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Cyclic behaviour of Volterra composition operators

Alfonso Montes-Rodŕıguez, Alejandro Rodŕıguez-Mart́ınez and Stanislav Shkarin

Abstract

We determine the cyclic behaviour of Volterra composition operators, which are defined as

(Vϕf)(x) =

∫ϕ(x)

0

f(t) dt, f ∈ Lp[0, 1], 1 � p � ∞,

where ϕ is a measurable self-map of [0, 1]. The cyclic behaviour of Vϕ is essentially determined
by the behaviour of the inducing symbol ϕ at 0 and at 1. As a particular result, we provide new
examples of quasinilpotent supercyclic operators, which extend and complement previous ones
of Héctor Salas.

1. Introduction

For each Lebesgue measurable self-map ϕ of the unit interval [0, 1] and each 1 � p � ∞, the
Volterra composition operator is defined as

(Vϕf)(x) =
∫ϕ(x)

0

f(t) dt, f ∈ Lp[0, 1],

which is always measurable because it is the composition of an absolutely continuous (difference
of increasing functions) function with the measurable function ϕ. If ϕ is the identity map, then
the operator Vϕ is just the classical Volterra operator, which as usual is denoted by V . Observe
that Vϕ = CϕV , where Cϕ denotes the operator that to each function f assigns the function
f ◦ ϕ. Since Cϕ is bounded from L∞[0, 1] into itself and V is bounded from Lp[0, 1] into L∞[0, 1]
is compact (see [1, p. 44]), it follows that Vϕ acting on Lp[0, 1] is compact.

Whitley [24] and Tong [22] independently (see also [15, Corollary 2.2]) proved that Vϕ is
quasinilpotent if and only if ϕ(x) � x for each 0 � x � 1. The cyclic behaviour of an operator
depends much on the behaviour of its iterates and although there is a formula for the iterates
of Volterra composition operators, this formula is not handleable. However, this handicap may
be overcome.

In Section 2, we show that, for ϕ(x) = xα, 0 < α � 1, the operator Vϕ is cyclic, with cyclic
vector the non-zero constant functions. Indeed, the constant function 1 is cyclic for Vψ, with
ψ(x) = 1 − ϕ(1 − x), if and only if the eigenfunctions of Vϕ span L2[0, 1]. In particular, there
are cyclic Volterra operators with the graph of their symbols under the graph of the identity.

In Section 3, we deal with the asymptotic behaviour of the norms of iterates of Vϕ. Indeed,
for the most interesting class of symbols, the sequence {‖V nϕ ‖1/n2} tends to a quantity that
depends only on ϕ′(0) and ϕ′(1).
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In Section 4, in order to obtain positive results on the supercyclicity of Vϕ as well as on
the hypercyclicity of I + Vϕ, we need to extend Salas’s theorem [19] on the hypercyclicity
of perturbations of the identity by backward weighted shifts. We prove a new criterion for an
operator acting on a Fréchet space to be hypercyclic.

In Section 5, we deal with supercyclicity and hypercyclicity of Volterra composition
operators. Salas in [20] asked whether the classical Volterra operator is supercyclic or not,
which was answered in the negative in [6] (there is another published paper by León-Saavedra
and Piqueras in which they intended to prove the same result; however, their proof contains
unfixable and serious errors). Indeed, the Volterra operator is not even weakly supercyclic [17].
Thus the fact that there are symbols below the main diagonal that supply supercyclic Volterra
composition operators is striking. Indeed, using the results of the previous two sections, we
show that, for every strictly increasing continuous ϕ with ϕ(x) < x for 0 < x � 1 (note that
ϕ(1) < 1), the operator Vϕ is supercyclic and the operator I + Vϕ is hypercyclic. For strictly
increasing ϕ with ϕ(x) < x for 0 < x < 1, ϕ(1) = 1 and analytic at 0 and at 1, it is shown
that if ϕ′(0)ϕ′(1) > 1, then Vϕ is supercyclic and if ϕ′(0)ϕ′(1) < 1, then Vϕ is not even cyclic.
The latter applies to the symbols defined by ϕα(x) = xα with 1 < α <∞. We close the section
with a complete characterization of hypercyclicity of Vϕ on Fréchet spaces, which extends
recent results by Herzog and Weber [11].

2. Basic cyclic properties of Vϕ and examples

Recall that an operator T on a Banach space B is cyclic if there is f in B such that span {Tnf :
n � 0} is dense in B. We begin with the parametric family of symbols ϕα(x) = xα, which
motivates a more thorough study of the symbols ϕ that induce cyclic Volterra composition
operators.

Proposition 2.1. Assume ϕ(x) = xα with α > 0. Then τ(x) = xβ with β > −1/p is cyclic
for Vϕ acting on Lp[0, 1], 1 � p <∞, if and only if 0 < α � 1.

Proof. An elementary computation shows that (V nϕ φ)(x) = cxβα
n+(α−αn+1)/(1−α), for each

n � 0, where c �= 0 depends on n, α and β and for α = 1 the second term in the exponent does
not appear. Thus, for each 1 � p <∞, the result follows from the Müntz theorem.

Proposition 2.1 is even true on the space C0[0, 1] of continuous functions on [0, 1] vanishing
at 0, endowed with the supremum norm.

The cyclicity of the constant function 1 for Vϕ is also possible when ϕ(x) < x for 0 < x < 1
(see Theorem 2.2 and Corollaries 2.3 and 2.4).

We use the notation and some results from [15]. Associated to Vϕ there is a function Fϕ(x, z)
defined on [0, 1] × C. In [3], there is also a function DVϕ

(λ) that plays the role of Fϕ(0, z).
A detailed exposition of the construction and properties of Fϕ

x (z) = Fϕ(x, z) can be found in
[15, § 5].

As usual, let H0
1/2(C) denote the space of entire functions of order strictly less than 1/2 or

of order 1/2 and type 0. We can prove the following theorem.

Theorem 2.2. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) � x for 0 � x � 1 and set
ψ(x) = 1 − ϕ(1 − x). If the span of the generalized eigenvectors of Vϕ is dense in L2[0, 1], then
the constant function 1 is cyclic for Vψ. The converse is also true, provided that Fϕ

0 belongs to
H0

1/2(C).
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Proof. In [15, Proposition 5.2] it is proved that the map x �→ Fϕ
x is continuous from [0, 1]

into the space of entire functions. Hence, for each non-null h in L2[0, 1], we find that

Gh(z) = 〈Fϕ
ϕ(·)(z), h〉 =

∫1

0

Fϕ
ϕ(x)(z)h(x) dx, z ∈ C

is an entire function. By [15, Proposition 5.2] the Taylor coefficients of Gh are given by

Ghn = (−1)n−1〈UV nψ 1, h〉 = (−1)n−1〈V nψ 1, Uh〉, (2.1)

where (Uf)(x) = f(1 − x).
Proceeding by contradiction, suppose now that the constant function 1 is not cyclic for Vψ.

Then there is a non-zero h in L2[0, 1] such that 〈V nψ 1, Uh〉 = 0 for each n � 0 and, therefore,
Gh = 0. Thus, since in [15, Proposition 5.2] it is proved that

∂Fϕ

∂x
(x, z) = zFϕ(ϕ(x), z), (2.2)

it follows that ∫1

0

∂Fϕ

∂x
(x, z)h(x) dx ≡ 0. (2.3)

Upon differentiating this with respect to z, we obtain
∫1

0

∂k+1Fϕ

∂x∂zk
(x, z)h(x)dx ≡ 0 for each k � 0.

From [15, § 5], we know that the generalized eigenfunctions of Vϕ belong to

span
{
∂k+1Fϕ

∂x∂zk
(x, z) : k = 0, 1, . . .

}
. (2.4)

Therefore, it follows that h is orthogonal to each generalized eigenfunction of Vϕ and, thus, the
span of the generalized eigenfunctions is not dense in L2[0, 1], which is a contradiction.

Suppose now that Fϕ
0 belongs to H0

1/2(C) and the constant function 1 is cyclic for Vψ. If the
span of the generalized eigenfunctions of Vϕ is not dense in L2[0, 1], then there is a non-null
function h in L2[0, 1] such that h is orthogonal to each generalized eigenfunction of Vϕ. Now,
by the definition of Gh, the basis of (2.4) (see [15, Theorem 5.7] and (2.2)), we have that each
zero of Fϕ

0 is also a zero of Gh of, at least, the same multiplicity. Hence, H(z) = Gh(z)/Fϕ
0 (z)

is an entire function. In addition, by [15, Corollary 5.4] and the monotonicity on x of the
maximum modulus of Fϕ

x (z), we have that

M(Gh, R) �
∫1

0

M(Fϕ
ϕ(x), R)|h(x)| dx �

∫1

0

M(Fϕ
0 , R)|h(x)| dx = M(Fϕ

0 , R)‖h‖1.

Therefore, Gh is in H0
1/2(C), and so is H. Again, by [15, Corollary 5.4], we find that

|Gh(−R)| � M(Gh, R) � M(Fϕ
0 , R)‖h‖1 = Fϕ

0 (−R)‖h‖1.

Hence, |H(z)| � ‖h‖1 for each z real and negative. Since H is in H0
1/2(C), the Phragmen–

Lindelöf theorem (see [14, Theorem 22, p. 50]) implies that H is constant. Hence Gh = cFϕ
0 ,

where c is a constant.
Now, for 0 < x � 1 set φ(x) = inf{t ∈ [0, 1] : ϕ(t) � ϕ(x)}. Since ϕ(x) � φ(x) > 0 for 0 <

x � 1, we may apply [15, Lemma 5.9], for α = 0 and β = φ(x) for each 0 < x � 1, to obtain

Fϕ
0 (−R) � (1 + φ(x)R)Fϕ

ϕ(x)(−R) for each R > 0 and 0 < x � 1.
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This inequality, along with cFϕ
0 = Gh, implies, for each R > 0, that

|c|Fϕ
0 (−R) �

∫1

0

Fϕ
ϕ(x)(−R)|h(x)| dx

�
∫1

0

Fϕ
0 (−R)

1 + φ(x)R
|h(x)| dx

� Fϕ
0 (−R)‖h‖2

(∫1

0

dx

(1 + φ(x)R)2

)1/2

.

Therefore,

|c|
‖h‖2

L2

�
∫1

0

dx

(1 + φ(x)R)2
for each R > 0.

Since the integral above tends to 0 as R tends to ∞, we see that c = 0. Thus Gh is identically
zero and so are its Taylor coefficients. Consequently, from (2.1), we find that 〈V nψ 1, Uh〉 = 0
for each n � 0. Since Uh is different from 0, the constant function 1 cannot be cyclic for Vψ,
which is a contradiction.

As a direct consequence of [15, Corollary 5.22] and Theorem 2.2, we have the following
corollary.

Corollary 2.3. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 < x < 1 and
assume that

lim
x→0

ln(ϕ(x) − x)
lnx

< 2 and lim
x→1

ln(ϕ(x) − x)
ln(1 − x)

< 2.

Then the constant function 1 is cyclic for Vψ, where ψ(x) = 1 − ϕ(1 − x), if and only if the
span of the generalized eigenfunctions of Vϕ is dense in L2[0, 1].

In particular, the above corollary applies to Vψ, where ψ(x) = 1 − (1 − x)1/2. The next
corollary follows from Theorem 2.2 and [15, Corollary 5.23], which ensures, under the same
hypotheses on ϕ in the corollary below, that the order of growth ρ(Fϕ

0 ) = 0. Therefore, we
have the following corollary.

Corollary 2.4. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 < x < 1.
Assume also that ϕ is differentiable at 0 and at 1 with 1 < ϕ′(0) � ∞ and ϕ′(1) < 1. Then the
constant function 1 is cyclic for Vψ, where ψ(x) = 1 − ϕ(1 − x), if and only if the span of the
eigenfunctions of Vϕ is dense in L2[0, 1].

