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Abstract

Aims There is a critical need for better biomarkers so that heart failure can be diagnosed at an earlier stage and with greater
accuracy. The purpose of this study was to design a robust mass spectrometry (MS)-based assay for the simultaneous
measurement of a panel of 35 candidate protein biomarkers of heart failure, in blood. The overall aim was to evaluate the
potential clinical utility of this biomarker panel for prediction of heart failure in a cohort of 500 patients.

Methods and results Multiple reaction monitoring (MRM) MS assays were designed with Skyline and Spectrum Mill
PeptideSelector software and developed using nanoflow reverse phase C18 chromatographic Chip Cube-based separation,
coupled to a 6460 triple quadrupole mass spectrometer. Optimized MRM assays were applied, in a sample-blinded manner,
to serum samples from a cohort of 500 patients with heart failure and non-heart failure (non-HF) controls who had cardiovas-
cular risk factors. Both heart failure with reduced ejection fraction (HFrEF) patients and heart failure with preserved ejection
fraction (HFpEF) patients were included in the study. Peptides for the Apolipoprotein Al (APOA1) protein were the most
significantly differentially expressed between non-HF and heart failure patients (P = 0.013 and P = 0.046). Four proteins were
significantly differentially expressed between non-HF and the specific subtypes of HF (HFrEF and HFpEF); Leucine-rich-alpha-2-
glycoprotein (LRG1, P < 0.001), zinc-alpha-2-glycoprotein (P = 0.005), serum paraoxanse/arylesterase (P = 0.013), and APOA1
(P = 0.038). A statistical model found that combined measurements of the candidate biomarkers in addition to BNP were
capable of correctly predicting heart failure with 83.17% accuracy and an area under the curve (AUC) of 0.90. This was a
notable improvement on predictive capacity of BNP measurements alone, which achieved 77.1% accuracy and an AUC of
0.86 (P = 0.005). The protein peptides for LRG1, which contributed most significantly to model performance, were
significantly associated with future new onset HF in the non-HF cohort [Peptide 1: odds ratio (OR) 2.345 95% confidence
interval (Cl) (1.456-3.775) P = 0.000; peptide 2: OR 2.264 95% Cl (1.422-3.605), P = 0.001].

Conclusions This study has highlighted a number of promising candidate biomarkers for (i) diagnosis of heart failure and
subtypes of heart failure and (ii) prediction of future new onset heart failure in patients with cardiovascular risk factors.
Furthermore, this study demonstrates that multiplexed measurement of a combined biomarker signature that includes BNP
is @ more accurate predictor of heart failure than BNP alone.
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Introduction healthcare system is significant. In the United Kingdom, 1-

2% of the National Health Service’s budget is spent on HF,
Heart failure (HF) is a major global health issue, with recent with 60-70% of this estimated to be on the cost of
estimates suggesting that there are more than 26 million HF  hospitalizations.> HF is a complex pathology and often
patients worldwide. The burden of this disease on the presents with non-specific symptoms. Hence, delays in
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accurate diagnosis and appropriate treatment interventions
contribute further to HF-associated healthcare costs.”
Echocardiography remains key to accurate diagnosis of HF;
however, the resources required for this is an important
factor in the healthcare burden of HF.! Blood-based
biomarkers offer a lower cost, minimally invasive alternative
for HF diagnosis and prognosis, with much quicker
turnaround times for test results. The current gold-standard
biomarkers for HF are the natriuretic peptides—N-terminal
proBNP and BNP. However, there are a number of
limitations with these biomarkers in the context of HF
management; the biological variation of BNP or N-terminal
proBNP is ~30% in chronic HF, and levels are further
influenced by patient weight, comorbidities, and
medications.? The natriuretic peptides are also not useful in
classifying types of HF, which is key to managing the
disease effectively—especially in terms of risk stratification.
Ultimately, follow-up echocardiography is still relied upon to
confirm diagnosis of HF, even if elevated levels of BNP are
detected. The underlying mechanisms that contribute to HF
remain poorly understood, and it is thought that biomarkers
that reflect important pathophysiologic pathways involved
in cardiovascular dysfunction would likely be of greater
clinical value for diagnosis and prognosis of HF.

