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A B S T R A C T

The ubiquity of plastics is a concern for the health of humans and marine ecosystems. Plastics and their composite
endocrine disrupting chemicals (EDCs) are associated with adverse health outcomes in humans and marine
species. With continued plastic production, waste mismanagement and global population increases, exposure
effects will continue to escalate. The ‘One Health’ paradigm describes ‘health’ as a cross-species universal ‘good’.
Adverse outcomes from plastic exposure are shared cross-species, indicating common mechanisms of toxicity.
Marine species with individuals ingesting naturally disparate levels of plastic present valuable opportunities for
researchers in understanding the real-world impacts of plastic. Sampling from sentinels monitors dynamic ex-
posures to the evolving plastics landscape, allowing transcriptomic and epigenetic adaptations to these exposures
to be assessed. Advances in bioinformatics enable elucidation of shared biological pathways from plastic toxicity
in a systems level context. This review examines microplastics in the marine environment, adverse health
exposure outcomes, and the exploitation of marine sentinel species in this context to elucidate the impacts of
plastics. Hierarchical priorities when selecting marine plastic sentinels are explored. Abundant seabirds such as
the herring gull or the northern fulmar represent ideal marine plastic sentinels.
1. Plastics in the context of the marine environment

Plastics are high molecular weight polymers that are combined with
additives during production that impart diverse qualities, e.g., plasti-
cisers which soften plastic [1]. These additives are often endocrine dis-
rupting chemicals (EDCs) [2]. Further, the strong polymeric
carbon-carbon double bonds prohibit biodegradation [3]. Thus, plastics
remain in the environment for thousands of years fragmenting into
progressively smaller pieces e.g., to microplastics (5 mm–0.1 mm), and
simultaneously leaching their resident plastic-derived EDCs into eco-
systems [4]. Microplastic breakdown, uptake and exchange processes in
marine ecosystems are summarised in Coyle et al., 2020 [5]. Plastics and
their resident chemicals bioaccumulate in food webs and are associated
with health problems in humans and other species [1].

The most recognisable plastic-derived EDC is the plastic precursor
monomer bisphenol A (BPA) which covalently strengthens polyvinyl-
chloride and other plastics [6]. Other plastic-derived EDCs like plasti-
cisers and antioxidants are not covalently bonded to the polymer and
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thus have more leaching potential than BPA [7]. Phthalate plasticisers
are the most ubiquitous chemical that humans and wildlife interact with
[8,9]. Table 1 summarises common plastic types and the EDCs they
contain.

Understanding the environmental and health implications of popu-
lation growth and waste mismanagement is an emerging concern. There
has been a 205 times increase in plastic production from 1950 to 2016
[12], which is set to triple by 2060 [13]. Today, 80% of marine plastics
originate from mismanaged terrestrial waste, mainly from coastal pop-
ulations [14]. By 2023 50% of the world’s population will reside in
coastal areas [15]. Therefore, understanding the long-term impacts of
plastics on marine ecosystem health is an urgent global issue.

Although plastic likely impacts all marine organisms, some species
ingest more than others. As of 2020, a conservative 914 marine species
were evidenced to encounter marine plastics [16]. Additionally, low
trophic level phytoplankton and zooplankton commonly contain detec-
tible levels of microplastics and plastic-derived EDCs, and these form the
basis of marine food webs [17]. A variety of geographical, behavioural
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Table 1
The most commonly produced plastic polymers and plastic-derived EDCs
that they contain. Other polymers including polystyrene compose the remain-
ing 25.4% of plastic demand. Although polymer type can indicate the presence of
certain EDCs, in reality all polymer types contain a broad suite of diverse EDCs.
Adapted from Hermabessiere et al. (2017) [10].