In [2, 15], the eigenfunctions and the eigenvalues of several parametric families of Volterra
composition operators are calculated. For instance, the spectrum σ(Vϕα

) = {(1 − α)αn}n�0 ∪
{0} for ϕα(x) = xα with 0 < α < 1. In this case, all the eigenvalues are simple and the set of
eigenfunctions spans L2[0, 1].

3. Asymptotic behaviour of orbits of quasinilpotent Vϕ

If ϕ is the identity map, then Vϕ = V for which there has been much interest on the behaviour
of the norms ‖V n‖p, 1 � p � ∞ (see the work by Eveson [4, 5]), where the exact asymptotic
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behaviour of these norms is obtained using testing functions. We shall see that if ϕ(x) < x for
0 < x < 1, then the norms ‖V nϕ ‖p tend to 0 much faster than ‖V n‖p as n→ ∞.

3.1. The asymptotic behaviour of ‖V nϕ ‖
We will be mainly concerned with continuous strictly increasing symbols, since it is necessary
for cyclicity of Volterra composition operators (see Section 5). However, most of the proofs in
this section still work for non-increasing self-maps.

Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) � x for 0 � x � 1 and
ϕ(1) = 1. Let Ω1(ϕ) = [0, 1] and, for each n � 2, consider

Ωn(ϕ) = {x ∈ [0, 1]n : x1 � ϕ(x2), x2 � ϕ(x3), . . . , xn−1 � ϕ(xn)}. (3.1)

Let μn be the n-dimensional Lebesgue measure. We have the following lemma.

Lemma 3.1. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) � x for
0 � x � 1 and ϕ(1) = 1. Then νn+1(ϕ) � ‖V nϕ ‖p � νn−1(ϕ) for each n � 2 and 1 � p � ∞.

Proof. Let 1 denote the function identically 1 on [0, 1]. It is clear that ‖V nϕ 1‖∞ =
‖V n−1

ϕ 1‖1 = (V nϕ 1)(1) = νn(ϕ) for n � 1. Hence, ‖V nϕ ‖p � ‖V nϕ 1‖p � ‖V nϕ 1‖1 = νn+1(ϕ). We
also have ‖V nϕ f‖∞ � ‖V nϕ 1‖∞‖f‖∞ = νn(ϕ)‖f‖∞ for each f ∈ L∞[0, 1]. Hence ‖V nϕ f‖p �
‖V n−1

ϕ Vϕf‖∞ � νn−1(ϕ)‖Vϕf‖∞ � νn−1(ϕ)‖f‖p for each n � 2. Thus, νn+1(ϕ) � ‖V nϕ ‖p �
νn−1(ϕ) for any n � 2.

Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) � x for 0 � x � 1. For
each positive integer n and each 0 < a < 1, we set

Ωa,0n (ϕ) = {x ∈ Ωn(ϕ) : xn � a} and Ωa,1n (ϕ) = {x ∈ Ωn(ϕ) : x1 � a}. (3.2)

Lemma 3.2. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x for
0 < x < 1, and let ϕ(1) = 1 and

δ+0 = lim
x→0

ϕ(x)
x

, δ−0 = lim
x→0

ϕ(x)
x

, δ+1 = lim
x→1

1 − x

1 − ϕ(x)
, δ−1 = lim

x→1

1 − x

1 − ϕ(x)
. (3.3)

Then, for each 0 < a < 1, we have

lim
n→∞(μn(Ωa,0n (ϕ)))1/n

2 �
√
δ+0 , lim

n→∞
(μn(Ωa,0n (ϕ)))1/n

2 �
√
δ−0 , (3.4)

lim
n→∞(μn(Ωa,1n (ϕ)))1/n

2 �
√
δ+1 , lim

n→∞
(μn(Ωa,1n (ϕ)))1/n

2 �
√
δ−1 . (3.5)

In particular, if ϕ is differentiable at 0 and at 1, where ϕ′(1) = ∞ is allowed, then

lim
n→∞(μn(Ωa,0n (ϕ)))1/n

2
=
√
ϕ′(0) and lim

n→∞(μn(Ωa,1n (ϕ)))1/n
2

=
√

1/ϕ′(1). (3.6)

Proof. If δ+0 = 1, then the first inequality in (3.4) becomes trivial. Indeed, if we denote by
u the identity function, then we have

μn(Ωa,0n (ϕ)) � μn(Ωn(ϕ)) � μn(Ωn(u)) =
1

(n+ 1)!
. (3.7)

Thus assume δ+0 < 1. We take an arbitrary δ+0 < b < 1. Clearly, there exist 0 < δ < 1 and a
strictly increasing continuous self-map ψ of [0, 1] such that ψ(x) < x for 0 < x < 1, ψ(x) = bx
for 0 � x � δ and ψ(x) � ϕ(x) for 0 � x � 1. Since ψ(x) < x for 0 < x < 1, we find that there
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is a positive integer k such that ψk(a) � δ, where ψk is the kth iterate of ψ. It immediately
follows that μn(Ωa,0n (ψ)) � μn−k(Ω

δ,0
n−k(ψ)) for n > k. Since ψ(x) = bx for 0 � x � δ, we have

μj(Ω
δ,0
j (ψ)) =

∫ δ
0

dxj

∫ bxj

0

dxj−1· · ·
∫ bx3

0

dx2

∫ bx2

0

dx1 =
δjbj(j−1)/2

j!
(3.8)

for each j � 1. Since μn(Ωa,0n (ϕ)) � μn(Ωa,0n (ψ)) for each n � 1, from (3.8) it follows that
limn→∞(μn(Ωa,0n (ϕ)))1/n

2 �
√
b. Since δ+0 < b < 1 was arbitrary, the first inequality in (3.4)

follows.
If δ−0 = 0, then the second inequality in (3.4) is trivial. Thus assume δ−0 > 0. We take an

arbitrary 0 < b < δ−0 . Clearly, there is 0 < δ < a and a strictly increasing continuous self-map
ψ of [0, 1] such that ψ(x) < x for 0 < x < 1, ψ(x) = bx for 0 � x � δ and ψ(x) � ϕ(x) for
0 � x � 1. Since μn(Ωa,0n (ϕ)) � μn(Ωa,0n (ψ)) � μn(Ωδ,0n (ψ)) for each n � 1, from (3.8) we obtain

lim
n→∞

(μn(Ωa,0n (ϕ)))1/n
2 �

√
b.

Since 0 < b < δ−0 was arbitrary, the second inequality in (3.4) also follows.
Finally, since ϕ satisfies (3.5) if and only if φ(x) = 1 − ϕ−1(1 − x) satisfies (3.4), the proof

of the statement of the lemma is complete.

In order to state the main result of this section, we consider

φ(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp
(

lnu ln v
2 ln(uv)

)
if u > 0, v > 0 and (u, v) �= (1, 1),√|u− v| if u = 0 or v = 0,

1 if (u, v) = (1, 1),

which is clearly continuous on [0, 1]2 and takes its values in [0, 1].

Theorem 3.3. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x
for 0 < x < 1, and let ϕ(1) = 1 and δ+0 , δ

−
0 , δ

+
1 , δ

−
1 be as in (3.3). Then, for 1 � p � ∞, we have

ρ− � lim
n→∞

‖V nϕ ‖1/n2

p � lim
n→∞ ‖V nϕ ‖1/n2

p � ρ+,

where ρ− = φ(δ−0 , δ
−
1 ) and ρ+ = φ(δ+0 , δ

+
1 ). In particular, if ϕ is differentiable at 0 and at 1,

then

lim
n→∞ ‖V nϕ ‖1/n2

= φ(ϕ′(0), 1/ϕ′(1)).

Proof. According to Lemma 3.1, it is enough to show that

ρ− � lim
n→∞

(νn(ϕ))1/n
2 � lim

n→∞(νn(ϕ))1/n
2 � ρ+. (3.9)

If ρ+ = 1, then the last inequality in (3.9) follows from the second one in (3.7). Thus assume
that ρ+ < 1. Hence, we must have δ+0 < 1 and δ+1 < 1. We take δ+0 < b0 < 1 and δ+1 < b1 < 1.
By Lemma 3.2, there is c > 0 such that

μn(Ω1/2,0
n (ϕ)) � cb

n2/2
0 and μn(Ω1/2,1

n (ϕ)) � cb
n2/2
1 (3.10)

for each positive integer n. Clearly, Ωn(ϕ) ⊂ ⋃nk=0Ak, where A0 = Ω1/2,0
n (ϕ), An = Ω1/2,1

n (ϕ)
and Ak = Ω1/2,0

n−k (ϕ) × Ω1/2,1
k (ϕ) for 0 < k < n. Hence,

νn(ϕ) �
n∑
k=0

μn(Ak) =
n∑
k=0

μn−k(Ω
1/2,0
n−k (ϕ))μk(Ω

1/2,1
k (ϕ)).
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Using (3.10), we obtain

νn(ϕ) � c2
n∑
k=0

b
(n−k)2/2
0 b

k2/2
1

� c2(n+ 1) max
0�k�n

b
(n−k)2/2
0 b

k2/2
1

� c2(n+ 1)
(

max
[0,1]

b
(1−x)2/2
0 b

x2/2
1

)n2

.

The last maximum is attained for x = ln b0/ln(b0b1) and equals φ(b0, b1). Therefore,
limn→∞(νn(ϕ))1/n

2 � φ(b1, b2). Since δ+0 < b0 < 1 and δ+1 < b1 < 1 were arbitrary, the last
inequality of (3.9) is satisfied.

If ρ− = 0, then the first inequality in (3.9) is trivial. Thus assume ρ− > 0. Hence, we must
have δ−0 > 0 and δ−1 > 0. We take 0 < b0 < δ−0 and 0 < b1 < δ−1 . Let a > 0 be small enough to
ensure that a < ϕ(1 − a). By Lemma 3.2, there is c > 0 such that

μn(Ωa,0n (ϕ)) � cb
n2/2
0 and μn(Ω1−a,1

n (ϕ)) � cb
n2/2
1 (3.11)

for each n � 1. Choose a sequence {kn}n�1 of positive integers such that kn < n for each n
and kn/n tends to ln b1/ln(b1b2) as n tends to ∞. Clearly, Ωn(ϕ) ⊃ A = Ωa,0n−kn

(ϕ) × Ω1−a,1
kn

(ϕ).
Hence, νn(ϕ) � μn(A) = μn−kn

(Ωa,0n−kn
(ϕ))μkn

(Ω1−a,1
kn

(ϕ)). Using (3.11), we obtain

νn(ϕ) � c2b
(n−kn)2/2
0 b

k2
n/2

1 = c2(b(1−(kn/n))2

0 b
(kn/n)2

1 )n
2/2.

Since kn/n tends to ln b0/ln(b0b1), we see that limn→∞ b
1−kn/n
0 b

kn/n
1 = φ(b0, b1). Thus we

obtain limn→∞(νn(ϕ))1/n
2 � φ(b0, b1). Since 0 < b0 < δ−0 and 0 < b1 < δ−1 were arbitrary, the

first inequality in (3.9) also holds. The proof is complete.

Corollary 3.4. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x
for 0 < x < 1, and let ϕ(1) = 1 and ϕ be differentiable at 0 and 1. If ϕ′(0) = 0, then

limn→∞ ‖V nϕ ‖1/n2

p =1/
√
ϕ′(1) and if ϕ′(1) = ∞, then limn→∞ ‖V nϕ ‖1/n2

p =
√
ϕ′(0) for 1�p�∞.

3.2. Orbits of Vϕ: upper estimate

The next lemma will be very useful to determine the cyclic properties of Vϕ.