Recent studies indicate that shifting the focus from con-
ventional risk factors and/or single disease biomarkers to-
ward biomarker ‘signatures’, made up of multiple
disease-relevant proteins, would be of considerable benefit
in the management of HE.3 Aside from cancer, cardiovascular
research is the field in which novel disease biomarkers have
been most extensively investigated, with more than 150 po-
tential biomarkers for cardiovascular disease documented in
the literature.* However, no new protein biomarker tests
for HF have yet been approved and included in guidelines
for use in clinical practice. This is largely due to difficulties
in being able to demonstrate that use of novel biomarkers
will eventually lead to improved outcomes for HF patients.
Some of the difficulty lies in evaluating lengthy lists of candi-
date biomarker proteins in a statistically relevant number of
patient samples, with sufficient sensitivity and specificity
toward HF.®> This bottleneck has previously been attributed
to the fact that the technologies being used are unable to
provide the combination of sufficient throughput and robust
accuracy for analysing multiple biomarker candidates in large
patient cohorts. In contrast to the traditional antibody-based
assays, mass spectrometry technology allows for more high-
throughput, sensitive, and selective measurement of target
proteins by detection of their unique peptide fragments.
Multiple reaction monitoring (MRM) is a mass spectrometry
technique that makes use of multiple mass analysis steps to
select a series of predefined ions for detection.® MRM is ad-
vantageous over alternative biomarker validation techniques
such as enzyme-linked immunosorbent assay, SOMA scan and
proximity extension assay, in that it is not array-based and

restrictive to measurement of protein targets to which suit-
able antibodies or somamers are commercially available.
MRM assays are customizable, high-throughput, and suitable
for routine use in a clinical setting.”

The key aim of this study was to develop a set of robust
MRM assays for measurement of a panel of pathophy-
siologically relevant candidate protein biomarkers for HF.
With the ultimate aim of being able to develop a clinically
useful biomarker test, the assays were optimized for applica-
tion to crude patient serum samples. Application of these as-
says to a statistically powered patient cohort has provided
evidence that this biomarker panel could have clinical utility
for prediction of HF within a mixed population of both dis-
ease and control patients.

Methods

Full detailed methods are available in the supporting
information.

Study population

Patients for this study were recruited from the HF Unit and
the Blood Pressure Unit at St. Michael’s Hospital in Dun
Laoghaire, Co. Dublin. The Ethics Committee at St. Vincent’s
University Hospital approved the study protocol, which
conformed to the principles of the Helsinki Declaration.

Serum collection and preparation for multiple
reaction monitoring analysis

Peripheral venous blood samples were obtained during clini-
cal assessment. Point of care BNP was measured using a Triage
meter (Biosite). Crude and depleted samples were digested
with trypsin and de-salted using C18 resin ZipTips® (Millipore).

Multiple reaction monitoring assay design and
data analysis

Multiple reaction monitoring analysis was carried out with
nanoflow reverse phase C18 chromatographic Chip
Cube-based separation coupled to an Agilent 6460 triple
quadrupole mass spectrometer. Skyline (MacCoss laboratory,
Washington DC version 1.4), Spectrum Mill Peptide Selector
(Agilent Technologies, version 3.3.078), and Qualitative Mass
Hunter Software (Agilent, V 3.3.078) were used for MRM as-
say design and data analysis. IBM SPSS Statistics Version 24
was used for statistical analysis. Non-parametric
Mann-Whitney U and Kruskal-Wallis tests were used to in-
vestigate differences in biomarker levels and continuous
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clinical variables between groups. A one-way analysis of
covariance (ANCOVA) was conducted to compare biomarker
expression between groups, while controlling for confound-
ing clinical factors. Survival analysis was performed using
the Cox-regression method. Random Forest models were
used to discriminate between the patient groups (Random
Forest package in R V.4.3.2 and pROC package in R V.3.4.4).

Results

Multiple reaction monitoring assay development
—selection of proteotypic peptides

A panel of 35 candidate biomarker proteins relevant to car-
diovascular conditions was assembled. This panel included
19 known and 16 novel biomarkers. ‘Known’ biomarkers were
identified from the literature and added to the panel based
on their known involvement in the pathogenesis of cardiovas-
cular diseases (Table 1). ‘Novel’ biomarkers were identified
from a previous study by Watson et al.® Both Skyline and
Peptide Selector were used to select proteotypic peptides
for development of MRM assays for the candidate protein
biomarkers. Data from in house experiments and relevant
publications on MRM-based investigations also guided the
peptide selection process®™** (Supporting Information, Table
S1). Where possible, at least two peptides were selected
per protein. It was found that the peptides identified for na-
triuretic peptide receptor A (ANP) and BNP were not unique
to these proteins so they were removed from the candidate
list.