Polymer Demand
distribution by
resin types in 2019
(%) [11]

Common
polymer uses

Plastic-derived EDCs

Polypropylene 19.3 Food packaging
and wrappers,
pipes

BPA, octylphenol
(OP), nonylphenol
(NP), brominated
flame retardant

Polyethylene,
low density

17.5 Reusable bags,
containers, food
packaging

BPA, OP, NP,
brominated flame
retardant

Polyethylene,
high density

12.2 Toys, bottles,
pipes

BPA, OP, NP,
brominated flame
retardant

Polyvinyl
chloride

10 Window frames,
cable insulation

Phthalates, BPA, NP

Polyurethane 7.9 Pillows,
building
insulation

Brominated flame
retardant

Polyethylene
terephthalate

7.7 Water and soft
drink bottles

Phthalates

Table 2
Studies investigating plastic-derived EDCs in different species and tissues, the metho

Sample type, date
and location

Study individuals Methodology

Human Urine,
Denmark (2009,
2013 and 2017)

300 urine samples (100 samples/
year) collected from young men

Isotope dilution Turb
liquid chromatograph
tandem mass spectro
(LC-MS/MS). Phthala
and phthalate and BP
substitutes and their
metabolites were ana

Urine,
Slovenia
(2011–2012)

155 children, 155 mothers and
71 fathers

Homogenisation and
chromatography with
mass spectrometry (G
MS)

Hair, Gdansk,
Poland (2017)

15 adults and 27 teenagers Methanol and ammo
acetate extraction an
ultrasonication follow
high-performance liq
chromatography (HP

Blood, Turkey
(2004)

Umbilical cord blood samples (n
¼ 100) collected immediately
after birth

Sodium acetate and
glucuronidase incuba
extraction followed b
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and anatomical factors contribute to higher ingestion in some species.
The foraging behaviour of procellariiform seabirds, e.g. the northern
fulmar (Graphical Abstract) and shearwaters, means they confuse plastic
for prey at higher rates than other species, and their anatomy prevents
efficient plastic regurgitation resulting in longer retention times [18].
Additionally, species foraging in spatial areas called marine plastic waste
‘hotspots’ are at a higher risk of ingestion [3].

2. Plastics in the body – entry, accumulation and adverse health
impacts

Plastics and their chemicals are incorporated into the body via three
routes: ingestion, dermal absorption and inhalation. Ingestion through
contaminated food and drink provides a major route for plastic compo-
nents into the human body. On average, we ingest between 39,000 and
52,000 plastic particles annually [19]. BPA, NP, and di-(2-ethylhexyl)
phthalate (DEHP) leach directly from consumer plastics such as plastic
bottles [7,20]. Similarly, marine species ingest plastics and microplastics
unwittingly, as well as trophic and seawater plastic-derived EDCs [3].

Plastic-derived EDCs are rapidly metabolised in the body, however
steady state concentrations remain in tissues [21]. Phased enzymatic
chemical reactions in the liver metabolise these EDCs facilitating excre-
tion in the urine within 24 h [22]. High levels of their metabolites have
been found in the urine of all recent human study participants [23–25]
dology utilised, the EDCs detected and study conclusions.

Plastic-derived EDCs and
metabolites detected

Study conclusions Reference

oFlow
y with
metry
tes, BPA,
A

lysed

Detected di-methyl
phthalate (DMP), di-ethyl
phthalate (DEP), butyl
benzyl phthalate (BBP), di-
butyl phthalate (DBP),
DEHP, di-heptyl phthalate
(DHpP), di-iso-nonyl
phthalate (DiNP) and BPA
levels decreased from 2009-
2017. However, di-iso-
decylphthalate (DiDP)
increased and over 95% of
samples contained phthalate
metabolites. Phthalate
substitutes di-2-ethylhexyl
terephthalate (DEHTP) and
di-iso-nonyl-cyclohexane-
1,2-dicarboxylate (DINCH),
and BPA substitutes like
bisphenol-F (BPF) increased.
DiBP, DnBP, DEHP, DEP and
DiNP remained the most
detected compounds.