Lemma 3.5. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x for
0 < x < 1, and let ϕ(1) = 1 and

δ+1 = δ+1 (ϕ) = lim
x→1

1 − x

1 − ϕ(x)
.

Assume also that f in Lp[0, 1], 1� p�∞, satisfies inf supp (f)> 0. Then, limn→∞‖V nϕ f‖1/n2

p �√
δ+1 . In particular, for ϕ differentiable at 1, we have that limn→∞‖V nϕ f‖1/n2

p �
√

1/ϕ′(1).

Proof. Let ε > 0 be such that f vanishes on [0, ε]. Since Vϕf is continuous and also vanishes
[0, ε], there is c > 0 for which |(Vϕf)(x)| � cχ[ε,1](x) for each 0 � x � 1, where χ[ε,1] is the
characteristic function of [ε, 1]. Hence,

‖V nϕ f‖p � ‖V nϕ f‖∞ � c‖V nϕ χ[ε,1]‖∞ = c(V nϕ χ[ε,1])(1). (3.12)
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Let Ωε,1n (ϕ) be as in (3.2). Then (V nϕ χ[ε,1])(1) = μn(Ωε,1n (ϕ)) for each positive integer n.
Therefore, by Lemma 3.2, we have

lim
n→∞ ‖V nϕ χ[ε,1]‖1/n2

1 = lim
n→∞(μn(Ωε,1n (ϕ)))1/n

2 �
√
δ+1 .

The required result follows immediately from the previous inequalities.

3.3. The backward orbits of Vϕ

In this subsection, we consider the asymptotic behaviour of certain backward orbits of Vϕ. In
the next two sections, we shall apply these results to determine the cyclic behaviour of Volterra
composition operators.

If S is any linear operator acting on a linear space X, then S∞(X) =
⋂∞
n=0 S

n(X) is a
subspace of X invariant under S. Moreover, since S(S∞(X)) = S∞(X), the restriction of S
to S∞(X) is always onto. In addition, if kerS = {0}, then S is one-to-one from S∞(X) onto
itself. Thus the backward orbits of any x in S∞(X) are well defined. This is in particular our
case when kerVϕ = {0}.

Recall that C0[0, 1] is the subspace of C[0, 1] of functions vanishing at 0, endowed with the
supremum norm.

Theorem 3.6. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x
for 0 < x < 1 and ϕ(1) = 1. Assume also that ϕ is analytic at 0 and ϕ′(0) > 0. Then, for each

b > 1/ϕ′(0), the set Fb = {f ∈ V∞
ϕ (C0[0, 1]) such that limn→∞‖V −n

ϕ f‖1/n2

∞ �
√
b} is a dense

linear manifold of C0[0, 1] satisfying Vϕ(Fb) = V −1
ϕ (Fb) = Fb.

The remainder of this section is devoted to showing Theorem 3.6. In order to do so, we need
the following well-known criterion of analyticity. For each f ∈ C∞[a, b] we set

Mn(f) =
1
n!

max
[a,b]

|f (n)|.

Then f is analytic on [u, v] if and only if

lim
n→∞ (Mn(f))1/n <∞. (3.13)

We also need the space F [a, b] defined as{
f ∈ C∞[a, b] : f (n)(a) = f (n)(b) = 0 for each n � 0 and lim

n→∞(Mn(f))1/n
2 � 1
}
.

By means of Leibniz’s formula for the derivatives of a product, it is easy to check that if f
is in F [a, b] and g in C∞[a, b] satisfies limn→∞(Mn(g))1/n

2 � 1, then fg belongs to F [a, b].
In particular, the space F [a, b] is an algebra with respect to pointwise multiplication and is
invariant under multiplication by analytic functions.

Lemma 3.7. Assume that −∞ < a < b <∞. Then

h(x) =

{
e−1/(x−a)−1/(b−x) if a < x < b,

0 if x = a or x = b
(3.14)

belongs to F [a, b].
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Proof. Clearly, h is in C∞[a, b] with h(n)(a) = h(n)(b) = 0 for each n � 0. Thus we need
only prove that

lim
n→∞(Mn(h))1/n

2 � 1. (3.15)

To this end, we estimate Mn(g), where g(x) = e−1/x for x > 0 and g(0) = 0. By induction, one
easily sees that g(n)(x) = pn(1/x)g(x) for x �= 0, where

p0 = 1 and pn+1(t) = t2pn(t) − t2p′n(t) for each n � 1. (3.16)

Clearly, pn(t) =
∑2n
j=0 an,jt

j , where the coefficients an,j are real. Therefore,

Mn(g) =
1
n!

sup
x>0

|g(n)(x)| � 1
n!

2n∑
j=0

|an,j | sup
x>0

x−je−1/x =
1
n!

2n∑
j=0

|an,j | sup
x>0

xje−x.

Since supx>0 x
je−x = (j/e)j , we have n!Mn(g) �

∑2n
j=0 |an,j |(j/e)j � (2n/e)2nσn, where σn =∑2n

j=0 |an,j |. Using (3.16), we see that σn+1 � (2n+ 1)σn and, therefore, σn � (2n)!/(2nn!).
Upon putting everything together and using Stirling’s formula, one easily sees that Mn(g) �
(2n/e)2n.

Since h(x) = g(x− a)g(b− x), applying Leibniz’s formula, we see that

h(n)(x) =
n∑
k=0

(−1)kn!
k!(n− k)!

g(k)(b− x)g(n−k)(x− a) for a � x � b.

Therefore, using that Mk(g) � (2k/e)2k in the second inequality below, we have

Mn(h) �
n∑
k=0

n!
k!(n− k)!

Mk(g)Mn−k(g) � 2n max
0�k�n

(2k)2k(2n− 2k)2n−2k < (2n)2n,

from which (3.15) follows and the result is proved.

The following lemma can also be derived from the Denjoy–Carleman theorem (see [18,
p. 380]). Here, we provide an easy elementary proof. We denote by C00[a, b] the Banach subspace
of C[a, b] that consists of functions that vanish at a and b.

Lemma 3.8. Assume that a < b are real. Then F [a, b] is dense in C00[a, b] and
F+[a, b] = {f ∈ F [a, b] such that f(x) � 0 for each x ∈ [a, b]} is dense in C+

00[a, b] = {f ∈
C00[a, b] such that f(x) � 0 for each x ∈ [a, b]}.

Proof. Let h be the function in (3.14). By Lemma 3.7, we know that h is in F [a, b]. Since
h is in C00[a, b] and h(x) > 0 for a < x < b, we see that the set W consisting of functions ph
such that p is a polynomial is dense in C00[a, b]. Also, the set W+ consisting of functions g ∈W
such that g(x) � 0 on [a, b] is dense in C+

00[a, b]. Now, the result follows because F [a, b] is stable
with respect to multiplication by polynomials and therefore W ⊂ F [a, b] and W+ ⊂ F+[a, b].

We need an operator related to the local inverse of Vϕ. For 0 < a < 1, we set

Ea = {f ∈ C∞[0, 1] such that supp f ⊂ [0, a] and f (n)(0) = 0 for n � 0}. (3.17)

For an analytic function ψ : [0, a] → [0, 1] such that ψ(a) � a and ψ(0) = 0, consider the
operator Tψ : Ea → Ea defined as

(Tψf)(x) =

{
f ′(ψ(x)) if x ∈ [0, a],
0 if x ∈ (a, 1].

(3.18)
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The requirements ψ(a) � a and ψ(0) = 0 imply that Tψ acts from Ea into itself. As usual,
for each pair n and l of non-negative integers, we write (n)l = 1 for l = 0 and (n)l =
(n+ 1) . . . (n+ l) for l > 0.

To prove Lemmas 3.10, 3.13 and 3.15, we need the Faá di Bruno formula for the nth derivative
of a type (see [15, Lemma 6.1] or [21, Chapter 3]).

Lemma 3.9. Let f and g be in Cn[u, v]. Then, for each u � x � v, we have

(g ◦ f)(n)(x) = n!
∑

k1+...+nkn=n

g(k1+...+kn)(f(x))
k1! . . . kn!(1!)k1 . . .(n!)kn

(f ′(x))k1 . . .(f (n)(x))kn . (3.19)

Here k1 + . . .+ nkn indicates that the sum runs through all the n-tuples such that∑n
j=1 jkj = n. An immediate consequence of the above lemma (see, for instance, [15, Section 6])

is that, for each c ∈ C and each n � 1, the following holds:∑
k1+...+nkn=n

(k1 + . . .+ kn)!
k1! . . . kn!

ck1+...+kn = c(c+ 1)n−1. (3.20)

Lemma 3.10. Let ψ be an analytic function from [0, a] into [0, 1], where 0 < a < 1, with

ψ(0) = 0 and ψ(a) � a. Let {cn}n�0 be such that cn � 1 with limn→∞ c
1/n
n = 1 and let {fn}n�0

be in Ea satisfying βn = supk�0Mn(fk)c−n−1
k <∞, for each n � 0 and limn→∞β

1/n2

n � 1.

Then limn→∞‖Tnψ fn‖1/n2

∞ � √
γ.

Proof. The proof is split into three steps.
Step 1. Let {β̂n}n�0 be a sequence such that {β̂1/n

n } is increasing. Assume also that c > 0
and l is a non-negative integer. Then, for f in Ea satisfying Mn(f) � c (n)lβ̂n for each n � 0,
we have

Mn(Tψf) � c (n)l+1γ
nβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n+1

)n
for each n � 0,

where

R = sup
n�2

(
Mn(ψ)
γ

)1/(n−1)

. (3.21)

Proof of Step 1. Since ψ is analytic on [0, a], by (3.13), we see that R is finite. Clearly,
‖Tψf‖∞ � ‖f ′‖∞ = M1(f) � c(1)lβ̂1 = c(0)l+1β̂1. Thus the result is true for n = 0. Since

Mn(ψ) � γRn−1 for n � 1, (3.22)

using Lemma 3.9, for each 0 � x � a with 0 < ψ(x) < a and for each n � 1, we have

(Tψf)(n)(x) = (f ′ ◦ ψ)(n)(x) = n!
∑

n=k1+...+nkn

f (k1+...+kn+1)(ψ(x))
k1! . . . kn!(1!)k1 . . .(n!)kn

(ψ′(x))k1 . . .(ψ(n)(x))kn .

From (3.18), we have (Tψf)(n)(x) = 0 for f in Ea and ψ(x) � a and, therefore, we may write

Mn(Tψf) �
∑

n=k1+...+nkn

(k1 + . . .+ kn + 1)!
k1! . . . kn!

Mk1+...+kn+1(f)(M1(ψ))k1 . . .(Mn(ψ))kn

� (n+ 1)
∑

n=k1+...+nkn

(k1 + . . .+ kn)!
k1! . . . kn!

Mk1+...+kn+1(f)(M1(ψ))k1 . . .(Mn(ψ))kn .
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From (3.22) and the fact that Mk(f) � c(k)lβ̂k, we have

Mn(Tψf) � c(n)l+1

∑
n=k1+...+nkn

(k1 + . . .+ kn)!
k1! . . . kn!

β̂k1+...+kn+1γ
k1(γR)k2 . . .(γRn−1)kn .

Since {β̂1/k
k } is increasing, it follows that β̂k � (β̂m)k/m for 1 � k � m. Therefore,

Mn(Tψf) � c (n)l+1R
nβ̂

1/(n+1)
n+1

∑
n=k1+...+nkn

(k1 + . . .+ kn)!
k1! . . . kn!

(
γβ̂

1/(n+1)
n+1

R

)k1+...+kn

.

Applying (3.20), we have

Mn(Tψf) � c(n)l+1γR
n−1β̂

2/(n+1)
n+1

(
1 +

γβ̂
1/(n+1)
n+1

R

)n−1

= c(n)l+1γ
nβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n

)n−1

� c(n)l+1γ
nβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n

)n
.

