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Cell-Free Massive MIMO in the Short Blocklength
Regime for URLLC

A. A. Nasir, H. D. Tuan, H. Q. Ngo, T. Q. Duong, and H. V. Poor

Abstract—This paper considers cell-free massive MIMO (cfm-
MIMO) for the downlink ultra reliable and low-latency com-
munication (URLLC). At the time of writing, cfm-MIMO has
only been considered for communication in the long block
regime (LBR), whose throughput is determined by the Shannon
function rate with the interference treated as Gaussian noise.
Conjugate beamforming (CB) is often used as it requires only
local channel state information (CSI) for implementation but
its design is based on a large-scale nonconvex problem, which
is computationally intractable. The rate function in URLLC
is much more complex than the Shannon function rate. The
paper proposes a special class of CB, which admits a low-
scale optimization formulation for computational tractability.
Accordingly, a new path-following algorithm, which generates
a sequence of better feasible points and converges at least to a
locally optimal solution, is developed for optimizing URLLC rates
and cfm-MIMO energy efficiency. Furthermore, the paper also
develops improper Gaussian signaling to improve both Shannon
function rate and URLLC rate.

Index Terms—Cell-free massive MIMO (cfm-MIMO), ultra
reliable and low-latency communication (URLLC), conjugate
beamforming (CB), energy efficiency, nonconvex optimization.

I. INTRODUCTION

Ultra reliable and low-latency communication (URLLC) has
attracted a lot of recent research attention (see e.g. [1], [2] and
references therein) due to its promise in enabling innovative
Internet-of-Thing (IoT) applications such as tactile internet,
haptic feedback, vehicle network, autonomous systems, etc
(see e.g. [2], [3] and references therein). Information theoretic
analysis in URLLC is based on the URLLC rate function,
which is a complicated function of the transmission power, the
blocklength and the decoding error probability [4]. As such,
the design of resource allocation to optimize URLLC rate
performance poses very computationally challenging problems
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[5]–[9]. For massive access beyond 5G (B5G), cell-free mas-
sive MIMO (cfm-MIMO) [10]–[12], under which a massive
number of single-antenna access points (APs) are distributed
across the area to serve multiple single-antenna users, has
attracted a great attention.

Zero-forcing beamforming (ZFB) and conjugate beamform-
ing (CB) are the most popular classes of massive MIMO
information delivery [13]. The authors of [14] employed
ZFB for cfm-MIMO while only considering the scenario
of no pilot contamination that requires the orthogonality of
pilot sequences. Its optimal power allocation is easy but its
implementation may not be practical, requiring that all APs
have global channel state information (CSI) of the overall
system. Besides, there is no analytical expression for the
mathematical expectation of nonlinear terms involving inverse
of random matrices [14, eq. (15)]. On the other hand, the
authors of [10] used CB, which requires only local CSI
for each AP for implementation and works under a general
scenario of pilot contamination. Besides, its effective signal-
to-interference-plus-noise (SINR) is also asymptotically better
than that by ZFB [13, Table 3.1]. However, its computational
complexity is very high because there is a large number
of decision variables that makes it impractical for massive
connectivity. Unlike ZFB, CB cannot suppress the so called
multi-user interference (MUI), so proper Gaussian signaling
(PGS), which relies on circularly symmetric Gaussian signals,
is not expected as optimal in these works. Recent studies
such as [15]–[20] and references therein have showed that
improper Gaussian signaling (IGS) [21], which releases the
signal circular symmetry, can improve information throughput
essentially for severely interfered networks such as those with
the number of transmit antennas less than the number of served
users.

While proper Gaussian signal is fully characterized by
its covariance, improper Gaussian signal in contrast is fully
characterized by its so called augmented covariance, which in-
volves not only the covariance but also the pseudo-covariance.
The Shannon function rate under IGS is a log-determinant
log det(.) of signal augmented covariance matrices instead of
logarithm function of signal power in multi-input single-output
(MISO) such as cfm-MIMO, so the design of beamforming
under IGS is much more computationally challenging that that
under PGS. The merits of IGS over PGS have been shown
in the literature for improving Shannon function rate [15]–
[20] but has not been known for URLLC. The URLLC rate
expression is a very complicated function of the transmission
power coefficients [4], making the design of CB under the
assumption of IGS for URLLC is much more computationally
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challenging.
Against the above background, in this paper we opt for

a particular class of CB, which takes a similarly low com-
putational complexity of ZFB and the same simple access
requirement of CB to optimize the downlink URLLC rates
of a cfm-MIMO and its energy efficiency under both PGS
and IGS. The paper’s contribution is three-fold:

• A new class of CB with low computational complexity,
which enables massive connectivity by using local CSI.

• The paper is the first work to consider cfm-MIMO
for multi-user URLLC. We formulate two important
design problems of (i) max-min rate optimization and
(ii) energy efficiency optimization under transmit power
constraint. Due to the complexity of rate expression in the
short blocklength regime, the aforementioned problems
are quite challenging to solve. Accordingly, new path-
following algorithms, which generate a sequence of better
feasible points and converge at least to a locally optimal
solution, are developed for optimizing URLLC rates and
cfm-MIMO energy efficiency.