Multiple reaction monitoring development—
assay optimization

The in-silico MRM assays were analysed in pooled patient se-
rum samples. Crude serum was depleted of the 14 most abun-
dant serum proteins to enhance detectability and optimize
measurement parameters for the lower abundant proteins.
On the basis of the results from these experiments, MRM as-
says were optimized for 20 proteins (30 peptides and 150
transitions). These assays were evaluated in crude serum
samples in order to confirm that target proteins could be re-
liably measured without need for serum depletion. This re-
sulted in the development of a single working MRM method
for measurement of 22 peptides (15 proteins) (Figure S1).
Synthetic crude peptides were used to assist in the develop-
ment of assays for 11 of the remaining proteins, which were
determined—based on previous results—to have the most
potential for successful measurement in serum and were also
considered to be the most biologically relevant. All peptides
selected for inclusion in the final MRM method had dot

products greater than 0.9. For many of the proteins, only
one peptide was included in the final method. To ensure accu-
rate peptide detection, especially for the lower abundant pro-
teins, all five transitions for each peptide were retained in the
final method. The resulting final MRM method consisted of 35
peptides for 25 proteins, with a total of 175 transitions. The
workflow for peptide selection and assay optimisation is
outlined in Figure 1.

Clinical cohort for assay evaluation

The clinical cohort included 150 HF patients; 75 HF patients
with reduced ejection fraction (HFrEF) and 75 HF patients
with preserved ejection fraction (HFpEF). A population of
350 non-heart failure (non-HF) patients were selected from
the STOP-HF (St. Vincent’s Screening to Prevent HF) study.
These patients represent a high-risk population for future de-
velopment of HF and served as a control group within this
study.’® Point of care BNP measurements were taken for
each patient. Assays, with sensitivity for BNP at <5 ng/mlL,
were run singly and the intra-assay variability was <10%.
All samples were analysed singly with the developed MRM
method over 21 batches of between 22 and 24 samples. A
stock peptide mix was used to confirm system suitability
and ensure reproducibility between each batch of samples
analysed. The %CV values for the stock peptide mix was
around 15% indicating that instrument performance was con-
sistent throughout the analysis. However, it was noted from
inspection of the quality of peptide peaks in Skyline, that
some batches had a disproportionate amount of missing
values or very low values for all peptides. These sample
batches were removed from subsequent analyses to remove
any potential bias of batch effects. Biomarker analysis was ul-
timately conducted using data from 406 patient samples
(Table S2). Even though samples were removed from the
analyses, the ratio of HF to non-HF patients remained the
same; 121 HF and 289 non-HF. Patient characteristics for
the 406 patients are summarized in Table 1. The non-HF pa-
tients were generally younger (66.75 = 96) than HFpEF
(74.19 * 6.9) and HFrEF (70.12 + 11.4) patients (P < 0.001).
The majority of patients affected by either HFpEF or HFrEF
were male in this cohort (63.2% and 72.6%, respectively).
This is unsurprising as, although more women die from HF,
it is predominantly diagnosed in men. As indicated in this ta-
ble, the non-HF group demonstrate clinical features, which
would indicate that they are at risk of future development
of HF (prevalence of hypertension = 66.6% and prevalence
of dyslipidaemia = 67.6%); however, previous incidences of
ischaemic heart disease (IHD, 17.4%) and cardiac
arrhythmia/atrial fibrillation (AF, 10.1%) are significantly
lower than in the HFpEF and HFrEF groups (IHD = 41.1%,
AF = 85.5% vs. IHD = 59.7%, AF = 56.5%, respectively,
P <0.001). Within the HF group, HFpEF patients demonstrate
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Table 1 Patient demographic table