The proof of Step 1 is complete.

Step 2. Under the hypotheses of the lemma, we have that β̃n = supk�0Mn(Tψfk)c−n−2
k is

finite for each n � 0 and limn→∞β̃
1/n2

n � 1.

Proof of Step 2. Let δ > 1 be fixed. Since limn→∞β
1/n2

n � 1, we may choose C > 0 such
that βn � C δn

2
for each n � 0. For each n � 0, we set β̂n = cnkδ

n2
, where c = Cck. Then, for

each k � 0, we have Mn(fk) � cβ̂n. By Step 1, we have

Mn(Tψfk) � c(n+ 1)γnβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n+1

)n
for each n � 0.

Upon substituting the values of c and β̂n+1, we obtain

Mn(Tψfk) � C (n+ 1)cn+2
k γnδ(n+1)2

(
1 +

R

γckδn+1

)n
� C (n+ 1)cn+2

k γnδ(n+1)2
(

1 +
R

γδn+1

)n
.

Therefore,

β̃n � C (n+ 1)γnδ(n+1)2
(

1 +
R

γδn+1

)n
.

Thus limn→∞β̃
1/n2

n � δ. Since δ > 1 was arbitrary, the proof of Step 2 is complete.

Step 3. The conclusion of the lemma holds.

Proof of Step 3. Let δ > 1 be fixed. Since ψ(0) = 0 and ψ(a) � a, we see that γ = ‖ψ′‖∞ �
1. Thus using that cj � 1, we may take a positive integer l such that

δn/2
(

1 +
R

γ(γδ)mδ(n+1)/4cj

)n
� δn for each m � l and n, j � 0. (3.23)
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Indeed, it is enough to take l with δl � R/(
√
δ − 1). As in the proof of Step 2, there is C > 0

such that, for 0 � k � l, we have

Mn(T kψfj) � Ccn+k+1
j δk/4(n)k(γδ)k(n+(k−1)/2)δn

2/4 for each n, j � 0. (3.24)

We will prove that (3.24) also holds for each k � l + 1. Suppose that (3.24) is true for
an integer k = m � l. For k = m, we can rewrite (3.24) as Mn(Tmψ fj) � c(n)mβ̂n, where
c = C cm+1

j δm/4(γδ)m(m−1)/2 and β̂n = cnj (γδ)
mnδn

2/4. Applying Step 1, we have

Mn(Tm+1
ψ fj) � c (n)m+1γ

nβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n+1

)n
,

which is equal to

Ccm+n+1
j δ(m+1)/4(n)m+1(γδ)m(m−1)/2γn(γδ)mn+mδn

2/4δn/2
(

1 +
R

γcj(γδ)mδ(n+1)/4

)n
.

Since m � l, we may use (3.23) to obtain

Mn(Tm+1
ψ f) � Ccm+n+1

j δ(m+1)/4(n)m+1(γδ)m(m−1)/2γn(γδ)mn+mδn
2/4δn

= Ccn+m+1
j δ(m+1)/4(n)m+1(γδ)mn+m(m−1)/2+n+mδn

2/4

= Cδ(m+1)/4(n)m+1(γδ)(m+1)(n+(m/2))δn
2/4,

which is (3.24) for k = m+ 1. Thus (3.24) holds for all non-negative integers k, n and j. For
n = 0 and j = k, we find that (3.24) implies that ‖T kψfk‖∞ � Cck+1

k δk/4k!(γδ)k(k−1)/2. Since

c
1/k
k tends to 1, we obtain limk→∞‖T kψfk‖1/k2

∞ �
√
γδ. Since δ > 1 was arbitrary, it follows that

limk→∞‖T kψfk‖1/k2

∞ � √
γ, which is the required result. The proof of Step 3 and that of the

statement of the lemma are complete.

Observe that the formula for the adjoint of Vϕ is

(V �ϕ f)(x) =
∫1

ϕ−1(x)

f(t) dt.

which, as an operator, makes sense on Lp[0, 1] for 1 � p � ∞. Indeed, the adjoint of V �ϕ
acting on L1[0, 1] is Vϕ acting on L∞[0, 1]. The next lemma, which will be very useful,
describes the behaviour of the supports of the iterates {V nϕ f} and {V �nϕ f}. The proof, which
is straightforward, is omitted.

Lemma 3.11. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x and
ϕ(1) = 1. Assume also that f is in L1[0, 1]. Then we have

(a) inf supp (Vϕf) = ϕ−1(inf supp (f));
(b) sup supp (Vϕf) ∈ {1, ϕ−1(sup supp (f))};
(c) inf supp (V �ϕ f) ∈ {0, ϕ(inf supp (g))};
(d) sup supp (V �ϕ g) = ϕ(sup supp (g));
(e) sup supp (V nϕ f) tends to 1 and inf supp (V �nϕ g) tends to 0 as n tends to ∞.

When dealing with supercyclicity of Vϕ in Section 5, we shall need special dense subsets
of C0[0, 1]. For each 0 < a < 1, we set Ca = {f ∈ C0[0, 1] such that sup supp (f) � a}. We have
the following lemma.
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Lemma 3.12. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x
for 0 < x < 1 and ϕ(1) = 1. Assume that 0 < a < 1. Then Z = span (

⋃∞
n=0 V

n
ϕ (Ca)) is dense in

C0[0, 1].

Proof. It is enough to prove that Z is dense in L2[0, 1]. Indeed, once this is proved, the
result follows because Vϕ acting from L2[0, 1] into C0[0, 1] is bounded with dense range and
the image of a dense set under an operator with dense range is itself dense and Z is invariant
under Vϕ.

Thus assume that Z is not dense in L2[0, 1]. Then there is a non-zero g in L2[0, 1] such that
〈V nϕ f, g〉 = 〈f, V �nϕ g〉 = 0 for each f in Ca and for each n � 0. This means that inf supp (V �nϕ g) �
a for each n � 0. Now, by Lemma 3.11, we have inf supp (V �nϕ g) tends to 0 as n tends to ∞,
which is a contradiction.

For 0 < a < 1, we shall write

Fa =
{
f ∈ Ea such that lim

n→∞(Mn(f))1/n
2 � 1
}
, (3.25)

where Ea is as defined in (3.17); that is, f belongs to Fa if and only if f belongs to C∞[0, 1],
supp (f) ⊆ [0, a] and the restriction of f to [0, a] belongs to F [0, a].

Lemma 3.13. Let ψ be analytic from [0, a] into [0, 1], where 0 < a < 1, with ψ(0) = 0 and
ψ(a) � a. Let Tψ be the operator on Ea defined in (3.18) and Cψ be the operator on Ea defined
as

(Cψf)(x) =

{
f(ψ(x)) if x ∈ [0, a],
0 if x ∈ (a, 1].

Then Fa is invariant both under Cψ and Tψ.

Proof. Let γ > 1 be fixed. If f is in Fa, then there is c � 1 such that Mn(f) � cnγn
2

for
each positive integer n. Since ψ is analytic, by (3.13), the value R = supn�2(Mn(ψ)/γ)1/(n−1)

is finite. Now, from Lemma 3.9, it follows that

Mn(Cψf) �
∑

n=k1+...+nkn

(k1 + . . .+ kn)!
k1! . . . kn!

Mk1+...+kn
(f)(M1(ψ))k1 . . . (Mn(ψ))kn .

Using that Mm(ψ) � γRm−1 and Mk(f) � ckγk
2
, we obtain

Mn(Cψf) �
∑

n=k1+...+nkn

(k1 + . . .+ kn)!
k1! . . . kn!

ck1+...+knγ(k1+...+kn)2γk1(γR)k2 . . .(γRn−1)kn

� Rn
∑

n=k1+...+nkn

(k1 + . . .+ kn)!
k1! . . . kn!

(
cγn+1

R

)k1+...+kn

.

Upon applying (3.20), we obtain Mn(Cψf) � Rn−1cγn+1(1 + cγn+1/R)n−1 � (R+ cγn+1)n.
Therefore, it follows that limn→∞(Mn(Cψf))1/n

2 � γ. Since γ > 1 was arbitrary, we see that
limn→∞(Mn(Cψf))1/n

2 � 1 and, therefore, Cψf belongs to Fa. Finally, it is clear that Fa is
also invariant under the differentiation operator Df = f ′. Since Tψ = CψD, the result follows.

The next lemma is needed not only to prove Theorem 3.6, but also to show the non-cyclicity
of certain Volterra composition operators in Section 5.
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Lemma 3.14. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x for
0 < x < 1 and ϕ(1) = 1. Assume also that ϕ is analytic on [0, ϕ−1(a)], where 0 < a < 1, with

ϕ′(x) > 0 for 0 � x � ϕ−1(a). Then Fa is contained in V∞
ϕ (C0[0, 1]) and limn→∞‖V −n

ϕ f‖1/n2

∞ �√
γ for each f ∈ Fa, where γ = max[0,ϕ−1(a)] 1/ϕ′.

Proof. We set ψ = ϕ−1 for the inverse of ϕ. Clearly, ψ is analytic on [0, a] and
max[0,a] |ψ′| = γ. It is easy to check that

(Sf)(x) =

⎧⎨⎩
f ′(ψ(x))
ϕ′(ψ(x))

if x ∈ (0, a),

0 otherwise
(3.26)

acts from Ea into Ea and that VϕSf = f for each f in Ea. Therefore, it follows that Fa ⊂ Ea ⊂
V∞
ϕ (C0[0, 1]) and the operator S defined in (3.26) coincides with the restriction to Ea of V −1

ϕ

acting on V∞
ϕ (C0[0, 1]).

Now consider the operator Tψ acting on Ea as defined in (3.18). One easily sees that CψSf =
TψCψf for each f in Ea, where Cψ is defined as (Cψf)(x) = f(ψ(x)). Hence CψSnf = TnψCψf
for each f in Ea and n � 0. Thus

‖V −n
ϕ f‖∞ = ‖Snf‖∞ = ‖CψSnf‖∞ = ‖TnψCψf‖∞ for f ∈ Ea and n � 0. (3.27)

Now, if f belongs to Fa, then, by Lemma 3.13, we have that Cψf belongs to Fa. Hence
limn→∞(Mn(Cψf))1/n

2 � 1. Applying Lemma 3.10 with cn = 1 and fn = Cψf for each n � 0,
we obtain limn→∞‖TnψCψf‖1/n2

∞ � √
γ. Therefore, using (3.27), we have limn→∞‖V −n

ϕ f‖1/n2

∞ �√
γ, which is the required conclusion.

Now, we have all necessary tools to prove Theorem 3.6.

Proof of Theorem 3.6. One easily checks that Fb is linear and that Vϕ(Fb) and V −1
ϕ (Fb) are

contained in Fb, which implies that Vϕ(Fb) = Fb = V −1
ϕ (Fb). Thus we need only prove that Fb

is dense in C0[0, 1].
Set ψ = ϕ−1 for the inverse of ϕ. Since b > 1/ϕ′(0), we may choose 0 < a < 1 such that ϕ is

analytic on [0, ϕ−1(a)] and ϕ′(x) > 0 for each 0 � x � ϕ−1(a) and γ = max[0,ϕ−1(a)] 1/|ϕ′| =
max[0,a] |ψ′| � b. By Lemma 3.14, we have Fa ⊂ V∞

ϕ (C0[0, 1]) and limn→∞‖V nϕ f‖1/n2

∞ � √
γ �√

b for each f ∈ Fa. Thus we find that Fa ⊂ Fb. Since Fb is invariant under Vϕ, we find
that span

(⋃∞
n=0 V

n
ϕ (Fa)

) ⊆ Fb. By Lemma 3.8, we know that Fa is dense in the subspace
Ca of functions in C0[0, 1] that vanish on [a, 1]. Hence, since Vϕ is bounded, it follows that
span
(⋃∞

n=0 V
n
ϕ (Ca)
) ⊆ F b, where the closures are taken in C0[0, 1]. We may conclude from

Lemma 3.12 that the left-hand side in the latter inclusion coincides with C0[0, 1] and, therefore,
Fb is dense in C0[0, 1]. The proof is complete.