• This is the first work to propose IGS to improve both
the URLLC rate and energy efficiency of cfm-MIMO.
The performance of proposed algorithms is analyzed
through rigorous simulations under varying values of
APs, number of users, transmit power budget, URLLC
transmission duration, and the length of pilot sequences.
Particularly, IGS is shown to outperform PGS in low-
power regime that is very important for B5G.

The paper is organized as follows. Section II is devoted
to PGS for cfm-MIMO in serving URLLC, where the basic
modeling and communication protocol are recalled, a new
class of CB is introduced, the problem of max-min users’
URLLC rate is accordingly formulated and then new path-
following algorithm is developed for its computation. The
problem of maximizing cfm-MIMO efficiency under the qual-
ity of service (QoS) constraints in terms of users’ URLLC
rate thresholds is also addressed. Section III introduces IGS
for the downlink cfm-MIMO to address the problem of max-
min users’ URLLC rate optimization and of maximizing cfm-
MIMO energy-efficiency under IGS. Section IV provides sim-
ulations to confirm the information theoretic results of Sections
II and III. Section VI concludes the paper. The appendix
provides ingredient inequalities used in the derivations of the
theoretical results.

Notation: Bold-faced lower-case letters, e.g., x, are used
for vectors, while bold-face upper letters, e.g. X, are used for
matrices. xH , xT , and x∗ denote Hermitian transpose, normal
transpose, and conjugate of the vector x, respectively. ‖ · ‖
stands for the vector’s Euclidean norm and | · | stands for the
absolute value of a complex/real scalar number. 〈x,y〉 = xHy
for the vectors x and y and 〈X,Y〉 = trace(XHY) for the
matrices X and Y. We also use 〈X〉 = trace(X) for the matrix
X. Also X � 0 (X � 0, resp.) means the Hermitian symmetric
matrix X is positive semi-definite (positive definite, resp.). C
and R, and R+ denote the set of all complex, real numbers,
and positive numbers, respectively. <{x} denotes the real part
of a complex number x, and In is the identity matrix of size

n× n.

II. SYSTEM MODEL AND PROPER GAUSSIAN SIGNALING

Consider a cfm-MIMO system, which consists of a massive
number M of single-antenna access points (APs) indexed by
m ∈M , {1, . . . ,M} serving N single-antenna users (UEs)
indexed by n ∈ N , {1, . . . , N}. Like remote radio heads in
a cloud radio access network, these APs, which are linked
to a central processing unit (CPU) through backhauls, are
distributed across the area to make them closers to UEs. The
channel hmn between AP m and UE n is modelled as

hmn =
√
βmngmn, (1)

where βmn represents the large-scaling fading and gmn ∈
CN (0, 1) represents the small scale fading. The standard block
fading model is used, hence the channel hmn is constant
in time-frequency blocks of t channel uses, where t is the
length of the coherence interval in samples defined by the
product of the coherence time and bandwidth. In this work,
we assume perfect channel knowledge hence our results will
depict the upper bound on the achievable throughput under
LBR or URLLC. In practice, the channel knowledge at the
APs can be acquired via uplink training [10]. While each user
can estimate the channels through a simple and low-overhead
beamforming training scheme [22]. In this work, by assuming
perfect channel knowledge, we keep our focus in considering
cfm-MIMO for multi-user URLLC and proposing a new class
of CB with low computational complexity.

The authors in [10] proposed the following CB

xm =
∑
n′∈N

√
pmn′h∗mn′sn′ ,

where pmn′ expresses the power allocation at the AP m for
the symbol sn′ ∈ CN (0, 1) intended for UE n′, which is
normalized as E(|sn′ |2) = 1. The design of CB thus involves
MN decision variables pmn′ , which means a large-scale
nonconvex problems, which is computationally intractable. For
instance, for M = 128 and N = 32, it involves already
4096 decision variables. As the signal fades with the distance
due to path-loss, the computational complexity can be reduced
by choosing only those APs that are closer to the UE n, as
serving APs for the UE n. However, the complexity will still
be enormous because if, say, 20 nearby APs are selected to
serve each UE, there will still be 640 decision variables.

To circumvent this computational issue, we propose the
following CB at AP m,

xm =
∑
n′∈N

√
pn′h∗mn′sn′ , (2)

where pn′ expresses the power allocation across all the APs
for the symbol sn′ intended for UE n′. The design of this CB
involves only N decision variables instead of MN of those.
Nevertheless, to avoid unnecessary interference to the users,
each AP is chosen to serve users in its close vicinity only.
Thus, by following [23], only the APs that are closer to the
UE n (within certain radius), are selected as the serving APs
for the UE n.
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The total transmit power by the APs is given by

E(|xm|2) =
∑
n∈N
‖hmn‖2pn

, πm(p), (3)

which is a linear function in p = (p1, p2, . . . , pN )T ∈ RN+ .
The signal received at UE n is

yn =
∑
m∈M

hmn
∑
n′∈N

√
pn′h∗mn′sn′ + νn

=
√
pnλnnsn +

∑
n′∈N\{n}

√
pn′λnn′sn′ + νn, (4)

where νn ∈ CN (0, σ2) is the noise background at UE n, and

λnn′ ,
∑
m∈M

hmnh
∗
mn′ , (n, n′) ∈ N ×N . (5)

Given λnn′ , the interference-plus-noise term in (4),∑
n′∈N\{n}

√
pn′λnn′sn′ + νn, is Gaussian. In addition,

it can be easily shown that the above interference-plus-noise
term is uncorrelated with the desired signal part,

√
pnλnnsn.

