ρd, ∀m, (47c)

where ν is a new variable which represents the minimum SINR
among the users that has to be maximized, and:
• U = [u1, . . . ,uK ], uk =

√
ρd
[√
η1k, . . . ,

√
ηMk

]T
, and

u′m is the mth row of U;
• γkj = α |ϕH

kϕj |
[√
γ1k, . . . ,

√
γMk

]T
;

• sk =
√
ν ·
[
vT
kI−k, ‖bk1 ◦ u1‖, . . . , ‖bkK ◦ uK‖, 1

]T
;

• vk ,
[
γT
k1u1, . . . ,γ

T
kKuK

]T
;

• I−k is a K × (K − 1) matrix obtained from Ik with the
kth column removed;

• bkj =
[√

ϑ1kj , . . . ,
√
ϑMkj

]T
.

The constraints (47b), (47c) are jointly second-order cones
with respect to the power control coefficients and ν. If ν is
fixed, then (47) is convex, and the globally optimal solution
can be obtained by using interior-point methods. The globally
optimal solution to (47) can be obtained in polynomial time
via the bisection method [41] by solving a sequence of convex
(more specifically, second-order cone) feasibility problems.
A detailed description of the bisection search algorithm for
the MMF power control and a more general formulation for
the MMF optimization problem can be found, for example,
in [2], [42] and [6, Section 7.1.1], respectively.

B. Problem Formulation for ECB

Similarly, for ECB we first realize that (29) can be written as

Θkj =
N − 2

N − 1

M∑
m=1

ηmj
β2
mk

β2
mj

+

M∑
m=1

M∑
n 6=m

√
ηmjηnj

βmkβnk
βmjβnj

+

M∑
m=1

ηmj
β2
mk

β2
mj

−
M∑
m=1

ηmj
β2
mk

β2
mj

=

(
N − 2

N − 1
− 1

) M∑
m=1

ηmj
β2
mk

β2
mj

+

(
M∑
m=1

√
ηmj

βmk
βmj

)2

=

(
M∑
m=1

√
ηmj

βmk
βmj

)2

− 1

N − 1

M∑
m=1

ηmj
β2
mk

β2
mj

. (48)

As a result, the SINR expression in (28) is given by (49) at
the bottom of this page, where we have defined

%mkj ,
1

N−1

(
βmk
γmj
− β

2
mk

β2
mj

|ϕH
kϕj |2

)
,

which is always positive since βmk ≥ γmk, and N > 1.
The MMF optimization problem in (41) can be formulated
in epigraph form for ECB as

maximize
{ηmk≥0}, ν

ν (50a)

s.t. ‖sk‖ ≤ 1Tuk, ∀k, (50b)

‖γ̂′m ◦ u′m‖ ≤
√
ρd(N − 1), ∀m, (50c)

where ν, uk and u′m are defined as in (47), 1 denotes the
M -dimensional vector of ones, and:
• sk =

√
ν ·
[
vT
kI−k, ‖zk1 ◦ u1‖, . . . , ‖zkK ◦ uK‖, 1

]T
;

• vk ,
[
bT
k1u1, . . . ,b

T
kKuK

]T
;

• γ̂′m is the mth row of Γ̂, Γ̂=[γ̂1, . . . , γ̂K ] and

γ̂k =
[
γ
−1/2
1k , . . . , γ

−1/2
Mk

]T
;

• bkj = |ϕH
kϕj |

[
β1k
β1j

, . . . ,
βMk

βMj

]T

;

• zkj =
[√
%1kj , . . . ,

√
%Mkj

]T
.

C. Problem Formulation for CB with Downlink Training

The formulation of the power optimization problem for the
CB scheme with downlink training and multi-antenna APs
follows that in [11, Section IV-A], with a simple adjustment:
γmk must be replaced with Nγmk everywhere in the problem

SINRECB
k =

ρd

(∑M
m=1

√
ηmk

)2
ρd
N−1

K∑
j=1

M∑
m=1

ηmj

(
βmk
γmj
− β

2
mk

β2
mj

|ϕH
kϕj |2

)
+ρd

K∑
j 6=k

(
M∑
m=1

√
ηmj

βmk
βmj

)2

|ϕH
kϕj |2+1

=
ρd

(∑M
m=1

√
ηmk

)2
ρd

K∑
j=1

M∑
m=1

ηmj%mkj+ρd
K∑
j 6=k

(
M∑
m=1

√
ηmj

βmk
βmj

)2

|ϕH
kϕj |2+1

, (49)
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formulation. Compared to NCB and ECB, the MMF power
control for CB with downlink training does not rigorously
provide identical SINRs as it results from a sequential convex
approximation and thereby the problem solutions are sub-
optimal [11].