3.4. Orbits of Vϕ : lower estimate

We begin with the following lemma that provides a lower estimate for orbits of Vϕ.

Theorem 3.15. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x
for 0 < x < 1 and analytic at 1 with ϕ(1) = 1. Then, for each non-zero f in L1[0, 1], we have

lim
n→∞

‖V nϕ f‖1/n2

1 � 1√
ϕ′(1)

. (3.28)
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Proof. Recall, from [15, § 2], that the adjoint V �ϕ that acts on L∞[0, 1] is V �ϕ = UVφU ,
where U is the involutive isometry defined by (Ug)(x) = g(1 − x) and φ(x) = 1 − ϕ−1(1 − x).
Since ϕ is analytic at 1, so is ψ = φ−1 at 0. Take γ > ψ′(0) � 1 and let 0 < a < 1 be such that
ψ is analytic on [0, a] and sup[0,a] ψ

′ � γ.
By Lemma 3.11, we have that sup supp (V kϕ g) tends to 1 as k tends to ∞ for each non-zero g

in L1[0, 1]. Therefore, for each non-zero g in L1[0, 1], we have sup supp (V kϕ g) > 1 − a for all k
large enough. Observe also that, for any k � 1 and for any non-zero g in L1[0, 1], the inequality
in (3.28) is satisfied for f = g if and only if it is satisfied for f = V kϕ g. Since the range of Vϕ
is contained in C0[0, 1], it is enough to show the inequality in (3.28) for each f in C0[0, 1] with
sup supp (f) > 1 − a.

Thus assume that f in C0[0, 1] has sup supp (f) > 1 − a. We may take 1 − a < b < 1 and
δ > 0 such that 1 − a < b− δ < b+ δ � 1 and f(b) �= 0. By Lemma 3.8, F+[1 − b− δ, 1 − b+ δ]
is dense in C+

00[1 − b− δ, 1 − b+ δ]. In particular, there is g1 in F [1 − b− δ, 1 − b+ δ] such that
g1(x) � 0 for each 1 − b− δ � x � 1 − b+ δ and

∫1−b+δ

1−b−δ
g1(x) dx = 1.

We may think of g1 as defined on the whole real line, by just making g1 equal to 0 outside
of [1 − b− δ, 1 − b+ δ]. Now, consider gn(x) = ng1(nx− (1 − b)(n− 1)) for n � 1. In this way,
{gn}n�1 is a positive summability kernel at 0 (see [12, pp. 9–10]). Since supp (gn) ⊆ [1 − b−
δ/n, 1 − b+ δ/n] ⊂ [0, a], we may regard {gn} as a sequence in Ea. Now, set fn(x) = gn(ψ(x))
and consider R = supn�2 (Mn(ψ)/γ)1/(n−1), where Mn(ψ) = sup[0,a] |ψ(n)|/n!. By Lemma 3.9
we find that

Mn(fk) � k
∑

n=k1+...+nkn

(k1 + . . .+ kn)!
k1! . . . kn!

Mk1+...+kn
(g1)(M1(ψ))k1 . . .(Mn(ψ))knkk1+...+kn .

Since Mn(ψ) � γRn−1, setting αn = max0�j�nMj(g1), we have that

Mn(fk) � kRn
∑

n=k1+...+nkn

(k1 + . . .+ kn)!
k1! . . . kn!

Mk1+...+kn
(g1)
(
kγ

R

)k1+...+kn

� kRnαn
∑

n=k1+...+nkn

(k1 + . . .+ kn)!
k1! . . . kn!

(
kγ

R

)k1+...+kn

.

Applying (3.20), we obtain Mn(fk) � αnk
2Rn−1(1 + kγ/R)n−1 = αnk

2(R+ kγ)n−1 � αn(R+
kγ)n+1. Since g1 belongs to Fψ(a), we have limn→∞α

1/n2

n � 1 and, therefore, all the hypotheses
of Lemma 3.10 with ck = R+ kγ are fulfilled. Thus

lim
n→∞ ‖Tnψ fn‖1/n2

∞ � √
γ, (3.29)

where Tψ is as in (3.18). Since V −1
φ f = CφTψC

−1
φ f = CφTψCψf for each f ∈ Ea, we find that

gn = V nφ CφT
n
ψCψgn = V nφ CφT

n
ψ fn. Using that U is involutive and V �ϕ = UVφU , we see that

Ugn = V �nϕ UCφT
n
ψ fn. Therefore,

‖V nϕ f‖1 �
|〈V nϕ f, UCφTnψ fn〉|
‖UCφTnψ fn‖∞

�
|〈f, V �nϕ UCφT

n
ψ fn〉|

‖UCφTnψ fn‖∞
=

|〈f, Ugn〉|
‖Tnψ fn‖∞

.
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Since {gn} is a positive summability kernel at 1 − b, then so is {Ugn} at b. Therefore, |〈f, Ugn〉|
converges to |f(b)| �= 0. Thus,

‖V nϕ f‖1 � |f(b)|
‖Tnψ fn‖∞

(1 + o(1)) as n→ ∞,

which along with (3.29) implies that limn→∞‖V nϕ f‖1/n2

p � 1/
√
γ. Since γ > ψ′(0) = ϕ′(1) was

arbitrary, the result follows.

From Lemma 3.15 and Corollary 3.4, we immediately have the following theorem.

Theorem 3.16. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(1) = 1
and ϕ(x) < x for 0 < x < 1. Assume also that ϕ is analytic at 1 and differentiable at 0 with

ϕ′(0) = 0. Then, for each non-zero f in Lp[0, 1], 1 � p � ∞, we have limn→∞ ‖Vϕf‖1/n2

p =
1/
√
ϕ′(1).

4. Dense generalized kernels

In the next section, we will prove that if ϕ is continuous, strictly increasing and satisfies
ϕ(x) < x for 0 < x � 1, then Vϕ is supercyclic and I + Vϕ is hypercyclic when Vϕ acts on
Lp[0, 1], 1 � p <∞, or on C0[0, 1]. To do this, we adopt a general point of view. We will show
that if T is a continuous operator on a separable complete metrizable topological vector space
X such that the span of the union of kerTn ∩ Tn(X) is dense in X, then the operator I + T is
hypercyclic. We will also show that in such a case T is supercyclic. This general point of view
causes minimal extra effort and avoids the repetition of some arguments.

Recall that an F-space is a complete metrizable topological vector space. The space of
continuous linear operators on a topological vector space X is denoted by L(X).

Recall that a continuous operator T acting on a topological vector space X is said to
be hypercyclic if there is x in X such that the orbit of x under T , that is, {Tnx}n�0, is
dense in X and it is said to be supercyclic if there is x in X such that the projective orbit
{λTn such that λ ∈ C, n = 0, 1, . . .} is dense in X. We say that T is strongly hereditarily
hypercyclic if, for every subsequence {nk} of positive integers, there is x such that {Tnkx}
is dense in X. Later concept has been used in [7]. Similarly, we can define strongly hereditarily
supercyclic operators.

A bounded operator T acting on a locally convex topological vector space is called weakly
hypercyclic or weakly supercyclic if it is hypercyclic or supercyclic with respect to the weak
topology. Mazur’s theorem asserts that the norm closure and the weak closure of convex
sets coincide, and hence weakly supercyclic operators are cyclic. Hypercyclic and supercyclic
operators have been intensely studied during the last few decades (see the surveys [9, 16] and
references therein).

Let �p, 1 � p <∞, denote the Banach space of complex sequences that have p-summable
modulus. Let {en}n�0 be the canonical basis of �p, where 1 � p <∞. Given a bounded sequence
{wn} of non-zero complex numbers, the backward weighted shift with weight sequence {wn}
is defined by Te0 = 0 and Ten = wnen−1 for n � 1.

The next theorem, due to Salas [19], is one of the most important results on hypercyclicity
for a fixed operator.

Theorem 4.1 (Salas’ theorem). Let T be a backward weighted shift on �2. Then the
operator I + T is hypercyclic.
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The next theorem extends Salas’ theorem in several directions.

Theorem 4.2. Let T be a continuous operator on a separable F-space X such that

ker† T = span

( ∞⋃
n=1

(Tn(X) ∩ kerTn)

)
is dense in X. Then I + T is (strongly hereditarily) hypercyclic.

Recall that the generalized kernel of an operator T is the space ker� T =
⋃∞
n=1 kerTn. It is

worth mentioning that the space ker† T is contained in T (X) as well as in ker� T . Thus, any
operator with dense ker† T has dense range and dense generalized kernel. Obviously, if T is
a (unilateral) backward weighted shift on �p, then ker� T = ker† T is the space of sequences
with finite support, which is dense in �p, where 1 � p <∞. Hence Theorem 4.2 implies Salas’
theorem. It is also worth noting that if T (kerTn+1) is dense in kerTn for each positive integer
n, then ker† T is dense in ker� T . Thus, we have the following corollary.

Corollary 4.3. Let T be a continuous operator on a separable F-space X such that
ker� T is dense in X and T (kerTn+1) is dense in kerTn for each positive integer n. Then I + T
is (strongly hereditarily) hypercyclic.

The advantage of the above corollary is that it is much easier to check that T (kerTn+1) is
dense in kerTn.

A generalized backward shift is a continuous operator T on a topological vector space X
such that kerT is one-dimensional and ker� T is dense in X. A dimension argument shows
immediately that if T is a generalized backward shift, then kerTn is n-dimensional and
T (kerTn+1) = kerTn for each positive integer n. From Corollary 4.3, we clearly have the
following corollary.

Corollary 4.4. Let X be a separable F-space and T in L(X) be a generalized backward
shift. Then I + T is (strongly hereditarily) hypercyclic.

Remark. The fact that I + T is hypercyclic for a generalized backward shift T on a
separable F-space also follows from Salas’ theorem by means of a quasisimilarity argument, as
already observed by several authors (see, for instance, [8]).

To prove Theorem 4.2, we need some preparation.

4.1. A density criterion

Recall that a topological space X is called a Baire space if, for each first category set A ⊂ X,
its complement X \A is dense in X. According to the classical Baire theorem, complete metric
spaces are Baire. We need the following easy proposition.

Proposition 4.5. Let X and Y be Baire topological spaces, where Y is second countable.
Let {Tn}n�0 be a sequence of continuous maps from X to Y . Let Σ be the set of (x, y) ∈ X × Y
for which there exists a sequence {xn}n�0 in X such that xn → x and Tnxn → y. If Σ is dense
in X × Y, then, for any subsequence {nk}k�0, there is x such that {Tnk

x}k�0 is dense in X.
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Proof. Since Σ is dense in X × Y , it is enough to apply Theorem 1 in [9, p. 348].

4.2. Invertible matrices

To prove Theorem 4.2, we need to show that certain matrices are invertible. For each pair of
positive integers n and k, consider the n-square matrix

Mn,k =
(

(k + n− l)!
(k + n− l + j − 1)!

)
1�j,l�n

.

Lemma 4.6. For each pair n and k of positive integers, we have

detMn,k =
(n− 1)!k!(k + 1)!

(k + n− 1)!(k + n)!
detMn−1,k+2. (4.1)

Proof. It is clear that (4.1) holds for n = 2. Thus suppose that n � 3. Subtracting from
each column of Mn,k, except the first, the previous one, we see that

detMn,k = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0
(k + n− 1)!