Therefore, the corresponding effective SINR at UE n is

γn(p) =
λnpn

ϕn(p) + σ2
(6)

with λn , λ2nn and ϕn(p) ,
∑
n′∈N\{n} pn′ |λnn′ |2, which

is a positive linear function.
In the long block regime (LBR), the achievable rate in

nats/sec/Hz for decoding the signal
√
pnλnnsn in (4) by

treating other terms there as Gaussian noise is the following
Shannon rate function

r̃n(p) = ln (1 + γn(p)) . (7)

Let B is the communication bandwidth. According to [24], the
achievable URLLC rate in nats/sec/Hz of decoding the signal√
pnλnnsn in (4) by treating other terms there as Gaussian

noise is approximated by

rn(p) , r̃n(p)− 1√
Btt

Q−1G (εc)δn(p), (8)

with

δn(p) ,

[
2

γn(p)

1 + γn(p)

]1/2
, (9)

where the factor

Vn , 2
γn(p)

1 + γn(p)
(10)

is the channel dispersion [24, eq. (27)] under the SINR γn(p),
tt is the URLLC transmission duration, Q−1G (.) is the inverse
of the Gaussian Q-function Q(x) =

∫∞
x

1√
2π

exp(−t2/2)dt,
and εc is defined as an acceptable decoding error probability,
which implies that under the considered block fading channel
model, one out of 1/εc short blocklength packets (URLLC
transmissions) may experience outage [1].

It is noteworthy that the channel dispersion of spherical
codebook is close to the that of the Gaussian codebook, when
the number of interferers is large [24, Fig. 3]. This justifies our
assumption of using Gaussian codebook instead of achievable

spherical codebook as our system model considers many UEs
(and hence, the number of interferers is large).

Here we would like to make a note that many URLLC
transmissions are expected to be implemented during data
transmission because the duration of each URLLC transmis-
sion is usually much shorter than the coherence interval td for
payload data transmission.

A. Max-min rate based efficient payload data transmission

Having the expression (8) for the user URLLC rate, the
problem of max-min users’ URLLC rate optimization subject
to transmission power constraint can be formulated as follows:

max
p∈RN

+

f(p) , min
n∈N

rn(p) (11a)

s.t. πm(p) ≤ P,m ∈M, (11b)

where P is a given power budget. This optimization problem is
non-convex as each URLLC rate function rn(p) is nonconcave
so their minimum, which is the objective function in (11a)
is non-concave. In fact, rn(p) defined by (8) is a difference
of two functions, which are non-concave and non-convex.
To propose a path-following algorithm, which generates a
sequence of better feasible points for (11) and converges at
least to its locally optimal solution, we need to develop a
lower bounding concave function approximation for rn(p).

Let p(κ) , (p
(κ)
1 , p

(κ)
2 , . . . , p

(κ)
N )T be the feasible point for

(11) that is found from the (κ− 1)-th iteration.
By applying the inequality (59) in the Appendix for (x, y) =

(λnpn, ϕn(p) +σ2) and (x̄, ȳ) = (λnp
(κ)
n , ϕn(p(κ)) +σ2) we

obtain

r̃n(p) ≥ r̃n(p(κ)) +
λnp

(κ)
n

ϕn(p(κ)) + σ2

×

2

√
pn√
p
(κ)
n

− λnpn + ϕn(p) + σ2

λnp
(κ)
n + ϕn(p(κ)) + σ2

− 1


, r̃(κ)n (p). (12)

The function r̃(κ)n (p) is concave.
Regarding the function δn(p) in (8), by applying the in-

equality (61) in the Appendix for x = 2γn(p)/ (1 + γn(p))
and x̄ = 2γn(p(κ))/

(
1 + γn(p(κ))

)
, we obtain

δn(p) ≤ 1

2

(
δn(p(κ)) +

2

δn(p(κ))

γn(p)

1 + γn(p)

)
=

δn(p(κ))

2
+

1

δn(p(κ))

λnpn
λnpn + ϕn(p) + σ2

(13)

Since the RHS of (13) is still non-convex, we approximate the
function λnpn

λnpn+ϕn(p)+σ2 as follows:

λnpn
λnpn + ϕn(p) + σ2

≤ 0.5λnp
2
n/p

(κ)
n + 0.5λnp

(κ)
n

λnpn + ϕn(p) + σ2
(14)

=
λnp

2
n

2p
(κ)
n (λnpn + ϕn(p) + σ2)

+
0.5λnp

(κ)
n

λnpn + ϕn(p) + σ2
(15)
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where (14) is obtained by applying the inequality (62) in the
Appendix to the numerator of the second factor in (13) for
x = λnpn and x̄ = λnp

(κ)
n .