VI. SIMULATION RESULTS

In this section, we compare the performance of the precod-
ing schemes discussed in Section III and IV by presenting the
results of our simulations. Next, we introduce the simulation
scenario and the adopted settings.

A. Simulation Scenario and Settings

In our simulations we consider a nominal area of D × D
squared meters, wherein APs and users are uniformly located
at random. A wraparound technique is used to simulate a cell-
free network. A random realization of AP and user locations
determines a set of large-scale fading coefficients and con-
stitutes a snapshot of the network. For a network snapshot
the achievable downlink SEs are computed, according to the
expressions presented in Section III and IV. The cumulative
distribution function (CDF) of the SE is obtained over many
network snapshots.

We adopt the 3GPP Urban Microcell pathloss model defined
in [43, Table B.1.2.1-1] as

PLmk [dB] = −30.5− 36.7 log10

(
dmk
1 m

)
, (51)

where dmk is the distance (in three dimensions) between AP m
and user k, and assuming a 2 GHz carrier frequency. We also
consider log-normal shadow fading with standard deviation σsh
and spatial correlations both at the APs and the users. More
specifically, let qmk ∼ N (0, 1) be defined as

qmk =
√
ε am +

√
1− ε bk, (52)

where am ∼ N (0, 1) and bk ∼ N (0, 1) are independent
random variables capturing the shadow fading effects from AP
m to all the users and from user k to all the APs, respectively.
The parameter 0 < ε < 1 weighs these effects. The shadow
fading spatial correlations are thus modeled as [43]

E {aman} = 2−(d
AP
mn/ 9 m), E {bkbj} = 2−(d

UE
kj / 9 m),

(53)
where dAPmn is the distance between AP m and AP n, dUEkj is
the distance between user k and user j, and 9 meters is the
decorrelation distance. Pathloss and log-normal shadow fading
enter into the large-scale fading coefficients as

βmk = PLmk · 10 σshqmk/10. (54)

Unless otherwise stated, we use the following simulation
settings: D = 500 m, σsh = 4 dB, ε = 0.5, AP height
10 m, user height 1.5 m, channel bandwidth B = 20 MHz,
antenna gains 0 dBi. The TDD coherence block is partitioned
equally between uplink and downlink, so ξ = 0.5, and
it is τC = 200 samples long, resulting from a coherence
bandwidth of 200 kHz and a coherence time of 1 ms. The
maximum transmit power per AP and per user is 200 mW

TABLE II
PER-AP POWER CONSTRAINTS FOR DIFFERENT PRECODING SCHEMES.

CB, CB-DT NCB ECB

N
K∑
k=1

ηCB
mkγmk ≤ 1

K∑
k=1

ηNCB
mk ≤ 1

1

N − 1

K∑
k=1

ηECB
mk

γmk
≤ 1

and 100 mW, respectively. This is normalized by the noise
power, n(dBm)

p = −92 dBm, to obtain

ρd [dBm] = ρd,p [dBm] = 10 log10(200)− n(dBm)
p , (55)

ρu [dBm] = 10 log10(100)− n(dBm)
p . (56)

In all our simulations, we also consider the largest-large-
scale-fading-based AP selection [39], according to which an
AP participates in the service of user k if its channel is
sufficiently strong, and more specifically if βmk belongs to
the user-k-specific AP cluster Ak which satisfies

|Ak|∑
m=1

β̄mk∑M
n=1 βnk

≥ 95%, (57)

where |Ak| is the cardinality of the set Ak with min(|Ak|) =
10, and {β̄1k, . . . , β̄M,k} are the large-scale fading coefficients
sorted in descending order.