(k + n)!
... Nn,k

(k + n− 1)!
(k + 2n− 2)!

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where

Nn,k =
(
j
(k + n− l − 1)!
(k + n− l + j)!

)
1�j,l�n−1

.

Thus detMn,k = detNn,k. Now, dividing each jth row of Nn,k by j and multiplying each lth
column with (k + n− l + 1)!/(k + n− l − 1)!, we obtain Mn−1,k+2. Hence

detMn,k = detMn−1,k+2

n−1∏
j=1
l=1

j(k + n− l − 1)!
(k + n− l + 1)!

=
(n− 1)!k!(k + 1)!

(k + n− 1)!(k + n)!
detMn−1,k+2.

The result is proved.

Consider now the n-square matrix An = (1/(j + k − 1)!)1�j,k�n. The key lemma in the proof
of Salas’ theorem is [19, Lemma 3.1], which asserts that An is invertible for n = 2k with k a
positive integer. The latter is also used in [13] to prove that the operators in Salas’ theorem do
satisfy Kitai’s criterion. Actually, An is invertible for each positive integer n. Indeed, detAn
can be computed explicitly.

Lemma 4.7. For each positive integer, the matrix An is invertible. Furthermore, detA1 = 1,
detA2 = −1/12 and

detAn =
(−1)(n−1)n/2

(2n− 1)!

⎛⎝2n−4∏
j=1

j!

⎞⎠⎛⎝2n−3∏
j=n

j!−2

⎞⎠ for n � 3.

Proof. Let Bn be the matrix obtained from An by reversing the order of the columns of
An. Clearly, detAn = (−1)(n−1)n/2detBn. Multiplying the jth column of Bn with (n− j + 1)!
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for 1 � j � n, we obtain Mn,1. Hence, detAn = (−1)(n−1)n/2detMn,1

∏n
j=1(j!)

−1 for each
n � 1. Now, the result follows by applying n− 1 times (4.1) and then simplifying.

Finally, for each pair of positive integers m and n with m � 2n, we consider the n-square
matrix

Bm,n =
((

m

k + j − 1

))
1�j,k�n

,

where
(
m
k

)
denotes the binomial coefficient.

Lemma 4.8. For each pair of positive integers m and n with m � 2n, we have that Bm,n
is invertible. Furthermore, detBm,n = detAn

∏n
j=−n (m+ j)n−|j|.

Proof. By multiplying the jth column of Bm,n with (m− j)!/m! for 1 � j � n, we obtain
Pm,n, whose entries are p1,k = 1/k!, 1 � k � n, and

pj,k =
(m− k)!

(k + j − 1)!(m− k − j + 1)!
for j � 2.

Consider Qm,n obtained from Pm,n by replacing the jth row P[j] by
∑j−1
l=0

(
j−1
l

)
P[l+1]. Clearly,

detPm,n = detQm,n. In addition, one easily checks that the entries of Qm,n are q1,k = 1/k!,
1 � k � n, and

qj,k =
(m+ j − 1)!
m!(k + j − 1)!

for j � 2.

Multiplying the jth row of Qm,n with m!/(m+ j − 1)! for 2 � j � n, we arrive at An. Upon
putting everything together, we obtain

detBm,n =

⎛⎝ n∏
j=1

m!
(m− j)!

⎞⎠⎛⎝ n∏
j=2

(m+ j − 1)!
m!

⎞⎠detAn.

Simplifying, the required formula for detBm,n follows.

4.3. Proof of Theorem 4.2

For x in C
n, n � 1, we denote by xj its jth coordinate.

Lemma 4.9. Let S in L(C2n), n � 1, be defined on the canonical basis {ei : 1 � i � 2n}
by Sei = ei−1, 2 � i � 2n and Se1 = 0. Then, for each m � 2n and each u and v in C

n, there
exists a unique x = x(m) in C

2n such that:
(a) xj(m) = uj , for 1 � j � n;
(b) ((I + S)mx(m))j = vj , for 1 � j � n.

Furthermore,

|xn+j(m)| = O(m−j) as m→ ∞ for 1 � j � n, (4.2)

|((I + S)mx(m))n+j | = O(m−j) as m −→ ∞ for 1 � j � n. (4.3)

Proof. For y in C
2n and z in C

n, we define ỹ = (yn+1, . . . , y2n) ∈ C
n and ẑ =

(z1, . . . , zn, 0, . . . , 0) in C
2n. Let also w(m) in C

n be defined by wj(m) = vn−j+1 − ((I +
S)mû)n−j+1 for 1 � j � n. One easily sees that there is a unique x(m) satisfying (a) and
(b) if and only if the equation

Bm,nx̃ = w(m), (4.4)
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where Bm,n is the matrix defined in the previous subsection, has a unique solution. Thus the
first statement of the lemma follows from Lemma 4.8.

It remains to show that (4.2) and (4.3) also hold. To this end, first observe that wj(m) =
vn−j+1 −

∑j−1
l=0

(
m
l

)
un−j+1+l for 1 � j � n. Thus

wmj = O(mj−1) as m −→ ∞ for 1 � j � n. (4.5)

Now consider the n-diagonal matrix Dm,n with entries mj−1, 1 � j � n− 1, in the main diag-
onal. An easy computation shows that Bm,n = mDm,nCm,nDm,n, where Cm,n = {γj,k}1�j,k�n
has entries γ1,1 = 1 and γj,k = (1/(j + k − 1)!)

∏j+k−2
l=1 (1 − l/m) for (j, k) �= (1, 1). Since

Bm,n as well as Dm,n are invertible, so is Cm,n and (4.4) implies that x̃m = B−1
m,nw(m) =

m−1D−1
m,nC

−1
m,nD

−1
m,nw(m).

From (4.5), the sequence {D−1
m,nw(m)}m�2n is bounded in C

n. On the other hand,
the sequence of invertible matrices {Cm,n}m�2n converges to the matrix An defined in
Subsection 4.2, which is invertible by Lemma 4.7. Hence, the sequence {C−1

m,n} converges to
A−1
n as m tends to ∞ and, therefore, the sequence {C−1

m,nD
−1
m,nw

m}m�2n is bounded in C
n.

Hence,

xn+j(m) = x̃j(m) = m−1(D−1
m,nC

−1
m,nD

−1
m,nw

m)j , 1 � j � n,

satisfy (4.2). Finally, since ((I + S)mx(m))n+j =
∑n−j
l=0

(
m
l

)
xn+j+l(m) for 1 � j � n, the

estimates in (4.3) follow from (4.2) and the result is proved.

Lemma 4.9 allows us to prove the following lemma.

Lemma 4.10. Let T be a continuous operator on a topological vector space X. Assume
that x belongs to Tm(X) ∩ kerTm, where m is a positive integer. Then there exist sequences
{uk}k�0 and {vk}k�0 in X such that

uk −→ 0, (I + T )kuk −→ x, vk −→ x and (I + T )kvk −→ 0 as n −→ ∞. (4.6)

Proof. If x = 0, then it is enough to take uk = vk = 0. Thus, assume that x �= 0. We will
show that the proof reduces to the operator S defined in Lemma 4.9. Let n be the smallest
positive integer for which Tnx = 0. In particular, n � m, which implies that x belongs to
Tn(X). Thus we may choose w in X such that Tnw = x. We set hj = T 2n−jw for 1 � j �
2n and Y = span{h1, . . . , h2n}. In particular, we have Thj = hj−1, 2 � j � 2n, and Th1 =
T 2nh2n = Tnx = 0. Thus clearly, Y is invariant under T . Since h1 = T 2n−1h2n = Tn−1x �= 0,
it follows that dimY � 2n and, therefore, {h1, . . . , h2n} is a basis of Y .

Let J be the operator from C
2n onto Y defined by Jek = hk, 1 � k � 2n. Clearly, T acting

on Y is similar under J to S acting on C
2n, where S is the operator defined on Lemma 4.9.

Now, J−1x = en. Thus taking, u = (0, . . . , 0, 1) in C
n and v = (0, . . . , 0), we find that there

is a sequence {gk}k�0 in C
2n such that gk → en and (I + S)kgk → 0 as k → ∞. Applying

Lemma 4.9 with u = (0, . . . , 0, 0) and v = (0, . . . , 0, 1), we find that there is a sequence {fk}k�0

in C
2n such that fk → 0 and (I + S)kfk → em as k → ∞. The result follows because two

topological vector spaces of the same finite dimension are homeomorphic under any algebraic
isomorphism between them.

Lemma 4.11. Let T be a continuous operator on a topological vector space X. Assume
that x and y belong to ker† T . Then there exists a sequence {xk} in X such that xk → x and
(I + T )xk → y as k → ∞.
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Proof. Let Σ be the set of (x, y) in X ×X for which there is a sequence {xn} in X such that
xn tends to x and (I + T )nxn tends to y. By Lemma 4.10, we have kerTn ∩ Tn(X) × {0} ⊂ Σ
and {0} × kerTn ∩ Tn(X) ⊂ Σ for each n � 1. On the other hand, it is clear that Σ is a
subspace of X ×X. Therefore, one immediately obtains that ker† T × ker† T ⊆ Σ, which is
what had to be proved.

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let Σ be the set of (x, y) ∈ X ×X for which there is {xn} in X such
that xn → x and (I + T )nxn → y. By Lemma 4.11, it follows that Σ contains ker† T × ker† T .
Since ker† T is dense in X, we obtain that Σ is dense in X ×X. According to Theorem 4.5, for
each subsequence {nk} there is x in X such that {(I + T )nkx} is dense in X, that is, I + T is
strongly hereditarily hypercyclic. The proof of Theorem 4.2 is complete.

4.4. Supercyclicity

To prove the supercyclicity of Vϕ, we extend another result by Salas [20].

Proposition 4.12. Let X be a separable F-space and T be in L(X). Assume also that T
has dense range and dense generalized kernel. Then T is (strongly hereditarily) supercyclic.

The advantage of Proposition 4.12 over Corollary 2.8 in [20] is that we avoid the existence
of the local inverse.

The next criterion for an operator to be strongly hereditarily supercyclic is analogous to one
of the forms of the Supercyclicity Criterion (see [16]).

Theorem 4.13. Let T be a continuous operator on an F-space X and {λk}k�0 be a
sequence of non-zero complex numbers. Assume also that there exist dense subsets E and F
of X and mappings Sk : F → X such that T kSky → y and λ−1

k Sky → 0 for each y ∈ F and
λkT

kx→ 0 for each x ∈ E as k → ∞. Then, for any strictly increasing sequence {nk}k�0 of
positive integers, there exists x ∈ X for which {λnk

Tnkx : k � 0} is dense in X.

Proof of Proposition 4.12. Let d be a metric that induces the topology of X. Let F be a
dense countable subset of X. Since T has dense range, we find that T k(X) is dense in X for
each k � 0. Hence, we may choose Sk : F → X such that d(y, T kSky) < 2−k for each y in F
and each k � 0. Clearly, T kSky → y for each y in F . Since F is countable and X is metrizable,
there is a sequence {λn} of positive numbers such that λ−1

n Sny → 0 as n→ ∞ for each y in F .
Finally, E = ker� T is dense in X and, for each y in E, we have Tny = 0 for all n large enough
and, therefore, λnTny → 0 as n→ ∞. Thus all the hypotheses of Theorem 4.13 are fulfilled
and we conclude that T is strongly hereditarily supercyclic.

5. Supercyclicity of Vϕ and hypercyclicity I + Vϕ

In this section we study the supercyclicity of Vϕ as well as the hypercyclicity of I + Vϕ acting
on the spaces Lp[0, 1], 1 � p <∞. Since Vϕ is a contraction on Lp[0, 1], 1 � p <∞, it cannot
be weakly hypercyclic.