Define the function

δ(κ)n (p) ,
δn(p(κ))

2
+

1

δn(p(κ))
× RHS of (15), (16)

which is an upper bounding convex function approximation of
the function δn(p):

δn(p) ≤ δ(κ)n (p). (17)

It then follows from (12) and (17) that the function

r(κ)n (p) , r̃(κ)n (p)− 1√
Btt

Q−1G (εc)δ(κ)n (p) (18)

is a lower bound concave function approximation of the
URLLC rate function rn(p) defined from (8):

rn(p) ≥ r(κ)n (p). (19)

Also r
(κ)
n (p) matches with rn(p) at p(κ): rn(p(κ)) =

r
(κ)
n (p(κ)).

Therefore, the function

f (κ)(p) , min
n∈N

r(κ)n (p) (20)

is concave as the minimum of concave functions r(κ)n (p), n ∈
N [25] and is a lower bounding concave function approxima-
tion of the objective function f(p) defined from (11a):

f (κ)(p) ≤ f(p). (21)

At the κ-th iteration, we solve the following convex problem of
the computational complexityO

(
N3M

)
[26, p. 4], to generate

the next iterative point p(κ+1):

max
p∈RN

+

f (κ)(p) s.t. (11b). (22)

Note that f (κ)(p(κ+1)) > f (κ)(p(κ)) as far as p(κ+1) 6= p(κ)

because the former is the optimal solution of (22) while the
latter is a feasible point for (22). Therefore

f(p(κ+1)) ≥ f (κ)(p(κ+1)) > f (κ)(p(κ)) = f(p(κ)), (23)

i.e. p(κ+1) is a better feasible point than p(κ) for (11).
Such sequence {p(κ)} of improved feasible points for (11)
converges at least to its locally optimal solution [27].

It is important to have a good initial point p(0) with the
positive URLLC rate, so we take it as the optimal solution of
the following problem of max-min users’ Shannon function
rate optimization

max
p∈RN

+

min
n∈N

r̃n(p) s.t. (11b), (24)

which is computed by iterating the following convex problem

max
p∈RN

+

min
n∈N

r̃(κ)n (p) s.t. (11b) (25)

until the convergence of the objective function in (24). The
initial point of this iterative process is any feasible point for
the convex constraint (11b).

Algorithm 1 provides the pseudo-code for the proposed
path-following procedure.

Algorithm 1 Path-following algorithm for solving the problem
(11)

1: Initialization: Iterate the convex problem (25) until the
convergence to obtain an initial point p(0). Set κ = 0.

2: Repeat until convergence of the objective function in
(11): Solve the convex problem (22) to generate p(κ+1).
Reset κ← κ+ 1.

B. Energy efficient payload data transmission
The problem of maximizing quality-of-service (QoS)-aware

energy efficiency [28], [29] can be formulated as

max
p∈RN

+

∑
n∈N rn(p)

πte(p)
s.t. (11b), (26a)

rn(p) ≥ r̄, (26b)

where r̄ is a given threshold for URLLC users’ rates to set
the QoS, and [30], [31]

πte(p) = α
∑
m∈M

πm(p) + Psc +M

(
P0 + Pbt

∑
n∈N

rn(p)

)
(27)

which is the total power consumption. Here, α is the reciprocal
of drain efficiency of the the power amplifier at APs, Psc is the
internal power for running the circuit components, P0 is the
power consumption of each backhaul, and Pbt is the traffic-
dependent power (in Watt per bits/s). The first and second
terms in (27) recap the transmission power consumption, while
the third term recaps the power consumption of the backhauls
[32].

Like [30], observe that∑
n∈N rn(p)

πte(p)
=

(
α
∑
m∈M πm(p) + Psc +MP0∑

n∈N rn(p)
+MPbt

)−1
=

(
π(p)∑

n∈N rn(p)
+MPbt

)−1
(28)

for
π(p) , α

∑
m∈M

πm(p) + ν, (29)

which is an affine function, and

ν , Psc +MP0, (30)

which is a positive constant.
It can be observed from the RHS of (28) that the factor

MPbt in
(

π(p)∑
n∈N rn(p)

+MPbt

)
is an independent additive

factor and is not a function of the optimization variable p.
Therefore, maximizing the objective function in (26) is equiva-
lent to the maximization of the objective function

∑
n∈N rn(p)

π(p) .
The problem (26) is thus equivalent to the following optimiza-
tion problem:

max
p∈RN

+

∑
n∈N rn(p)

π(p)
s.t. (11b), (26b). (31)

Let p(κ) , (p
(κ)
1 , p

(κ)
2 , . . . , p

(κ)
N )T be the feasible point for

(31) that is found from the (κ− 1)-th iteration and

γ(κ) =

∑
n∈N rn(p(κ))

π(p(κ))
. (32)
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Algorithm 2 Path-following algorithm for solving the problem
(26)

1: Initialization: Iterate the convex problem (22) until its
optimal value is larger or equal to r̄ for obtaining an initial
point p(0). Set κ = 0.