Due to EU restrictions, many
commonly studied plastic-
derived chemicals have
decreased in urine from
2009-2017. However,
similarly toxic substitutes
have increased over the
same time period

[25]

gas
tandem
C-MS/

BPA in 94%, 88% and 81%
of children, mothers and
fathers’ respective urine
samples

Levels are typical of other
EU countries

[24]

nium
d
ed by
uid
LC)

BPA was detected at a mean
concentration of 411.2 ng
g�1 dry weight (dw), NP at
4478.4 ng g�1 dw and OP at
131.2 ng g�1 dw

Questionnaire found high
hair BPA levels associated
with a diet rich in marine
foods, hair dye use, and
other lifestyle factors.
Women had higher levels
than men

[27]

tion
y HPLC

Approximately 99% of cord
blood samples contained
detectable levels of BPA,
DEHP and mono (2-
ethylhexyl) phthalate
(MEHP)

Cord blood BPA was
associated with a decrease
in stretched penile length
and increased cord blood
oestradiol levels in male
newborns. DEHP was
significantly inversely

[31]

(continued on next page)



Table 2 (continued )

Sample type, date
and location

Study individuals Methodology Plastic-derived EDCs and
metabolites detected

Study conclusions Reference

correlated with anogenital
index

Adipose, Italy
(2003–2007)

16 samples adipose tissue,
obtained from patients (3 males
and 13 females) aged from 34 to
68 years during bariatric surgery

Lipid extraction and
acetonitrile derivitization
followed by gas
chromatography- mass
spectrometry (GC-MS)

NP was found at the highest
level (mean 122 ng g�1
fresh weight (fw). NP
ethoxylates (NPEOs) were
found in all samples. Total
NPs ranged between 45 and
1131 ng g�1 fw

This study found higher
average NP and OP
concentrations compared to
prior Spanish and Finnish
studies

[21]

Seabird Muscle, Aleutian
Islands, Alaska
(2009–2011,
2013–2015)

74 archipelago seabirds of ten
species; Northern Fulmar
(Fulmarus glacialis),
Glaucous-winged Gull (Larus
glaucescens), Common Murre
(Uria aalge), Horned Puffin
(Fratercula corniculata), Pelagic
Cormorant (Phalacrocorax
pelagicus), Pigeon Guillemot
(Cepphuscolumba), Red-faced
Cormorant (Phalacrocorax urile),
Tufted Puffin
(Fraterculacirrhata), Black-legged
Kittiwake (Rissa tridactyla),
Crested Auklet (Aethia crista-
tella)

Tissue homogenisation and
quencher extraction followed
by phthalate analysis using
liquid chromatography- mass
spectrometry (LC-MS)

Phthalates detected in 100%
of samples with
concentrations of 3.64 ng/g
to 539.64 ng/g per
individual. DMP detected in
87.0% of samples. DEP in
99.1%, BBP in 93.0%, DBP
in 83.5%, DEHP in 63.5%,
and di-n-octyl phthalate
(DnOP) in 77.4% of samples

Authors strain the
requirement of more
research into these
contaminants and their
effects

[30]

Feather, Gdansk,
Poland (2017)

13 male and female Herring gulls
(Larus argentatus) (n ¼ 26)
specimens, including juvenile (n
¼ 10) and mature (n ¼ 16) birds

Methanol and ammonium
acetate extraction and
sonication, followed by HPLC

BPA detected at 145.1 ng
g�1 dw, NP at 37.7 ng g�1
dw and OP at 162.0 ng g�1
dw

Foraging location during
moulting influenced phenol
profiles and concentrations

[27]

Preen oil,
Queensland,
Australia (2014)

Preen oil swabbed uropygial
gland of 28 seabirds of 4 species;
short-tailed shearwaters
(Ardenna tenuirostris), wedge-
tailed shearwaters (Ardenna
pacifica), bridled terns
(Onychoprion anaethetus) and
sooty terns (Onychoprion
fuscatus)

Swabs were Soxhlet-extracted,
and phthalate analysis was
carried out with GC-MS

All samples were dominated
by DBP and DEHP, with only
small quantities of DMP
detected in most. Highest
phthalates detected from
shearwaters

Phthalate levels were well
correlated with plastic
ingestion levels, and levels
varied in seabird taxa that
foraged in different ocean
areas around Australia.
Results of shearwater
phthalate ingestion
consistent with other reports
of high levels of shearwater
plastic ingestion

[29]

Eggs, Norway
(2012)

6 eggs sampled from Sklinna and
12 from R ø st, of three species:
Common eider (Somateria
mollisima), European shag
(Phalacrocorax aristotelis
aristotelis), and European herring
gull (Larus argentatus)