To emphasize that the power control coefficients of the
considered precoding schemes are subject to different per-
AP power constraints, we denote by {ηCB

mk}, {ηNCB
mk } and

{ηECB
mk } the power control coefficients related to CB, NCB

and ECB, respectively. Note that the power constraints for
CB-DT and CB are identical, hence we use {ηCB

mk} to denote
the coefficients for CB-DT too. Table II reports the per-AP
power constraints for the considered precoding schemes. As an
alternative to the MMF power control described in Section V,
we consider a heuristic distributed power control, also knows
as maximal-ratio [2], which consists in setting the power
control coefficients as

ηCB
mk =

1

N
∑K
j=1 γmj

, (58)

ηNCB
mk = Nγmkη

CB
mk, (59)

ηECB
mk = (N − 1)γmkη

NCB
mk . (60)

With these settings the respective power constraints hold with
equality, and thereby each AP spends all the available transmit
power. Maximal-ratio power control is an “opportunistic”
policy whereby more power is allocated to the users with better
channel conditions.

Finally, since τu,p < K, we assume that the uplink pilot
sequences are assigned at random and reused throughout the
network. When downlink training is performed, the downlink
pilot sequences are assigned as proposed in [11] to satisfy the
condition in (34).

B. Performance Evaluation

The first aspect we focus on is the impact of the precoding
normalization on the performance. In this regard, we look at
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TABLE III
EXPLICIT CLOSED-FORM EXPRESSIONS OF THE EXPECTATIONS IN (17) AND (39).

Coherent Gain Self-Interference

CB ρdN
2

(
M∑
m=1

√
ηCB
mkγmk

)2

ρdN
M∑
m=1

ηCB
mkβmkγmk

NCB ρdα
2

(
M∑
m=1

√
ηNCB
mk γmk

)2

ρd
M∑
m=1

ηNCB
mk βmk+ρd(N−1−α2)

M∑
m=1

ηNCB
mk γmk

ECB ρd

(
M∑
m=1

√
ηECB
mk

)2
ρd
N−1

M∑
m=1

ηECB
mk

(
βmk
γmk
−1

)
CB-DT ρdN

2

(
M∑
m=1

√
ηCB
mkγmk

)2

+ ρdκk ρdN
M∑
m=1

ηCB
mkβmkγmk − ρdκk

Inter-user Interference

CB, CB-DT ρdN
K∑
j 6=k

[
M∑
m=1

ηCB
mjβmkγmj+N

(
M∑
m=1

√
ηCB
mjγmj

βmk
βmj

)2∣∣ϕH
kϕj

∣∣2]

NCB ρd
K∑
j 6=k

[
M∑
m=1

ηNCB
mj

(
βmk+(N−1−α2)γmk|ϕH

kϕj |2
)
+

(
α
M∑
m=1

√
ηNCB
mj γmk

)2

|ϕH
kϕj |2

]

ECB ρd
K∑
j 6=k

[
1

N−1

M∑
m=1

ηECB
mj

(
βmk
γmj
− β

2
mk

β2
mj

|ϕH
kϕj |2

)
+

(
M∑
m=1

√
ηECB
mj

βmk
βmj

)2

|ϕH
kϕj |2

]

two metrics: (i) the power of the self-interference as share
of the desired signal power which is also known as coherent
gain; (ii) the power of the inter-user interference as share of
the coherent gain.

If downlink training is not performed, the self-interference
corresponds to the beamforming gain uncertainty introduced
in Section III. Hence, the first metric is simply

E
{
|BUk|2

}
|DSk|2

, (61)

where E
{
|BUk|2

}
is equal to ρdNςkk for CB, and given

by (24) and (30) for NCB and ECB, respectively. The coherent
gain is given by the term in the numerator of the SINR
expressions in (18), (21) and (28), respectively.

Importantly, the metric (61) gives a meaningful measure of
the channel hardening, since it is a normalized variance of the
effective downlink channel for user k. The smaller this vari-
ance is, the more the channel hardens. Conversely, for the CB
scheme with downlink training (CB-DT) the self-interference
corresponds to the variance of the downlink channel estimation
error, ρdE

{
|ãkk|2

}
= ρdNςkk − ρdκk, i.e., the first term of

the denominator in (40), the coherent gain is the term in the
numerator of (40), namely ρdE

{
|âkk|2

}
, and the inter-user

interference is the second term of the denominator in (40),
corresponding to ρd

∑K
j 6=k E

{
|akj |2

}
.