2: Repeat until convergence of γ(κ) defined by (32): Solve
the convex problem (33) to generate p(κ+1) and γ(κ+1)

(according to (35)). Reset κ← κ+ 1.
3: Output p(κ) as the optimal solution of (26) and(

1

γ(κ)
+MPbt

)−1
=

γ(κ)

1 +MPbtγ(κ)

as the optimal value of (26).

Recalling the function r(κ)n (p) from (18), at the κth iteration
we solve the following convex problem of the computational
complexity O

(
N3(M +N)

)
[26, p. 4], to generate the next

iterative point p(κ+1):

max
p∈RN

+

[∑
n∈N

r(κ)n (p)− γ(κ)π(p)

]
s.t. (11b), r(κ)n (p) ≥ r̄.

(33)
Note that∑

n∈N
r(κ)n (p(κ+1))− γ(κ)π(p(κ+1))

>
∑
n∈N

r(κ)n (p(κ))− γ(κ)π(p(κ))

= 0 (34)

as far as p(κ+1) 6= p(κ) because the former is the optimal
solution of (33) while the latter is its feasible point. Therefore

γ(κ+1) ,

∑
n∈N rn(p(κ+1))

π(p(κ+1))
(35)

> γ(κ), (36)

i.e. p(κ+1) is a better feasible point than p(κ) for (31).
Consequently, the sequence {p(κ)} of improved feasible points
for (31) converges at leats to its locally optimal solution [33].

To find a feasible point p(0) for (31) we iterate the convex
problem (22) until its optimal value is large or equal to r̄.

Algorithm 2 provides the pseudo-code for the proposed
path-following procedure.

III. IMPROPER GAUSSIAN SIGNALING

Until now, the information source sn′ in (2) is assumed
to be proper Gaussian in CN (0, 1). It has been recently
shown that (see e.g. [15]–[19] and references therein) the
release of Gaussian properness improves the signal degree of
freedom, which helps to improve the Shannon function rate
performances of interfering networks. This section aims to
use improper Gaussian sources to improve the max-min users’s
URLLC rate as well as the energy efficiency of the considered

cfm-MIMO system. A normalized improper Gaussian source
sn′ is fully characterized by its augmented covariance [21]

Cn′ ,

[
E(|sn′ |2) E(s2n′)
(E(s2n′))∗ E(|sn′ |2)

]
(37)

=

[
1 q̃n′

(q̃n′)∗ 1

]
, (38)

where q̃n′ , E(s2n′) is called its pseudo covariance. Thus, a
Gaussian source is proper if and only if its pseudo covariance
is zero. Note that |q̃n′ | = |E(s2n′)| ≤ E(|sn′ |2) = 1, so

Cn′ � 0. (39)

Inversely, if
|q̃n′ | ≤ 1 (40)

then
[

1 q̃n′

(q̃n′)∗ 1

]
is qualified as a pseudo covariance of a

normalized improper Gaussian source.
Obviously,

√
pn′sn′ is also improper Gaussian with the

augmented covariance

QQQn′ = pn′

[
1 q̃n′

(q̃n′)∗ 1

]
(41)

=

[
pn′ pn′ q̃n′

pn′ q̃∗n′ pn′

]
(42)

=

[
pn′ qn′

q∗n′ pn′

]
(43)

for
qn′ = pn′ q̃n′ ∈ C, (44)

which satisfies the constraint

|qn′ | < pn′ . (45)

Inversely, if qn′ satisfies (45), then q̃n′ , qn′/pn′ also satisfies
(40) so it is a pseudo-covariance of a normalized improper
Gaussian source. Therefore, in what follows, we will design
QQQn′ defined by (43) with pn′ and qn′ satisfying the constraint
(45), which is convex.

Using (4), the achievable rate by decoding the signal√
p
n
λnnsn in (4) under IGS in LBR is approximated by

(1/2)ρ̃n(p,q) with [34]

ρ̃n(p,q) = ln
∣∣I2 + λ2nnQQQnL−1n (p,q)

∣∣ (46)
= 4 lnλnn + ln |QQQn|

+ ln
∣∣∣(λ2nnQQQn)−1 + L−1n (p,q)

∣∣∣ (47)

with

Ln(p,q) ,
∑

n′∈N\{n}

[
λnn′ 0

0 λ∗nn′

]
QQQn′

[
λ∗nn′ 0

0 λnn′

]
+ σ2I2, (48)

which is the augmented covariance of the interference plus
noise in (4). In what follows, we shall call ρ̃n(p,q) defined
by (47) the IGS Shannon function rate.

Following (8), the achievable URLLC rate by decoding√
p
n
λnnsn under IGS can be approximated by

ρn(p,q) ,
1

2
ρ̃n(p,q)− 1√

Btt
Q−1G (εc)δn(p), (49)
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with δn(p) is defined in (9) and depends on the SINR γn(p)
(see (6)).