The following easy proposition states that if Vϕ is weakly supercyclic, then ϕ(x) � x almost
everywhere.
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Proposition 5.1. Let ϕ is a measurable self-map of [0, 1] with ϕ(x) > x on a set of positive
Lebesgue measure. Then Vϕ acting on Lp[0, 1], 1 � p <∞, is not weakly supercyclic.

Proof. A supercyclic compact operator on a Banach space must be quasinilpotent (see [10])
and the same is true for weakly supercyclic operators (the same argument works). By [15,
Corollary 2.2], the operator Vϕ is not quasinilpotent and the result follows.

In what follows, we will be considering only continuous symbols. The following lemmas
describe the closure of the range of Vϕ. We denote by ranp Vϕ the closure of the range of Vϕ
acting on Lp[0, 1] and, when acting on C[0, 1] or C0[0, 1], it will be denoted by ranVϕ or ran0 Vϕ,
respectively.

Lemma 5.2. Let ϕ be a continuous self-map of [0, 1]. Assume that Vϕ acts on C[0, 1]. If ϕ
is not strictly monotone, then the codimension of ranVϕ is infinite. If ϕ is strictly monotone
and ϕ(0) �= 0, ϕ(1) �= 0, then ranVϕ = C[0, 1]. If ϕ is strictly monotone and ϕ(0) = 0, then
ranVϕ = {f ∈ C[0, 1] : f(0) = 0}. Finally, if ϕ is strictly monotone and ϕ(1) = 0, then ranVϕ =
{f ∈ C[0, 1] : f(1) = 0}.

Proof. If ϕ is not strictly monotone, then A = {(t, s) ∈ [0, 1]2 : t < s and ϕ(t) = ϕ(s)} is
infinite. Since ranVϕ ⊆ {f ∈ C[0, 1] : f(t) = f(s) for each (t, s) ∈ A} and the last space has
infinite codimension, ranVϕ has infinite codimension in C[0, 1].

The description of ranVϕ in the case when ϕ is strictly monotone follows from the
decomposition Vϕ = CϕV and the fact that the closure of the range of the Volterra operator
acting on C[0, 1] is C0[0, 1]. Indeed, if ϕ(0) �= 0 and ϕ(1) �= 0, then Cϕ(C0[0, 1]) = C[0, 1]; if
ϕ(0) = 0, then Cϕ(C0[0, 1]) = C0[0, 1]; and finally if ϕ(1) = 0, then Cϕ(C0[0, 1]) = {f ∈ C[0, 1] :
f(1) = 0}.

Lemma 5.3. Let ϕ be a continuous self-map of [0, 1]. Assume that Vϕ acts on Lp[0, 1] with
1 � p <∞. If ϕ is not strictly monotone, then ranp Vϕ has infinite codimension. If ϕ is strictly
monotone, then ranp Vϕ = Lp[0, 1].

Proof. One can easily verify that ranp Vϕ ∩ C[0, 1] = ranVϕ. Thus the result follows imme-
diately from the previous lemma and the fact that both C0[0, 1] and {f ∈ C[0, 1] : f(1) = 0} are
dense in Lp[0, 1].

The following lemma is an immediate consequence of Lemma 5.2.

Lemma 5.4. Let ϕ be a continuous self-map of [0, 1] satisfying ϕ(0) = 0. Assume that Vϕ
acts on C0[0, 1]. If ϕ is not strictly increasing, then ran0 Vϕ has infinite codimension. If ϕ is
strictly increasing, then ran0 Vϕ = C0[0, 1].

Now, we can show that the cyclicity of Vϕ is a severe restriction on ϕ.

Proposition 5.5. Let ϕ be a continuous self-map of [0, 1]. Assume that Vϕ acting on
Lp[0, 1], 1 � p <∞, or on C[0, 1] is cyclic. Then ϕ is strictly monotone. In addition, if ϕ(0) = 0
and Vϕ is cyclic when acting on C0[0, 1], then ϕ is strictly increasing.
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Proof. It is known and easy to see that the closure of the range of a cyclic operator is at
most of codimension 1. Thus it remains to apply Lemmas 5.2–5.4.

Since weakly supercyclic operators are cyclic, as a consequence of Propositions 5.1 and 5.5,
we have the following corollary.

Corollary 5.6. Let ϕ be a continuous self-map of [0, 1]. If Vϕ acting on Lp[0, 1], 1� p<∞,
or on C0[0, 1] is weakly supercyclic, then ϕ is strictly increasing and ϕ(x) � x for 0 � x � 1.

The cyclic properties that we shall be considering are cyclic, weakly supercyclic, weakly
hypercyclic, supercyclic and hypercyclic. Actually, the real core of the question, whether a
Volterra composition operator satisfies any of these properties or not, is in the friendly Hilbert
space setting L2[0, 1].

Proposition 5.7. Let ϕ be a continuous self-map of [0, 1] with ϕ(0) > 0 and ϕ(1) > 0.
Then Vϕ acting on L2[0, 1] has a given cyclic property if and only if Vϕ acting on Lp[0, 1],
1 � p <∞, or on C[0, 1] has the same cyclic property.

Proof. Let 1 < p <∞. First, observe that C[0, 1] is densely and continuously embedded
into Lp[0, 1], and the latter space is densely and continuously embedded into L1[0, 1]. The
same holds true if all the spaces carry their weak topologies. Thus it suffices to show that if
Vϕ acting on L1[0, 1] has a cyclic property, then so does Vϕ acting on C[0, 1].

Suppose that Vϕ acting on L1[0, 1] has a given cyclic property. By Proposition 5.5, ϕ is
strictly monotone. By Lemma 5.2, Vϕ acting on C[0, 1] has dense range. Thus Vϕ is a bounded
linear operator from L1[0, 1] to C[0, 1] with dense range. Therefore, we find that if f in L1[0, 1]
provides a given cyclic property for Vϕ acting on L1[0, 1], then Vϕf provides the same property
for Vϕ acting on C[0, 1].

The proof of the next proposition is similar to the one of Proposition 5.7 and we omit it.
One has to use Lemma 5.4 instead of Lemma 5.2.

Proposition 5.8. Let ϕ be a continuous self-map of [0, 1] with ϕ(0) = 0. Then Vϕ acting
on L2[0, 1] has a given cyclic property if and only if Vϕ acting on Lp[0, 1], 1 � p <∞, or on
C0[0, 1] has the same cyclic property.

5.1. Supercyclicity of Vϕ and hypercyclicity of I + Vϕ: case ϕ(1) < 1

Although Vϕ acting on L2[0, 1] cannot be weakly hypercyclic, we have the following theorem.

Theorem 5.9. Let ϕ be a continuous strictly increasing self-map of [0, 1] such that
ϕ(x) < x for 0 < x � 1. Then Vϕ is supercyclic and I + Vϕ is hypercyclic.

Proof. Clearly, the sequence {ϕn(1)} is strictly decreasing and tends to 0 as n tends to ∞.
One can easily verify that kerV nϕ = {f such that inf supp (f) � ϕn(1)}.Now, a straightforward
argument shows that Vϕ(kerV n+1

ϕ ) is dense in kerV nϕ for each positive integer n and that
ker� Vϕ is dense in the underlying space. Therefore, the result follows from Proposition 4.12
and Corollary 4.3.
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From Corollary 5.6, it follows that ϕ cannot fail to be strictly increasing or to have the graph
below the identity function. However, ϕ(1) < 1 is a different issue.

5.2. Supercyclicity of Vϕ: case ϕ(1) = 1

Although the Volterra operator is not weakly supercyclic (see [17]) there are supercyclic
Volterra composition operators whose symbols are below the diagonal and take the value 1
at 1. Along this subsection we will prove the following theorem.

Theorem 5.10. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x
for 0 < x < 1 and ϕ(1) = 1 and analytic at 0. If ϕ′(0) > δ+1 , where

δ+1 = δ+1 (ϕ) = lim
x→1

1 − x

1 − ϕ(x)
,

then Vϕ is supercyclic. In particular, if ϕ is differentiable at 1 and ϕ′(0)ϕ′(1) > 1, then Vϕ is
supercyclic.

Proof. By Proposition 5.8, it is enough to show that Vϕ is supercyclic on C0[0, 1]. We
take b > 0 with 1/ϕ′(0) < b < 1/δ+1 and consider the dense subspace of C0[0, 1] defined by
E = {f ∈ C0[0, 1] : inf supp (f) > 0}. According to Lemma 3.5, we have

lim
n→∞ ‖V nϕ f‖1/n2

∞ �
√
δ+1 for each f ∈ E. (5.1)

On the other hand, by Theorem 3.6, F = {f ∈ V∞
ϕ (C0[0, 1]) : limn→∞‖V −n

ϕ f‖1/n2

∞ �
√
b} is a

dense linear subspace of C0[0, 1] satisfying Vϕ(F ) = F = V −1
ϕ (F ). Let S be the restriction of

V −1
ϕ to F . Clearly, VϕSf = f for each f in F and

lim
n→∞ ‖Snf‖1/n2

∞ �
√
b for each f ∈ F . (5.2)

Finally, take b < c < 1/δ+1 and let λn = cn
2/2 for n � 0. Inequalities (5.2) and (5.1) imply that

λnV
n
ϕ f tends to 0 as n tends to ∞ for each f in E and λ−1

n Snf tends to 0 for each f in F .
Upon applying Theorem 4.13 with T = Vϕ and Sk = Sk, we conclude that Vϕ acting on C0[0, 1]
is supercyclic.

5.3. Non-cyclicity

The next theorem complements Theorem 5.10.

Theorem 5.11. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) < x
for 0 < x < 1 and ϕ(1) = 1 and analytic at 1. If ϕ′(1)δ+0 < 1, where

δ+0 = δ+0 (ϕ) = lim
x→0

ϕ(x)
x

,

then Vϕ is not cyclic. In particular, if ϕ is differentiable at 0 with ϕ′(0)ϕ′(1) < 1, then Vϕ is
not cyclic.

Proof. By Proposition 5.8, it is enough to prove that Vϕ is not cyclic on L2[0, 1]. Clearly,
φ(x) = 1 − ϕ−1(1 − x) is continuous, strictly increasing, analytic at 0, φ(x) < x for 0 < x < 1,
φ(1) = 1, φ′(0) = 1/ϕ′(1) and

δ+1 (φ) = lim
x→1

1 − x

1 − φ(x)
= δ+0 (ϕ).
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In addition, the fact that ϕ′(1)δ+0 (ϕ) < 1 implies φ′(0) > δ+1 (φ). Thus we may choose
1 � 1/φ′(0) < b < 1/δ+1 (φ). Since φ is analytic at zero, there is 0 < a < 1 such that φ is
analytic on [0, φ−1(a)] and max[0,φ−1(a)] 1/φ′ � b. For each n in Z, we set an = φ−n(a). We
choose a−1 < c < a0 and set cn = φ−n(c) for each n in Z. Clearly, {an} and {cn} converge
to 1 as n tends to +∞ and to 0 as n tends to −∞. Moreover, cn < an < cn+1 for each n
in Z. By Lemma 3.8, there are non-zero functions f0 in F [c0, a0] and f1 in F [a−1, c0] that
we extend to the whole interval [0, 1] by defining them as zero outside their intervals of
definition. By Lemma 3.14, we find that f0 as well as f1 are in V∞

φ (C0[0, 1]), which we defined
in Subsection 8.3, and

lim
n→∞ ‖V −n

φ fj‖1/n2

2 �
√
b for j = 0, 1. (5.3)

On the other hand, Lemma 3.5 implies that

lim
n→∞ ‖V nφ fj‖1/n2

2 �
√
δ+1 (φ) for j = 0, 1. (5.4)

Now, take real numbers b < α < β < 1/δ+1 (φ) and set

zn =

{
αn(1−n)/2 if n < 0,
βn(n+1)/2 if n � 0.