Table III summarizes the closed-form expressions of coher-
ent gain, self-interference and inter-user interference for all
the considered precoding schemes.

In Fig. 1, we show the average (over many network snap-
shots) ratio of the self-interference to the coherent gain for
different numbers of antennas per AP, N = {2, 4, 8, 16}. In
this simulation, we adopt the following settings: M = 200
APs, K = 40 users, τu,p = τd,p = 20 pilots and maximal-ratio

Fig. 1. Average self-interference to coherent gain ratio in dB, for different
numbers of antennas per AP. In this simulation: M = 200, K = 40, τu,p =
τd,p = 20 and maximal-ratio power control.

power control. The results in Fig. 1 demonstrate the outstand-
ing ability of ECB to boost the channel hardening compared
to NCB and CB, reducing the normalized beamforming gain
uncertainty by at least 5 dB and 10 dB, respectively. In
addition, ECB is able to provide almost the same amount
of self-interference to coherent gain ratio as CB-DT (the gap
reduces as the number of antennas per AP increases), which
tells us that the CSI acquisition at the user, although reducing
the uncertainty about the channel, does not provide an added
value in terms of performance.

Certainly, the variance of the downlink channel estimation
error depends on the level of downlink pilot contamination
which in turn depends on the number of orthogonal downlink
pilots. The self-interference for CB-DT is minimized if each
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Fig. 2. CDF of the self-interference to coherent gain ratio in dB, for N = 8.
The settings are identical to those in Fig. 1.

user is assigned a unique orthogonal downlink pilot (no
pilot reuse). Hence, it is interesting to look at how far the
performance of ECB is from that ideal case. In Fig. 2 we
show the CDF of the self-interference to coherent gain ratio
for N = 8 whose mean value has been shown in Fig. 1. In
these results, we include the CB-DT with τd,p = K, i.e., no
downlink pilot reuse. Compared to this ideal case, ECB only
loses uniformly around 3 dB. However, this additional pilot
overhead significantly reduces the SE of CB-DT, as shown
in (38).

Another important aspect to look at is how the considered
precoding schemes tackle the inter-user interference and how
much coherent gain they achieve. None of the considered
schemes provides interference suppression by nature, and the
amount of interference in the network remains essentially the
same regardless of the variant of CB that is adopted. In fact,
the transmit power of any AP is, in any case, equal to ρd which
is ensured by performing the maximal-ratio power control
scheme described by equations (58)-(60).

From the same set of simulations used so far, we now show
in Fig. 3 the power of the inter-user interference as share
of the coherent gain, for different setups: N = {2, 4, 8, 16}.
From Fig. 3 we observe that the inter-user interference to
coherent gain ratio decreases with the number of antennas
per AP thanks to an increasing coherent gain. Interestingly,
ECB performs poorly when N = 2. By substituting eqs. (58)-
(60) into the expressions of the coherent gain in Table III,
we indeed observe that the coherent gain is proportional to N
and N − 1 for CB and ECB, respectively. If N = 2, then the
coherent gain of ECB is half the coherent gain of CB. This 3
dB loss with respect to CB can be observed in Fig. 3. Clearly,
this gap vanishes as N grows.

Importantly, Fig. 3 tells us that the precoding normalization
has a significant impact only on the self-interference and in
absence of CSI at the users. Hence, we can argue that any
precoding normalization along with downlink training would
yield negligible benefits compared to CB-DT. We will use this
important consideration to draw general conclusions about the
usefulness of the downlink training.

Fig. 3. Average inter-user interference to coherent gain ratio in dB, for
different numbers of antennas per AP. The simulation settings are identical to
those in Fig. 1.

In Fig. 4, we present the CDF of the achievable SE for
the considered precoding schemes. The simulation settings
are the same used so far, and we consider N = 8 and
maximal-ratio power control. Fig. 4a shows the gross SE,
namely (16) and (38) without the pre-log factor capturing
the pilot estimation overhead. By doing so, we want to
emphasize how ECB uniformly performs tightly close to CB-
DT4, regardless of the pilot overhead. Fig. 4b shows how the
additional pilot overhead negatively affects the SE, making
ECB the most desirable precoding scheme.