The problem of max-min users’ URLLC rate optimization
is formulated accordingly by

max
p∈RN

+ ,

q∈CN

min
n∈N

ρn(p,q) s.t. (45) (50a)

πm(p) ≤ P,m ∈M. (50b)

Let (p(κ),q(κ)) be the feasible point for (50) that is found
from the (κ− 1)-th iteration.

We need to find a lower bounding concave function ap-
proximation of the function ρ̃n(p,q), defined from (47).
Applying the inequality (63) in the Appendix to the last term
in the RHS of (47) for (X,Y) = (λ2nnQQQn,Ln(p,q)) and
(X̄, Ȳ) = (λ2nnQ

(κ)
n ,Ln(p(κ),q(κ))) yields

ln
∣∣∣(λ2nnQQQn)−1 + L−1n (p,q)

∣∣∣
≥ â(κ)n − λ2nn〈B̂(κ),QQQn〉

−
∑

n′∈N\{n}

〈
Ĉ(κ)
n ,

[
λnn′ 0

0 λ∗nn′

]
QQQn′

[
λ∗nn′ 0

0 λnn′

]〉
(51)

for

â(κ)n , ln

∣∣∣∣(λ2nnQ(κ)
n

)−1
+ L−1n (p(κ),q(κ))

∣∣∣∣+ 2− σ2〈Ĉ(κ)〉,

0 � B̂(κ)
n , λ−2nn(Q(κ)

n )−1 −
(
λ2nnQ

(κ)
n + Ln(p(κ), q(κ))

)−1
,

0 � Ĉ(κ)
n , L−1n (p(κ), q(κ))−

(
λ2nnQ

(κ)
n + Ln(p(κ), q(κ))

)−1
.

Next, by applying the inequality (64) in the Appendix to the
second term in the RHS of (47) for X = QQQn and X̄ = Q

(κ)
n ,

we obtain

ln |QQQn| ≥ ln |Q(κ)
n |+ 2− 〈Q(κ)

n ,QQQ−1n 〉, (52)

It follows from (52), (51) and the presentation (47) that the
function

ρ̃(κ)n (p,q) , 4 lnλnn + RHS of (52) + RHS of (51), (53)

is a lower bounding concave function approximation of
ρ̃n(p,q) and the former matches with the latter at (p(κ),q(κ)).

Therefore, the function

ρ(κ)n (p,q) ,
1

2
ρ̃(κ)n (p,q)− 1√

Btt
Q−1G (εc)δ(κ)n (p) (54)

provides a lower bounding concave function approxima-
tion of ρn(p,q) and the former matches with the latter at
(p(κ),q(κ)), where δ(κ)n (p) is derived in (16). We solve the
following convex problem of the computational complexity
O
(
(2N)3(M +N)

)
[26, p. 4], at the κ-th iteration, to gen-

erate the next iterative point (p(κ+1),q(κ+1))

max
p∈RN

+ ,

q∈CN

min
n∈N

ρ(κ)n (p,q) s.t. (45), (50b) (55)

Like Algorithm 1, Algorithm 3 converges at least to a local
optimal solution of the problem (50). Similarly, like Algorithm

Algorithm 3 Path-following algorithm for solving the problem
(50)

1: Initialization: Iterate the convex problem
maxp,q minn∈N ρ̃

(κ)
n (p,q) s.t. (45), (50b) until

the convergence to obtain an initial point (p(0),q(0)). Set
κ = 0.

2: Repeat until convergence of the objective function
in (50): Solve the convex problem (55) to generate
(p(κ+1),q(κ+1)). Reset κ← κ+ 1.

Algorithm 4 Path-following algorithm for solving the problem
(56)

1: Initialization: Iterate the convex problem (55) until its
optimal value is larger or equal to r̄ for obtaining an initial
point (p(0),q(0)). Set κ = 0.

2: Repeat until convergence of γ(κ) ,∑
n∈N ρn(p(κ),q(κ))/π(p(κ)): Solve the

convex problem max(p,q)

∑
n∈N ρ

(κ)
n (p,q) −

γ(κ)π(p) s.t. (11b), (45), ρ
(κ)
n (p,q) ≥ r̄, n ∈ N to

generate (p(κ+1),q(κ+1)) and γ(κ+1). Reset κ← κ+ 1.
3: Output (p(κ),q(κ)) as the optimal solution of (56) and(

1

γ(κ)
+MPbt

)−1
=

γ(κ)

1 +MPbtγ(κ)

as the optimal value of (56).

2, Algorithm 3 converges at least to a locally optimal solution
of the problem of maximizing QoS aware energy efficiency

max
(p,q)

∑
n∈N ρn(p,q)

πte(p,q)
s.t. (11b), (45), ρn(p,q) ≥ r̄, n ∈ N .

(56)
with π(p) , α

∑
m∈M πm(p) + ν with ν defined from (30)

and πte(p,q) , π(p)+Psc+M
(
P0 + Pbt

∑
n∈N ρn(p,q)

)
.