Egg content was homogenised,
and analysis not named

Phthalates were detected at
levels above the limit of
detection in all species,
dominated by DEHP. DEHP
ranged from 3 to 42 ng/g for
each species. Every herring
gull egg contained DEHP.
AEs and BPA had extremely
high mean concentrations in
herring gulls at 254 ng/g.
Shag eggs had the lowest
levels of AEs

Other studies including
piscivorous birds had higher
concentrations of NP

[28]

Pinniped Fur, Gdansk,
Poland (2017)

Baltic grey seals (Halichoerus
grypus); 5 mature females and
their 12 pups

Methanol and ammonium
acetate extraction and
ultrasonication, followed by
(HPLC)

BPA detected at 67.5 ng
g�1 dw, NP at 39.1 ng g�1
dw and OP at 62.8 ng g�1
dw

Authors suggested that AEs
accumulate more than BPA
in animal tissues and organs

[27]

Turtle Liver, gonads
muscle and
adipose, collected
along the Sicilian
coasts, Italy
(2016)

13 marine turtle specimens of
two species; 1 Dermochelys
coriacea and 12 Caretta caretta
found dead

Homogenisation and
acetonitrile extraction
followed by phthalate analysis
using LC-MS

DEP, BBP and DEHP
detected. DBP was the most
abundant phthalate in
C.caretta liver and muscle
(2600–19,000 ng/g). Higher
contamination in C. caretta

C. caretta has potential as a
biomonitor or sentinel of
phthalates

[9]

Shark Liver and muscle,
Greenland,
(2012–2014)

23 specimens of Greenland shark
Somniosus microcephalus

Accelerated Solvent Extraction
(ASE) followed by HPLC-
fluorescence phenol detection

BPA, NP di-ethoxylate
(NPE1-2EO) and 4-NP were
detected in 72%, 87.5% and
75%, of samples
respectively, with higher
levels detected in liver tissue

Chronic exposure caused
high muscle accumulation
of phenols. The authors
considered marine plastics a
likely source and transport
mechanism of phenols.

[26]
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(see Table 2). Despite detoxification, negligible amounts of
plastic-derived EDCs remain with chronic exposure, gradually bio-
accumulating in body tissues. Plastic-derived EDCs and their metabolites
are now ubiquitous in the tissues of humans and high trophic level
3

marine species [9,26–30]. These chemicals are also deposited into hair,
feathers and fur during growth [27].

When sufficiently small, microplastics can be carried in the blood
stream to distal tissues where they can elicit harmful effects. Polymers
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<10 μm are the most toxic as they are translocated across cell mem-
branes, including the placenta and blood-brain barrier [32]. Accumula-
tion of microplastics in neural tissue has been associated with
behavioural problems in fish [32]. In humans, small polymers primarily
damage the lungs when chronically inhaled [33].

However, plastic-derived EDCs are associated with more adverse
health outcomes than polymers alone. They are a global environmental
and health problem due to their disruption of fundamental processes
such as growth and development [34]. The recent rise in many human
modern-day illnesses, e.g. infertility, cancers, and allergies, have been
repeatedly attributed to the omnipresence of these chemicals [35–37].
EDCs often adversely affect wildlife populations as a whole, for example
in reproductive output and sex ratio imbalances [38]. Adverse outcomes
also commonly persist for generations, as EDCs transmit epigenetic
transgenerational inheritance [39].

Plastic-derived EDCs commonly recovered from the bodies of humans
and wildlife include BPA, phthalates and alkylphenol ethoxylates (AEs)
(Table 2). In humans, BPA has been associated with decreased sperm
count [36], developmental disorders [40], obesity [41] and
Fig. 1. Adverse Outcome Pathway Framework. Adapted from Huff et al.,
2019 [48]. Prior scientific knowledge assists construction of the pathway, and
each key event is an independent measurement at a particular level of organi-
sation [62].

4

cardiovascular diseases [42]. Phthalates have been attributed to the
development of endometriosis [43] and testicular dysgenesis syndrome
[44]. AEs NP and OP have been implicated in human allergies [45].