Non-HF HFPEF HFREF
Variable n = 287 n =57 n =62 P value
Age (years) 67.04 = 9.6 74.19 £ 6.9 70.12 £ 11.4 0.000*"
Male (%) 44.90% (n = 129) 63.20% (n = 36) 72.60% (n = 45) 0.000
SBP (mmHg) 135.20 = 18.0 (n = 283) 121.96 = 18.9 116.39 = 21.9 0.000%"
DBP (mmHg) 81.88 £ 11.0 (n = 283) 74.47 £ 12.5 69.15 = 11.0 0.000*™
Heart rate (bpm) 68.49 + 12.4 (n = 283) 69.78 = 13.4 (n = 55) 66.97 + 13.7 0.257
Body mass index (kg/m ) 28.51 = 5.0 31.62 = 5.9 (n = 56) 27.69 + 4.1 0.001™
BNP (pg/mL) 40.93 = 47.0 280.40 = 218.4 200.60 = 189.1 0.000*"
Medical history
Cardiac failure 0.30% 100% 100% 0.000
Arr/Atrial fibrillation 14.30% 85.50% 56.50% 0.000
Coronary artery disease/ischemic 18.50% 41.10% (n = 56) 59.70% 0.000
heart disease
LipD 77.40% (n = 222) 61.40% (n = 35) 71.00% (n = 44) 0.525
Diabetes mellitus 17.10% (n = 49) 29.80% (n = 17) 15.30% (n = 11) 0.013
Stroke 3.50% (n = 10) 8.60% (n = 35) 3.30% (n = 61) 0.144
Hypertension 74.60% 86.00% 32.30% (n = 62) 0.000
Angina 6.60% 11.40% (n = 35) 16.00% 0.072
Arthritis 22.60% 25.00% (n = 20) 21.30% (n = 61) 0.128
COPD 1.70% 11.40% (n = 35) 16.10% 0.000
Asthma 8.40% 9.10% (n = 35) 6.50% 0.460
Cancer 6.30% 15.00% (n = 20) 16.80% 0.001
Medications
ACEi 27.90% 68.40% 64.50% 0.000
ARB 32.10% 15.00% (n = 20) 24.20% 0.155
Spironolactone 0.30% 0.00% (n = 42) 4.80% 0.005
Beta blocker 29.30% 14.00% 82.30% 0.000
Calcium channel blocker 28.20% 28.10% 4.80% 0.000
Statin 70.00% 59.60% 62.90% 0.219
Alpha blocker 8.70% 11.90% (n = 42) 3.40% (n = 58) 0.028
Aspirin 43.20% 50.90% 56.50% 0.125
Loop diuretics 5.60% 94.70% 71.00% 0.000
Warfarin 6.60% 68.40% 37.10% 0.000
Dig 1 1.40% 30.00% (n = 20) 24.20% 0.000
Insulin 1.70% 4.80% (n = 42) 1.60% 0.420
Nitrate 4.20% 45.00% (n = 20) 17.70% 0.000
Ivabradine 0.70% 0.00% (n = 20) 4.80% 0.033
Clopidogrel 3.80% 5.00% (n = 20) 8.10% 0.353
Bloods
High density lipoprotein 1.37 = 0.5 (n = 286) 1.10 = 0.4 (n = 24) 1.16 £ 0.4 (nh = 61) 0.000*"
Low density lipoprotein 2.68 = 0.9 (n = 261) 3.11 £ 5.1 (h = 22) 2.28 £ 0.8 (n = 53) 0.000*"
Cholesterol 4.80 = 1.0 4.09 = 0.9 (n = 50) 418 = 1.1 0.000*"
Triglyceride 1.70 £ 1.0 (n = 286) 1.56 + 0.7 (n = 50) 1.85+ 1.3 0.945
Echocardiography
Ejection fraction (%) 67.09 + 8.6 61.66 = 7.4 (n = 56) 40.70 = 15.1 (n = 57) 0.000*™
LVIDd (mm) 46.22 =55 49.50 = 5.2 (n = 52) 57.78 = 10.7 (n = 54) 0.000*™
IVSd (mm) 11.25+ 1.9 12.48 = 2.6 (n = 54) 11.30 = 3.3 (n = 50) 0.005*
PWd (mm) 9.68 = 1.6 10.72 = 1.9 (n = 54) 9.63 = 2.3 (n = 52) 0.001**
LV mass (gm) 174.57 = 55.1 222.69 + 60.64 (n = 52) 239.19 + 89.4 (n = 52) 0.000%"
LVMI (gm/m"®) 91.98 +24.2 112.44 = 30.4 (n = 53) 127.14 = 40.4 (n = 48) 0.000%"
LA volume gmL) 51.59 + 19.1 (n = 275) 105.20 = 44.2 (n = 44) 84.48 + 23.5 (n = 33) 0.000*"
LAVI (mL/m©) 26.75 £ 9.1 53.33 = 20.3 (n = 46) 44.04 = 11.07 (n = 32) 0.000%"
e’ (cm/s) 8.20 = 2.5 (n = 284) 9.50 = 2.2 (n = 45) 7.80 = 3.5 (n = 44) 0.001**
E/e' ratio 9.00 = 2.9 (n = 282) 11.29 = 3.9 (n = 46) 9.79 £ 49 (n = 43) 0.001**
LA Dimen (mm) 37.91 = 6.0 (n = 285) 49.33 + 6.2 (n = 52) 44.81 = 7.0 (n = 54) 0.000*™

ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; Arr, arrhythmia; COPD, chronic obstructive pulmonary
disease; e’, mitral flow velocity; E/A, ratio of maximal early to late (atrial) transmitral filling velocities in diastole; E/e’, ratio of mitral early
diastolic flow velocity over tissue Doppler lateral mitral annular lengthening velocity; g/dL, grams per decilitre; IVSd, intraventricular
septum in diastole; LA, left atrial; LAVI, left atrial volume; LipD, dyslipidemia; LV, left ventricular; LVIDd/LVIDs, left ventricular diastolic/sys-
tolic dimensions; LVMI, left ventricular mass; MI, myocardial infarction; PWd, posterior wall in diastole; SBP/DBP, systolic/diastolic blood

pressure.

Values are mean =+ SD, n (%). Independent-samples Kruskal-Wallis analysis was performed for numerical variables for the three patient
roups. Chi-square contingency analysis was performed for categorical variables.

P values that indicate significant differences (P < 0.05) between non-HF and HFPEF group.

‘P values that indicate significant differences (P < 0.05) between non-HF and HFREF group.

'P values that indicate significant differences (P < 0.05) between HFPEF and HFREF group.
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Figure 1 Workflow for MRM assay development and optimisation. The figure illustrates the process of MRM assay design and optimisation.
Proteotypic peptides were carefully selected using Skyline and Peptide Selector software as well as data from previous in-house MRM-based studies
and relevant publications. MRM assays were initially developed in depleted serum and further optimized in crude serum. Synthetic peptides were used
to optimize parameters for low abundant peptide targets. Working assays were ultimately compiled into a single MRM method for measurement of 25

proteins. MRM, multiple reaction monitoring.

Candidate biomarker proteins

&
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overall poorer cardiovascular health compared with HFrEF,
with higher body mass index (31.72 + 5.9 vs. 27.69 + 4.1,
P = 0.001), and higher incidence of diabetes (29.8% vs.
15.3%, P = 0.001), stroke (8.6% vs. 3.3%, P = 0.144), and hy-
pertension (86.0% vs. 32/3%, P < 0.001).

Evaluation of individual candidate biomarkers

Area values for the most intense peptide transition were used
to determine peptide expression levels in sera. Any missing
values were replaced using a multiple imputation method to
remove any potential bias. As expected, BNP was significantly
differentially expressed between non-HF and HF patients;
however, there was not a significant difference in BNP expres-
sion between HFrEF and HFpEF patients once data was ad-
justed for AF (P = 0.320, Figure S2). This highlights the lack
of specificity of BNP for differentiation between types of HF

, Which is required for appropriate clinical management of
HF. Individually, five of the candidate biomarker proteins
were significantly differentially expressed between HF and
non-HF patients: leucine-rich-alpha-2-glycoprotein (LRG1,
P < 0.001), zinc-alpha-2-glycoprotein (ZA2G, P = 0.001), se-
rum paraoxanse/arylesterase (PON1, P = 0.006), Apolipopro-
tein A-l1 (APOA1, P = 0.009 and P = 0.038), and pentraxin 3
(PTX) (Table 2, P = 0.049). In addition to gender and age,
adjustments for AF were made as a large proportion (82%)
of patients within this cohort had the condition. All proteins
remained significant when adjusted for gender, age and AF
individually, aside from PTX, which was no longer significant
after adjustment for these confounders (Table 2). Only
peptides for APOA1 protein remained significant when con-
trolled for all three confounders collectively (P = 0.013 and
P = 0.046). Four proteins were significantly differentially
expressed between non-HF and the subtypes of HF (HFrEF
and HFpEF): LRG1 (P < 0.001), ZA2G (P = 0.005), PON1

ESC Heart Failure (2021)
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Table 2 Significantly differentially expressed proteins HF vs. non-HF

Adjust for Adjust Adjust Adjust for
gender for Afib for Age all three
Mean rank Mean
Protein noHF rank HF P value P value P value P value P value
Leucine-rich alpha-2-glycoprotein 191.8 238.3 0.000*** 0.000*** 0.048* 0.002** 0.100
Zinc alpha-2-glycoprotein 193.5 234.3 0.001*** 0.014* 0.010** 0.006** 0.100
Serum paraoxanase/arylesterase 216.1 180.3 0.006** 0.008** 0.020* 0.021* 0.100
Apolipoprotein A-I? 215.5 181.7 0.009** 0.024* 0.005** 0.010** 0.013*
Apolipoprotein A-I° 213.4 186.7 0.038* 0.100 0.035* 0.100 0.046*
Pentraxin 3 197.1 225.7 0.049* 0.200 0.100 0.100 0.200

HF, heart failure.