IV. SIMULATIONS

In this section, we analyze the performance of our proposed
algorithms. We start by first describing our simulation param-
eters. The large-scale fading coefficient in (1) is given by

βmn = 10(−PLmn+Xmn)/10, (57)

where PLmn is the path-loss (in dB) and 10Xmn/10 represents
the shadowing effect with Xmn ∼ N (0, σ2

sh). We use a three-
slope model for path-loss [35], which is given by (in dB)

PLmn=


L+ 35 log10(dmn), dmn > d1

L+ 15 log10(d1) + 20 log10(dmn), do < dmn ≤ d1
L+ 15 log10(d1) + 20 log10(do), dmn ≤ do

,

(58)

where the constant factor L depends on the carrier frequency
and the heights of the users and APs and dmn is the distance
between the AP m and UE n. In our simulations, we set σsh =
8 dB, do = 10 m, d1 = 50 m, and L = 140.7 dB. These
parameters resemble those in [10], [31].

We have randomly deployed the APs and the UEs within
a square of 1 × 1 km2. The square is wrapped around at the



7

edges to avoid boundary effects. Corresponding to a coherence
bandwidth of 320 KHz and coherence time of 1 ms, the length
of coherence interval is t = 320 samples. We set the system
bandwidth to 10 MHz, noise power density is set to −174
dBm/Hz and noise figure is equal to 9 dB.

To simulate the energy efficiency performance of a network,
the threshold rate is set to r̄ = 0.5 bps/Hz, the drain efficiency
of power amplifier is set to 0.4, i.e., α = 1/0.4 in (27),
internal power for running the circuit components is set to
Psc = 0.2 W, fixed power consumption for each backhaul
is P0 = 0.825 W, and traffic-dependent backhaul power is
Pbt = 0.25 W/(Gbits/s). These values are taken from [31].

Unless otherwise specified, we use M = 128 APs, N = 32
UEs, transmission duration = tt = 0.1 ms (defined below (8))1,
and transmit power budget P = 10 mW. The decoding error
probability εc (defined below (8)) is set to 10−5. The power
allocated to the pilots, pu, is set to P . Note that following [23],
only the APs that are closer to the UE n (within the radius of
around 150 meters), are selected as the serving APs for the
UE n.

In what follows, we refer to our proposed algorithms as
follows for convenience:
• PGS (Alg. 1) refers to the PGS based max-min rate

Algorithm 1.
• IGS (Alg. 3) refers to the IGS based max-min rate

Algorithm 3.
• PGS (Alg. 2) refers to the PGS based energy efficiency

optimization Algorithm 2.
• IGS (Alg. 4) refers to the IGS based energy efficiency

optimization Algorithm 4.
We simulate both max-min rate and max-min URLLC rate
for comparison purpose. Similarly, to analyze the energy
efficiency performance, we simulate it using both Shannon
and URLLC rates for comparison purpose. Note that in all
the figures, the rates are calculated in bps/Hz, which are
obtained by dividing the rates (defined in nats/sec/Hz) by
ln 2. Following the simulations setup in [10], the results are
averaged over random realizations of the AP/user locations,
shadow fading, and small-scale fading.

In the following subsections, we will separately present the
max-min rate performance and the energy efficiency perfor-
mance of our proposed algorithms.

A. Max-min rate performance

Fig. 1 plots the optimized max-min user rate versus the
number of APs M . As expected, the max-min user rate
increases with the increase in the number of APs due to the
availability of more resources (recall that each AP has its
own independent power budget P ). Fig. 1 shows that the IGS
based Alg. 3 clearly outperforms the PGS based Alg. 1 and
the performance gap increases with the increase in M . As
expected, Shannon function rate performance is better than
the URLLC rate performance.

1there could be several short blocklength communications within coherence
time because the coherence time is usually longer than the URLLC transmis-
sion duration.

Fig. 2 plots the optimized max-min user rate versus the
number of users N . As expected, the max-min user rate
decreases with the increase in the the number of users N .
This is because when more users will be competing for the
resources, the minimum user-rate will be more affected. Fig. 2
shows that the IGS based Alg. 3 clearly outperforms the PGS
based Alg. 1 by almost 0.5 bps/Hz.

Fig. 3 plots the optimized max-min user rate versus the
transmit power budget P . The max-min user rate increases
with the increase in the power budget P , however, there is
almost no further improvement in the max-min rate as P
increases beyond 0 dBm. Fig. 3 also shows the supremacy
of IGS based Alg. 3 over the PGS based Alg. 1.

Fig. 4 plots the optimized max-min user rate versus the
transmission duration tt. Thus, Fig. 4 shows the effect of short
blocklength transmission for varying values of blocklength.
Fig. 4 shows that the URLLC rate increases with the increase
in the transmission duration and gets closer to the Shannon
function rate. The Shannon function rate is fixed as it does
not depend on the transmission duration and assumes infinite
blocklength transmission. Fig. 4 shows that the performance
gap between the IGS based Alg. 3 and the PGS based Alg. 1
does not change over different considered values of tt.