The transcriptional outcomes of environmentally relevant levels of
plastic-derived EDCs have been investigated in zebrafish models. BPA
impacted transcriptional programs as associated with mitochondrial
function, cell cycle, and transcription [46]. DEHP promoted
non-alcoholic fatty liver disease development [47]. Similar changes were
seen with NP, including perturbations in gene expression associated with
oxidative stress [48].

3. Marine plastic sentinels for plastic human exposure

Sentinel species provide warnings of future environmental and health
risks [49]. They exhibit behavior, habitats, niches and other character-
istics that result in a measurable response to environmental stimuli [49].
The popular ‘canary in a coalmine’ example describes the historic use of
canaries falling off their perch to signal to coalminers that carbon mon-
oxide levels were rising [50]. An exaggerated response by sentinels to a
stressor allows its impact to be detected more easily.

EDC research using wild sentinels is superior to laboratory models
due to the context-specificity of biomarkers [51]. Studying gene
expression and epigenetic profiles that have developed in a natural
context provides a real-world understanding of adaptations to exposure.
Inbreeding and influences unique to the caged laboratory environment
are significant drawbacks to using inbred model laboratory species to
model human disease [52]. Whereas, exploiting wild populations avoids
these, and allows inclusion of indirect effects in the final model, e.g.,
changes in foraging behaviour. It also accounts for the complex mixture
effects of ever-changing resident chemicals [25]. These benefits vastly
outweigh difficulties in establishing causality [53].

Species that forage in different spatial areas with disparate contami-
nation levels often possess distinct gene expression profiles and health
status. When disparities in EDC exposure take place in a natural open
system, it permits the normal development of biological responses as an
adaptive mechanism. Different life-time exposures to EDCs lead to
distinct epigenetic and transcriptomic profiles. For example, the turbot
(Pleuronichthys verticalis) exhibited altered gene expression profiles in
polluted water [54], and Arctic graylings exhibited altered tran-
scriptomic profiles based on proximity to mining discharge [55].

Plastic indicator species may serve as useful sentinels. The stomach
contents of dead indicator individuals permit assessment of marine plastic
pollution levels [18,56]. An example is the northern fulmar, a robust and
sensitive plastic indicator utilised by the EU in North Sea studies [18]. Sea
turtles have served as marine plastic indicators on a global scale [56].
Indicators ingest plastic levels representative of their environment [57],
and thus segregate into groups of high versus low plastic ingestion based
on their differences in their foraging area or behaviour. These two groups
of disparate plastic ingestion can be exploited for research into the bio-
logical effects of plastics in a natural context.

3.1. The integrative thinking and tools that underpin sentinel microplastic
research

Sentinel research is underpinned by species interconnectedness of
biological processes, land, resources and genetics [58]. Most genes are
shared between vertebrates, and humans for example share 71.4% of
protein-coding genes with zebrafish [59]. As resources become further
restrained due to population and pollution increases, species intercon-
nectedness will become more obvious [58].

The use of sentinels is central to the coherent integrative thinking of
‘One Health’, which is relegating separated sectorial biology to the past
[58]. ‘One Medicine’ emphasises the common scientific base in veteri-
nary and human medicine [58]. The contributions of ecology have
extended the paradigm of ‘One Medicine’ to ‘One Health’, reformulating
‘health’ as a cross-species universal ‘good’ [60]. This, in the age of ‘big
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data’ led to the genesis of Systems Biology, which integrates many
diverse data types from multiple species to produce complex holistic
models of biological systems that predict adverse health outcomes and
assist in their mitigation [61].

Fundamentally underpinning the use of sentinels and the ‘One
Health’ paradigm, are shared gene ontology and disease pathways shared
cross-species. Risk with plastic-derived EDCs can be assessed using the
Adverse Outcome Pathway (AOP) framework which defines an adverse
outcome as the result of a molecular initiating event followed by a
cascade of subsequent biological events [62] (Fig. 1). Tools like the AOP
uncover the molecular mechanisms underpinning plastic toxicity, in a
way that is applicable to both human and environmental health.
3.2. Considerations for choice of sentinel

3.2.1. Species characteristics
Plastic high-ingestion species are exposed to high levels of plastic-

derived EDCs. As global plastic waste production will likely increase
threefold by 2060 [13], these species are ideal representatives for the
future implications of increased plastic ubiquity. Due to EDC bio-
accumulation in the tissues of their prey, species at upper trophic levels
(including humans) are likewise highly exposed [63]. Chronic lifetime
exposures are accumulated across the human lifespan, thus other
long-lived sentinels are most valuable in mirroring this exposure. These
characteristics are reflected in the Graphical Abstract northern fulmar
example.