From (5.3) and (5.4), it follows that J(x⊕ y) =
∑∞
n=−∞ zn(xnV nφ f0 + ynV

n
φ f1) defines a

bounded operator from �2(Z) ⊕ �2(Z) into L2[0, 1]. We need to show that J� has dense range.
To this end, it is enough to check that J is one-to-one. Let x and y be in �2(Z) and suppose that
J(x⊕ y) = 0. By Lemma 3.11, it follows that inf supp (V nφ f0) = cn and inf supp (V nφ f1) = an−1

for each n in Z and sup supp (V nφ f0) = an and sup supp (V nφ f1) = cn for n � 0. Thus, for each
n � 0, we find that V nφ f0 is different from zero and supported on [cn, an] and, for each m �= n,
we have that V mφ fj vanishes on [cn, an]. Similarly, for each n � 0, we find that V nφ f1 is different
from zero and supported in [an−1, cn] and, for each m �= n, we have that V mφ fj vanishes
on [an−1, cn]. It follows that xn = yn = 0 for n � 0. If x⊕ y is different from zero, let n be
the minimal positive integer for which |xn| + |yn| > 0. Since all V mφ fj vanish on [an−1, cn],
except for m = n and j = 1, it follows that yn = 0. Similarly, xn = 0, which is a contradiction.
Therefore, J is one-to-one.

Let {en}n∈Z denote the canonical basis of �2(Z) and consider the (forward) weighted shift
Sen = wn+1en+1, with weight sequence

wn =
zn−1

zn
=

{
αn−1 for n � 0,
β−n for n � 1.

We have VφJ = J(S ⊕ S). Therefore, J�V �φ = (S� ⊕ S�)J�. In [15, § 2], it is proved that V �φ is
unitarily similar under (Uf)(x) = f(1 − x) to Vϕ. Thus assuming that Vϕ is cyclic, then so is
V �φ . Let f in L2[0, 1] be cyclic for V �φ . Then

span {(S�n ⊕ S�n)(J�f) : n � 0} = J�(span {V �nφ f : n � 0}).
Since J� has dense range, it follows that J�f is cyclic for S� ⊕ S�. Now, the operator R on
�2(Z), defined by Ren = (α/β)|n(n+1)|/2e−n, n in Z, is bounded because α < β. One easily
checks that SR = RS�. Hence, (I ⊕R)(S� ⊕ S�) = (S� ⊕ S)(I ⊕R). Therefore,

span {(S� ⊕ S)n(I ⊕R)(J�f) : n � 0} = (I ⊕R)(span {(S� ⊕ S�)n(J�f) : n � 0}).
Taking into account that J�f is cyclic for S� ⊕ S� and I ⊕R has dense range, we see that
S� ⊕ S is cyclic. Let x⊕ y in �2(Z) ⊕ �2(Z) be cyclic for S� ⊕ S and consider the dual pairing

〈u, v〉 =
∑
n∈Z

unvn, u, v ∈ �2(Z).
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Since x⊕ y must be different from zero, the functional Φ(u⊕ v) = 〈u, y〉 − 〈v, x〉 on �2(Z) ⊕
�2(Z) is non-zero. However, for each n � 0, we have Φ((S� ⊕ S)n(x⊕ y)) = 〈S�nx, y〉 −
〈Sny, x〉 = 0, which contradicts the fact that x⊕ y is cyclic for S� ⊕ S. The proof is complete.

5.4. Hypercyclicity and supercyclicity of Vϕ on C0[0, 1)

Let C0[0, 1) be the Fréchet space of continuous functions vanishing at 0 endowed with the
topology of uniform convergence on compact subsets of [0, 1). Herzog and Weber [11] showed
that Vϕ, where ϕ(x) = xb with 0 < b < 1, acting on C0[0, 1) is hypercyclic. Here, we shall
provide an easy characterization in terms of the symbols ϕ of the hypercyclicity of Vϕ acting
on C0[0, 1). First, note that Vϕ acts from C0[0, 1) into itself if and only if ϕ is a continuous map
from [0, 1) into itself and ϕ(0) = 0.

Proposition 5.12. Let ϕ be a continuous self-map of [0, 1) with ϕ(0) = 0.

(i) If Vϕ is weakly supercyclic on C0[0, 1), then ϕ is strictly increasing.
(ii) If ϕ is strictly increasing on [0, 1) and there are 0 < a < b < 1 such that ϕ(a) > a and

ϕ(b) = b, then Vϕ is not weakly supercyclic on C0[0, 1).
(iii) If ϕ is strictly increasing on [0, 1) and there is 0 < b < 1 such with ϕ(b) = b, then Vϕ is

not weakly hypercyclic on C0[0, 1).

Proof. To prove (i), observe that ϕ(a) = ϕ(b) with 0 < a < b < 1, then (Vϕf)(a) = (Vϕf)(b)
for each f in C0[0, 1). Thus the range of Vϕ acting on C0[0, 1) is not dense and, therefore, Vϕ is
not weakly supercyclic on C0[0, 1).

To prove (ii) and (iii), first observe that since ϕ is increasing and ϕ(b) = b, we find that ϕ is
also a self-map of [0, b]. Let P from C0[0, 1) onto C0[0, b] be defined by Pf = f |[0,b]. Set ψ = ϕ|[0,b]
and consider Vψ acting on C0[0, b]. Since ϕ([0, b]) = [0, b], we see that PV nϕ f = V nψ Pf for each
f in C0[0, 1). Thus weak hypercyclicity (weak supercyclicity) of Vϕ implies weak hypercyclicity
(weak supercyclicity) of Vψ. On the other hand, since ‖Vψ‖ < 1, we find that Vψ cannot be
weakly hypercyclic on C0[0, b] and, therefore, neither can Vϕ acting on C0[0, 1). Finally, assume
that there is 0 < a < b for which ϕ(a) = ψ(a) > a. Then the operator Vψ cannot be weakly
supercyclic because of Corollary 5.6 and, therefore, neither can Vϕ acting on C0[0, 1).

We also need a lemma, which is a particular case of Theorem 3.2.5 in [23], dealing with
projective limits of sequences of complete metrizable Abelian topological groups.

Lemma 5.13. Let {Xn}n�0 be a sequence of F-spaces and for each m � n � 0 let Tn,m :
Xm → Xn be a continuous operator with dense range satisfying that Tn,n is the identity operator
and Tk,nTn,m = Tk,m for m � n � k. Then

⋂∞
n=0 T0,n(Xn) is dense in X0.

Theorem 5.14. Let ϕ be a continuous self-map of [0, 1) with ϕ(0) = 0. Then the following
are equivalent.

(a) The operator Vϕ acting on C0[0, 1) is weakly hypercyclic.
(b) The operator Vϕ acting on C0[0, 1) is hypercyclic.
(c) The map ϕ is strictly increasing and ϕ(x) > x for 0 < x < 1.

Proof. Clearly, (b) implies (a). According to Proposition 5.12, (a) implies (c). It remains to
show that (c) implies (b). Thus, suppose that (c) is satisfied. Let E be the space of bounded
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functions of C0[0, 1), which is clearly dense in C0[0, 1). Since Vϕ acting on L∞[0, 1] has norm
strictly less than 1, we see that ‖V nϕ f‖∞ tends to 0 as n tends to ∞. Hence, V nϕ f tends to 0
in C0[0, 1) for each f in E.

Since (c) implies that ϕ(x) tends to 1 as x tends to 1, ϕ extends to a one-to-one
continuous map of [0, 1] onto itself. Take 0 < a0 < 1 and set an = ϕn(a0) for each n in
Z. Then {an} tends to 1 as n tends to ∞ and {an} tends to 0 as n tends to −∞.
Consider also the decreasing bilateral sequence of closed subspaces of C0[0, 1) defined by
Gn = {f ∈ C0[0, 1) such that f |[0,an] = 0}, n ∈ Z. It is elementary to check that Vϕ(Gn+1) is
a dense subspace of Gn and V −1

ϕ (Gn) = Gn+1 for each n in Z. Let k be any integer. Applying
Lemma 5.13 to Xn = Gk+n and Tn,m : Xm → Xn, m � n, defined by the restriction of V m−n

ϕ

to Xm = Gk+m, we obtain
⋂∞
n=0 V

n
ϕ (Gk+n) is dense in Gk for each k ∈ Z. Since G =

⋃
n∈Z

Gk
is dense in C0[0, 1), it follows that F = G ∩⋂∞

n=0 V
n
ϕ (C0[0, 1)) is dense in C0[0, 1).

Now, since F is contained in the range of Vϕ, for each f in F there is a unique Sf in C0[0, 1)
such that VϕSf = f . We also have V −1

ϕ (G) = G because V −1
ϕ (Gn) = Gn+1 for each n in Z and,

therefore, V −1
ϕ (F ) = F . Hence S is well defined from F into itself. Using that V −1

ϕ (Gn) = Gn+1

once again, we see that inf suppSnf tends to 1 as n tends to ∞ for each f in F . Hence Snf
tends to 0 as n tends to ∞ for each f in F . Applying Corollary 4.13 with Tn = V nϕ and Sn = Sn

and with λk = 1, we obtain that Vϕ is hypercyclic.

Theorem 5.14 implies that ϕ(x) < x for 0 < x < 1 is not possible whenever Vϕ is hypercyclic
on C0[0, 1). This is not true if we just consider supercyclicity.

Proposition 5.15. Let ϕ be a strictly continuous self-map of [0, 1) with ϕ(x) < x for
0 < x < 1. Then Vϕ acting on C0[0, 1) is supercyclic.

Proof. Let {an} be a strictly increasing sequence of positive numbers such that {an} tends
to 1 as n tends to ∞ and let Pn from C0[0, 1) onto C0[0, an] be the projections defined by
Pnf = f |[0,an]. Since ϕ(x) < x for 0 < x < 1, we obtain that PnV kϕ f = V kψn

Pnf for each f in
C0[0, 1), where ψn = ϕ|[0,an] and Vψn

acts on C[0, an]. By Theorem 5.9 the operators Vβn
, where

βn(x) = a−1
n ψn(anx), acting on C0[0, 1] are all supercyclic. Since a change of variables provides

a similarity between Vψn
acting on C0[0, an] and Vβn

acting on C0[0, 1], we see that each Vψn
is

also supercyclic.
For each n � 0, there is a dense Gδ-set Mn in C0[0, an] such that each f in Mn is supercyclic

for Vψn
. Since Pn is continuous onto operator, we see that Wn = P−1

n (Mn) is a dense Gδ-set in
C0[0, 1). Thus, by Baire’s theorem, W =

⋂∞
n=0Wn is a dense Gδ-set in C0[0, 1). The fact that

each f in W is supercyclic for Vϕ is straightforward. The proof is complete.

The only case not covered by Lemma 5.12, Theorem 5.14 and Proposition 5.15 is the one
for which ϕ is strictly increasing with ϕ(x) � x for each 0 � x < 1 and there is 0 < a < 1 for
which ϕ(a) = a.

We close by showing a result that singles out the Volterra operator from a natural one-
parametric family of Volterra composition operators.

Corollary 5.16. Assume that ϕα(x) = xα for 0 � x � ∞, where 0 < α < 1. Then Vϕα

acting on C0[0, 1) is hypercyclic for α < 1, supercyclic for α > 1 and not weakly supercyclic for
α = 1.

Proof. The statements for α < 1 and α > 1 follow from Propositions 5.15 and Theorem 5.14.
It remains to show that the Volterra operator V = Vϕ1 is not weakly supercyclic on C0[0, 1).
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Suppose that it is weakly supercyclic. As in the proof of Proposition 5.12, we can see that
V must be weakly supercyclic on C0[0, a] for each 0 < a < 1, which is not the case, as shown
in [17].
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