ECB outperforms NCB, especially at high percentiles but
this is due to the opportunistic nature of the maximal-ratio
power control which prioritizes the users with stronger chan-
nel. In fact, if we perform MMF power control as described
in Section V a small gain can be observed for the minimum SE
per user (see Fig. 5a). The reason why this gain is relatively
small is intuitive: the power control coefficients {ηmk} are part
of the effective downlink channel gain, thus when optimized,
they act on the normalization in different ways (whereas in
maximal-ratio power control they are proportional to γmk)
in order to maximize the minimum SE. Hence, MMF power
control tends to reduce the differences between NCB and
ECB. An additional reason why there is very little difference
in SE at low percentiles between the different methods is
that the inter-user interference to coherent gain ratio, which
is basically the same for all the schemes for N = 8, is
dominant over the self-interference to coherent gain ratio, as
shown in Fig. 1 and Fig. 3, hence the gain provided by ECB
(and CB-DT) in terms of self-interference becomes negligible.
CB-DT benefits from optimal power control for an additional
aspect: downlink pilots are beamformed and power-controlled
by the same power control coefficients {ηCB

mk} used for the data
transmission. Hence, MMF power control adjusts the power
levels of the downlink pilot transmissions to reduce the pilot

4Strictly speaking, CB-DT is not an “upper-bound”, but constitutes a real-
istic performance benchmark considering distributed conjugate beamforming
schemes relying only on local channel estimates. For instance, the modified
CB proposed in [15] can achieve signal-to-interference ratio (SIR) values close
to a genie-aided receiver, but requires CSI exchange among the APs.
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(a) CDF of the achievable gross SE per user

 

(b) CDF of the achievable (net) SE per user

Fig. 4. SE with maximal-ratio power control. The simulation settings are
identical to those in Fig. 1. Here, we consider N = 8.

 

(a) CDF of the achievable min SE per user with τc = 200.

 

(b) CDF of the achievable min SE per user with τc = 100.

Fig. 5. SE with MMF power control. Here M = 100 APs, K = 20 users,
τu,p = τd,p = 10 pilots and D = 250 m.

Fig. 6. Mean SE as the number of antennas per AP varies. The simulation
settings are identical to those in Fig. 4.

Fig. 7. Mean SE as the number of APs varies. The simulation settings are
identical to those in Fig. 4.

contamination and achieve the target SINR. However, as we
can see from Fig. 5a, this is not sufficient to outperform ECB,
which is the preferable scheme.

The settings adopted for the simulations in Fig. 5a consist
of: M = 100 APs equipped with N = 8 antennas, K = 20
users, τu,p = τd,p = 10 pilots, τc = 200 and D = 250
m. Being quite sensitive to the pilot overhead, CB-DT is
significantly affected by the length of the coherence block. If
we shrink the coherence block to τc = 100, then the resulting
min SE of CB-DT, shown in Fig. 5b, degrades more rapidly
compared to the other downlink-training-free schemes.

Finally, we investigate how the mean SE varies with the
number of antennas per APs (Fig. 6) respectively the number
of APs (Fig. 7). Increasing the number of antennas per AP
always boosts the channel hardening [12], and this makes
downlink training unnecessary. In fact, Fig. 6 shows that CB-
DT is preferable for very small values of N , while ECB
becomes the best scheme with N ≥ 6, and the gap between
ECB and CB-DT increases with N . Importantly, the ability
of NCB to help the effective downlink channel to harden is
inferior compared to ECB, and NCB performs at most equally
as CB-DT. Increasing the number of APs, M , is not as crucial
as increasing N for the channel to harden [12]. Fig. 7 shows
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that ECB uniformly outperforms all the other schemes and the
performance improvement increases with M , although slower
than it would increase with N . Interestingly, NCB does not
outperform CB-DT despite N = 8 and the additional overhead
that penalizes CB-DT.

In summary, ECB offers a better support for the channel
to harden than NCB and its excellent performance makes
downlink training unnecessary in the considered scenarios.