Species mobility is a fundamental consideration in sentinel species
choice. High site fidelity is usually a preferred characteristic due to
contaminant exposure only occurring in a well-studied limited locality
[64]. This simplifies sampling, allowing omics and chemical profiles to
be compared between populations across time to assess adaptations to
Fig. 2. Hierarchical priorities when choosing a marine plastic sentinel as a pr
monitoring tool. Priorities regarding species and population information are ranke

5

environmental change. However, this limits the pool of potential
sentinels as many plastic high-ingestion and high trophic level species
are mobile [27]. Further, it disregards the potential utility of
wide-ranging plastic indicators such as the northern fulmar [18] and
the sea turtle C. caretta [9]. To avail of these species, movement
tracking is often required to map their foraging areas to infer the
extent of plastic ingestion, as biomarkers of plastic exposure remain
limited.

3.2.2. Tissue availability
Preferred tissue sample type from humans and wild sentinels often

differs due to ease of collection. Sampling methods that impact the wild
individual minimally and sparingly are favoured to minimize stress and
interference with results. Swift and infrequent sampling of small amounts
of fur or a body feather does not impact health or movement/flight. The
most diverse non-invasive sampling options are available when utilising
seabird sentinels (Table 2).

More invasive blood sampling allows optimal cross-species compari-
sons as conjugated plastic-derived EDCs in blood may serve as a
biomarker of plastic exposure in both humans and wildlife [31]. The
establishment of biomarkers for plastic exposure in feathers or fur, as
exists for persistent organic pollutants [65], would allow these preferable
matrices to be utilised to indicate internal bioaccumulation levels. Plastic
contamination must be avoided during sample storage to prevent inter-
ference with results [27].

Where available, recently deceased individuals are preferred for
analysis. Available bycatch from long-line fisheries avoids sacrificing
individuals for the study and provides whole tissues for investigation,
including the liver and gonadal germ line cells [48]. This provides a
superior insight into the impacts of chronic exposure. The protection
status of certain species e.g. C. caretta [9], limits the availability of full
oxy for plastic exposure in humans and other species, or as an ecosystem
d from 1 being most pertinent to 5 being least.
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bodies for analysis. However, many seabird scavenger species are
abundant such as herring gulls [27] and northern fulmars [18], making
them excellent potential sentinels for human plastic exposure (see sum-
mary in Fig. 2).

4. Conclusions and future directions

Due to the ever-changing and complex nature of plastic and plastic-
derived EDC exposure [25], it is becoming increasingly difficult to
replicate these interactions in the laboratory. Practically all human
populations are now exposed to uniformly high levels of mixtures of
plastics and their chemicals [21,24,25,27,31], thus it is challenging to
investigate the biological pathways to the adverse health outcomes they
cause. Marine sentinels with disparate plastic ingestion levels serve as
valuable natural models of plastic exposure.

When choosing a sentinel for human plastic exposure, plastic high-
ingestion, high trophic level and long-lived species are superior. Ma-
rine life such as seabirds [18] and sharks [26] have high site fidelity
while maintaining a wide foraging range as they periodically return to
the same breeding or laying grounds. This allows sampling over time
across large marine areas and permits the exploitation of mobile marine
species for health or environmental monitoring purposes. Establishing
biomarkers of plastic exposure in noninvasively obtained tissues would
simplify plastic sentinel studies.

Due to abundant and unprotected seabird species, commonplace
bycatch makes available diverse tissue types to researchers [18,27]. This
together with the diversity of seabirds species that; are predators, ingest
high plastic levels, and have a wide spread and site fidelity, makes certain
seabirds attractive plastic sentinels [18,66]. Northern fulmars and her-
ring gulls can be exploited to understand the adverse and chronic impacts
of plastics on human and ecosystem health.
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