‘Repetition of Apolipoprotein A-l reflective of the two different peptides measured for this protein.

"P<0.05.
P<0.01.

ke

P <0.001.

(P =0.013), and APOA1 (P = 0.038). LRG1 was significantly dif-
ferentially expressed between non-HF and HFpEF, and this
held true when adjusted for gender and age (P = 0.001 and
P = 0.040, respectively). However, significance was lost when
adjusted for AF or all three confounders collectively (Table 3).
ZA2G was significantly differentially expressed between
non-HF and HFrEF and also between non-HF and HFpEF
(P =0.005 and P = 0.043, respectively). Differences between
non-HF and HFrEF remained significant when adjusted for
age (P = 0.025) and AF (P = 0.031) but not when adjusted
for gender or all three confounders collectively (Table 3).
PON1 was significantly differentially expressed between
non-HF and HFrEF (P = 0.005). Significance remained when
adjusted for age, gender, and AF individually and all three con-
founders collectively (P = 0.05). APOA1 was significantly dif-
ferentially expressed between non-HF and HFrEF (P = 0.038)
and remained significant when adjusted for AF (P = 0.048)
but not when adjusted for any other confounders (Table 3).

Predictive capacity of combined biomarkers

A random forest model was developed to determine if
collective measurement of all 25 proteins improves accuracy
of BNP for prediction of HF. This type of modelling is designed
to handle artefactual noise, and thus, all peptides can be
included in the model without diminishing the validity of
statistical interpretations from the model, that is, variable
detectability of some of the lower abundant peptides did
not affect model performance.® Indeed, removing peptides
that had only a modest contribution to the model, resulted
in poorer model performance (data not shown). The model
developed here was shown to predict HF with an accuracy
of 83.17% and area under the curve (AUC) of 0.90 (Figure 2).
In contrast, a model, which only included patient BNP data,
had 77.1% accuracy and an AUC of 0.86. Contribution of each
individual protein to the model performance is outlined in

Table 4, where proteins are listed in order of importance to
the model’s predictive capacity. The performance of the
model was not enhanced any further with addition of risk
factors such as patient age, sex, and body mass index, and
these risk factors alone achieved accuracy of just 64.4% and
an AUC of 0.69 (Figure 2). A one-sided hypothesis test was
carried out based on 2000 stratified bootstrap samples to test
if the AUC obtained using only BNP was significantly less than
the AUC achieved with addition of peptide measurements. It
was found that the difference was significant (P = 0.0045).
The net reclassification was also calculated [net reclassifica-
tion 0.1111 95% confidence interval (Cl) (0.0209-0.2013)
P =0.01578); however, results varied based on which cut-off
threshold values were chosen. Hence, the bootstrapping ap-
proach provided more stable results for comparison of model
performance. Age is a confounding factor in the prediction of
HF. Logistic regression analysis was also performed on a sub-
set of age-matched HF and non-HF patients (n = 95 vs.
n = 208, respectively) to ensure that the overall model perfor-
mance was not influenced by effects of age. It was found
that overall predictive performance of all peptides combined
remained similar (0.83) to the non-matched cohort, as
determined by observations of AUC (data not shown).

Prediction of future heart failure

Over a period of 10 years following original sample collection,
17 out of the 287 non-HF patients developed HF. One of the
protein biomarkers, LRG1, was found to be significantly
associated with future HF, even when adjusted for age and
gender (Table 5). Moreover, it was observed that patients in
a ‘high LRG1’ group (with median expression used as the
cut-off) were twice as likely to develop HF in the future,
and within a shorter amount of time [peptide 1: odds ratio
(OR) 2.345 95%Cl (1.456-3.775) P = 0.000; peptide 2: OR
2.264 95% Cl (1.422-3.605), P = 0.001] (Figure 3).
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Figure 2 Performance of biomarkers and BNP in prediction of heart failure. (A) Receiver operating curve demonstrating predicate value of BNP alone
(green), clinical information alone (red), BNP combined with peptides (amber), and BNP combined with peptides and clinical information (blue).
‘Clinical’ information refers risk factors: patient age, sex, and body mass index. AUC, area under the curve.
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Table 4 Proteins included in predictive model for heart failure vs.
non-heart failure in order of importance