B. Energy efficiency performance

Fig. 5 plots the optimized energy efficiency versus the
number of APs M . The energy efficiency decreases with
the increase in the number of APs. This is because energy
efficiency, as defined in the objective of (26a), is the ratio of
sum-rate to the total power consumption (defined in (27)). We
know that sum-rate increases with M due to the availability
of more resources, however, the power consumption also
increases with M (see (27)). The increase in the power
consumption dominates the increase in the sum-rate, which
results in the decrease in the energy efficiency performance.
Fig. 5 shows that the IGS based Alg. 4 clearly outperforms
the PGS based Alg. 2.

Fig. 6 plots the optimized energy efficiency versus the
number of users N . The energy efficiency increases with the
increase in the number of users. This is because the sum-
rate increases with the increase in the number of users. Fig.
6 shows that the performance gain of the IGS based Alg. 4
over the PGS based Alg. 2 increases with the increase in the
number of users. It can be observed from Figs. 5-6 that the
performance gap between IGS and PGS based on the URLLC
rate is more compared to that based on the Shannon function
rate.

Fig. 7 plots the optimized energy efficiency versus the
transmit power budget P . The energy efficiency increases with
the increase in the power budget P due to the availability
of more resources. Fig. 7 also shows the supremacy of IGS
over the PGS. Fig. 8 plots the optimized energy efficiency
versus the transmission duration tt. Fig. 8 shows that the
energy efficiency based on the URLLC rate increases with
the increase in the transmission duration and gets closer to
that based on the Shannon function rate. The energy efficiency
based on Shannon function rate is fixed as it does not depend
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Fig. 4: Optimized max-min user rate versus the transmission
duration tt.

on the transmission duration and assumes infinite blocklength
transmission. Fig. 8 shows that the performance gap between
the IGS based Alg. 4 and the PGS based Alg. 2 decreases
with the increase in the transmission duration tt.

Finally, Fig. 9 plots the optimized energy efficiency versus
the threshold rate r̄. It can be observed from Fig. 9 that the
performance gain by IGS over PGS increases by increasing
the threshold rate. Particularly, the proposed IGS based Alg.
4 shows around 22% gain in terms of energy efficiency com-
pared to the proposed PGS based Alg. 2, under r̄ = 0.5 bps/Hz
and short blocklength regime. One interesting observation is
that the performance gap between IGS and PGS based on the
URLLC rate is more compared to that based on the Shannon
function rate. This shows the advantage of IGS over PGS under
practical short blocklength communication.

V. CONCLUSIONS

We have introduced a particular class of conjugate beam-
forming (CB) for a cfm-MIMO to maintain the low com-
putational complexity for its design while requiring only
local CSI for its transmit implementation. This CB has been
used to optimize both the users’ Shannon rate (in the long
blocklength) and URLLC rate (in the short blocklength). IGS
has been also employed to further improve the max-min user
rate performance. New path-following algorithms have been
developed for their computations. The energy-efficiency of
cfm-MIMO has been also addressed. The obtained theoretical
results have been backed up by intensive simulations.

One possible future research option is to consider URLLC
in cfm-MIMO under imperfect CSI assumption. One has
to consider that short pilot sequences in short blocklength
communication may impact the quality of estimated CSI,
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Fig. 8: Optimized energy efficiency versus the transmission
duration tt.

which in turn can affect the reliability. Moreover, since many
URLLC transmissions can take place during payload data
transmission as the duration of each URLLC transmission is
usually much shorter than the coherence interval for payload
data transmission, the channel estimate obtained from the first
short blocklength packet (first URLLC transmission) can be
used for the remaining short blocklength packets (subsequent
URLLC transmissions) during the coherence interval.

APPENDIX: FUNDAMENTAL INEQUALITIES

The following inequalities for all x > 0, y > 0, and x̄ > 0,
ȳ > 0, were proved in [36], [37]:

ln

(
1 +

x

y

)
≥ ln

(
1 +

x̄

ȳ

)
+
x̄

ȳ

(
2

√
x√
x̄
− x+ y

x̄+ ȳ
− 1

)
,

(59)

and

x2

y
≥ x̄

ȳ

(
2x− x̄

ȳ
y

)
. (60)

and
√
x ≤ 1

2

(√
x̄+

x√
x̄

)
. (61)

The following inequality is based on least-square

x ≤ 0.5(x2/x̄+ x̄) ∀ x > 0, x̄ > 0. (62)

We also recall the following inequality for all X � 0, Y � 0
and X̄ � 0, Ȳ � 0 of dimension 2× 2 [33]:

ln |X−1 + Y−1| ≥ ln |X̄−1 + Ȳ−1|+ 2

−〈X̄−1 − (X̄ + Ȳ)−1,X〉
−〈Ȳ−1 − (X̄ + Ȳ)−1,Y〉, (63)
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Fig. 9: Optimized energy efficiency versus threshold rate r̄.

and

log |X| ≥ log |X̄|+ 2− 〈X̄, (X)−1〉. (64)
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