VII. CONCLUSION

In this work, we have studied a variant of the conjugate
beamforming scheme, dubbed enhanced normalized conjugate
beamforming (ECB), for cell-free massive MIMO systems
with multi-antenna APs. The ECB precoding vector consists
of the conjugate of the channel estimate normalized by its
squared norm. This normalization term is the core of our
contribution and leads to many benefits. Firstly, this precoding
normalization helps, more than any other normalization pro-
posed in the literature, to achieve channel hardening, i.e., to
make the effective downlink channel gain nearly deterministic.
This, in turn, makes data decoding methods based on the
channel statistics more reliable. Secondly, we have demon-
strated that ECB with statistical CSI knowledge at the users
can provide better downlink spectral efficiency than conjugate
beamforming with pilot-based downlink training, even with
relatively small numbers of APs and antennas per AP. Since
the precoding normalization significantly affects only the self-
interference due to the user’s channel uncertainty, then it would
not appreciably increase the performance in the presence of
downlink training. We can thereby conclude that ECB might
render the downlink pilots unnecessary from a performance
viewpoint. This conclusion does not contrast with our previous
work [11] but rather closes the loop. In fact, the performance
gap between the conventional conjugate beamforming with
and without downlink training is considerable, even with
multi-antenna APs, but can be filled up by the precoding
normalization herein proposed.

APPENDIX

A. Proof of (28)
Next, we include the computation in closed form of the

expectations needed to derive the SINR expression in (28). Let
gmk = ĝmk + g̃mk ∈ CN and ĝmk be independent of g̃mk.
Moreover, gmk∼CN (0, βmkIN ), ĝmk∼CN (0, γmkIN ) and
g̃mk∼CN (0, (βmk − γmk)IN ). It holds that,
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∗
mk|2
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where in the last step we have used that E
{

1/‖ĝmk‖2
}

=

1/((N − 1)γmk). Consider two different users identified by
the indices k and j, j 6= k. It holds that,
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(63)

In these equalities, if ϕk 6= ϕj , then we exploit that gmk
is independent of ĝmj , else if ϕk = ϕj we exploit the
relationships among contaminated channel estimates and their
mean-squares in (7) and (8), respectively. By using the results
above, we can compute in closed form
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where in the last equality we exploit the independence of
channel responses and channel estimates of different APs
(n 6= m), and the fact that the term

ρd
N − 1

M∑
m=1

ηmj
βmk
γmj

appears in both cases whether ϕk = ϕj or not, as shown
in (62). Hence, this term does not depend on |ϕH

kϕj |2. By
inserting the results in (64)–(66) into (17) we obtain (28).
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B. Proof of (38)

In this section, we include a proof for the closed-form
expression of the achievable downlink rate in (38). This
consists in showing how both (37) and (40) are obtained. The
MMSE downlink channel estimate is given by [11]

âkk = E {akk}+
Cov {akk, y̌dp,k}

Var {y̌dp,k}
(y̌dp,k − E {y̌dp,k}), (67)

and its variance is

κk = Var {âkk} =
|Cov {akk, y̌dp,k} |2

Var {y̌dp,k}
. (68)

By following the same approach as in [11], we have
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where equations (69)-(70) hold when imposing (34). By insert-
ing equations (69)-(70) into (68), we obtain (37). The mean-
square of the downlink channel estimate is given by
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where
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√
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as the MMSE estimator is unbiased under the regularity
assumptions. The mean-square of the downlink channel es-
timation error is given by
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where (a) results from
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while (b) follows from (71) and the fact that
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Finally, we focus on deriving E
{
|akj |2

}
, j 6= k, in closed

form. Under the same assumptions on the channel vectors
considered in Appendix A, it holds that
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In these equalities, if ϕk 6= ϕj , then we exploit that gmk
is independent of ĝmj , else if ϕk = ϕj we exploit the
relationships among contaminated channel estimates and their
mean-squares in (7) and (8), respectively. Moreover, in (77),
we exploit the independence of channel responses and channel
estimates of different APs (n 6= m). By using the results
in equations (76)-(77), we can compute in closed form
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By inserting (71), (72) and (78) into (39), we finally ob-
tain (40) and in turn (38).
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