Protein? Importance score
Leucine-rich-alpha 2 glycoprotein 7.684
Transthyretin 5.263
Zinc-alpha-2-glycoprotein 4.817
Apolipoprotein A-l 4.728
Leucine-rich-alpha 2 glycoprotein 4.165
Apolipoprotein A-| 4119
Serum paraoxonase/arylesterase 1 3.865
Pigment epithelium-derived factor 3.859
Complement C3 3.559
Fibronectin 3.412
Apolipoprotein A-IV 3.338
Complement factor | 3.289
Beta-2-glycoprotein 3.241
Pentraxin-related protein PTX3 3.195
Metalloproteinase inhibitor 1 3.195
Beta-2-glycoprotein 3.124
Apolipoprotein A-IV 3.079
Collagen alpha-1(lll) chain 3.062
Vitamin D-binding protein 3.047
Macrophage migration inhibitory factor 3.020
Complement C3 3.016
Complement C1s subcomponent 3.013
72 kDa type IV collagenase 2.983
Matrix metalloproteinase-9 2.926
Serum amyloid P-component (SAP) 2.821
Clusterin 2.764
Gelsolin 2.739
Collagen alpha-2(l) chain 2.728
Complement factor | 2.717
Collagen alpha-2(l) chain 2.708
Gelsolin 2.559
Galectin-3 2.546
Pentraxin-related protein PTX3 2.147
Interleukin-6 2.123
Galectin-3 2.017

*More than one peptide was measured per protein.

predictive of future HF, with non-HF patients in the ‘high
LRG1’ group found to be twice as likely to develop HF in
the future. Overall, these data add weight to the suggestion

that LRG1 could be a valuable biomarker for ventricular dys-
function and HF and may have particular utility in diagnosis of
HFpEF.® ZA2G was significantly elevated in HF patients, with a
more significant association with HFrEF. Although generally
researched in the context of cancer,° it has previously been
shown that serum levels of ZA2G are increased in HF
patients.”> PON1 was also significantly differentially
expressed between HF and non-HF patients and significantly
associated with HFrEF. Studies in two Japanese patient co-
horts have revealed that the presence of certain alleles of
PON1 increase the risk of carotid artery atherosclerotic
disease®?; however, the clinical significance of PON1 activity
in cardiovascular conditions remains controversial. Some
studies have associated low baseline PON1 activity with in-
creased severity of coronary artery disease, while other stud-
ies report an association between high baseline PON1 activity
and coronary artery disease severity.?> In a study by
Hammadah et al, however, no correlation between HF events
or hospitalizations and PON1 activity was observed.? In this
study, PON1 was down-regulated in HF, although the more
important observation regarding this protein was that, like
ZA2G, it contributed strongly to the predictive performance
of the combined biomarker model (Table 4). Apolipoprotein
| is significantly differentially expressed between both HF
and non-HF samples, even when adjusted for gender and
AF, and had a more significant association with HFrEF. Apoli-
poproteins have been more strongly linked with HF and car-
diovascular disease. Low APOA1 expression has been linked
with more severe disease®® and conversely, higher levels of
APOAL1 are associated with reduced risk of major cardiovascu-
lar events.?® In our data, reductions in APOA1 were also ob-
served in both HFpEF and HFrEF patients, when compared
with non-HF patients. The protein pentraxin 3 was also signif-
icantly elevated in serum from patients with HF; however,
these changes were no longer significant when adjusted for
AF. Individually, peptides for the proteins described above
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Table 5 Proteins associated with future HF
Adjusted Adjusted Adjusted Adjusted
for age for gender for Afib for all
Protein NoHF (n = 272) HF (n = 17) P value P value P value P value P value
Leucine-rich alpha-2-glycoprotein 3209.10 4393.10 0.042* 0.060 0.040* 0.086 0.077
(Peptide 2)
Leucine-rich alpha-2-glycoprotein 2477.64 3385.53 0.026* 0.045* 0.030* 0.055 0.077
(Peptide 2)

,*Afib, atrial fibrillation; HF, heart failure.
P <0.05.

Figure 3 Survival analysis of patients with low and high LRG-1 protein expression at baseline. Cl, confidence interval.
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LRGpeptide 1 | 0852 | 0.243 12.302 1 0.000 | 2345 1.456 3.775

LRGpeptide2 | 0817 | 0.237 11.864 1 0001 | 2264 1.422 3.605

had poor predictive performance for HF (AUC 0.55-0.61).
This finding again highlights the benefit of multiplexed mea-
surement of biomarker combinations, rather than relying
solely on the statistical significance of individual proteins for
identification of clinically useful predictive biomarkers.

Although some of the candidate proteins did show poten-
tial to differentiate between HFpEF or HFrEF and non-HF
controls, the combined measurement of all candidate
biomarker proteins did not have sufficient sensitivity or
specificity to differentiate between either of the two disease
subtypes (HFpEF and HFrEF). In this instance, it is likely that
this is due to the low numbers of both HFpEF and HFrEF pa-
tients (n = 59 and n = 62, respectively) in relation to non-HF
controls (n = 289). To further elucidate the potential clinical
utility of the biomarker panel, or selected candidate bio-
markers within the panel, for specific diagnosis of HFpEF
the biomarkers will have to be assessed in a more appropri-
ately powered cohort of HFpEF patients and matched
controls.

This study has some limitations. This Irish cohort is not
representative of a diverse racial and ethnic population.

Furthermore, all patients recruited, including non-HF, repre-
sent an at-risk population for future development of HF.
Isoforms of BNP could not be included in the MRM method
as there were limited options of proteotypic peptides for this
protein and the only one that was deemed suitable was be-
low the limits of detection. Indeed, 10 other biologically rele-
vant candidate protein biomarkers were found to be below
the limits of detection during assay development. These pro-
teins, mainly the ‘known’ biomarkers, are routinely measured
via immune assay-based techniques. However, it is likely that
due to their structure (short sequence length) and low abun-
dance in serum, that these proteins will always prove difficult
to measure via MRM unless alternative sample preparation
and MRM methods are employed. Mass spectrometry
technology is continually evolving, and it will be possible to
further refine MRM assays for the low abundant proteins
and peptides as part of on-going work for development of
the biomarker assay. Inclusion of these ‘known’ biomarkers
in the MRM assay may further improve on the performance
of the biomarker model described here. In addition, the
cohort was not age matched, and age is a confounding risk
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factor in prediction of HF. However, when the samples were
retrospectively matched based on age, the predictive perfor-
mance of the combined biomarker model was not signifi-
cantly impacted. Only a small number of non-HF patients
went on to develop HF, and so only exploratory survival
analysis could be performed as part of this study. Definitive
conclusions on the potential clinical utility of this combined
biomarker panel for prediction of HF cannot be made until
the panel is validated in an external cohort. This will include
defining clinical thresholds for the complete biomarker panel,
which will facilitate more accurate analysis of biomarker
utility for prediction of future HF. These investigations will
form part of a larger collaborative study, adhering to standard
required for Clinical Laboratory Improvement Amendments-
accredited assays.

In order to be clinically useful for diagnosis and manage-
ment of HF, candidate protein biomarkers should be easily
measured in blood in a high-throughput, cost-effective, and
reproducible manner in large sample numbers. Hence, there
are a number of clinical tests now on offer, which avail of
mass spectrometry to measure multiple proteins and/or pro-
tein isoforms in patient blood samples in short turn-around
times.?® The field of proteomics and mass spectrometry is
developing rapidly, and advances have been made that will
help bridge the gap between biomarker discovery, and de-
velopment of a clinical test.?”"*® The costs of running an as-
say, such as what we have described here, has been
estimated to be between €35 and €40 (£30—£35) per sample
and turnaround time from sample receipt to provision of
data would be 3-4 hours. In the United Kingdom, point of
care BNP tests were previously estimated to cost an average
of £25 per patient.>>*° In Ireland, data from previous
studiespatients and significantly associated withwithin the
STOP-HF cohort estimated the average cost of point-of-care
BNP to be €20 per patient.3! Although more expensive than
point-of-care BNP, it should be noted that the MRM assay
described here is being developed to progress an evolving
era in precision medicine, which BNP and other single
markers cannot support. Therefore, the potential clinical
value of such tests will justify the marginal increase in costs.
This demonstrates the perceived clinical value in developing
multimarker signatures such as what we have reported here.
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