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Abstract: The development of the Artemis programme with the goal of returning to the moon is
spurring technology advances that will eventually take humans to Mars and herald a new era of
interplanetary space travel. However, long-term space travel poses unique challenges including ex-
posure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to
microgravity and specific nutritional challenges arising from earth independent exploration. Ionising
radiation is one of the major obstacles facing future space travel as it can generate oxidative stress
and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere
shortening, extracellular-matrix remodelling and persistent inflammation. In the gastrointestinal
tract (GIT) this can lead to leaky gut syndrome, perforations and motility issues, which impact GIT
functionality and affect nutritional status. While current countermeasures such as shielding from the
spacecraft can attenuate harmful biological effects, they produce harmful secondary particles that
contribute to radiation exposure. We hypothesised that induction of a torpor-like state would confer
a radioprotective effect given the evidence that hibernation extends survival times in irradiated
squirrels compared to active controls. To test this hypothesis, a torpor-like state was induced in
zebrafish using melatonin treatment and reduced temperature, and radiation exposure was adminis-
tered twice over the course of 10 days. The protective effects of induced-torpor were assessed via
RNA sequencing and qPCR of mRNA extracted from the GIT. Pathway and network analysis were
performed on the transcriptomic data to characterise the genomic signatures in radiation, torpor and
torpor + radiation groups. Phenotypic analyses revealed that melatonin and reduced temperature
successfully induced a torpor-like state in zebrafish as shown by decreased metabolism and activity
levels. Genomic analyses indicated that low dose radiation caused DNA damage and oxidative
stress triggering a stress response, including steroidal signalling and changes to metabolism, and
cell cycle arrest. Torpor attenuated the stress response through an increase in pro-survival signals,
reduced oxidative stress via the oxygen effect and detection and removal of misfolded proteins. This
proof-of-concept model provides compelling initial evidence for utilizing an induced torpor-like state
as a potential countermeasure for radiation exposure.

Keywords: torpor; countermeasure; space; radiation; zebrafish; metabolism; temperature; signalling
pathways; transcriptome; bioinformatics

Cells 2021, 10, 906. https://doi.org/10.3390/cells10040906 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-6370-2884
https://orcid.org/0000-0002-8072-5671
https://orcid.org/0000-0003-1158-8527
https://orcid.org/0000-0003-4558-0400
https://doi.org/10.3390/cells10040906
https://doi.org/10.3390/cells10040906
https://doi.org/10.3390/cells10040906
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10040906
https://www.mdpi.com/journal/cells
http://www.mdpi.com/2073-4409/10/4/906?type=check_update&version=3


Cells 2021, 10, 906 2 of 26

1. Introduction
1.1. Expanding the Human Footprint

The first crewed Apollo mission to the moon in 1969 represented a historical milestone
in scientific achievement and human exploration, taking humans on a 3-day journey to
our closest celestial neighbour. This endeavour faced massive challenges including en-
gineering of the Space Launch System, performing a safe landing on the lunar surface
and programming electrical systems using relatively primitive computational power com-
pared to today’s standards. Over a half century later NASA announced its plans to land
the first woman on the moon by 2024, and to develop a sustainable lunar presence by
2028 involving the use of a manned lunar orbiter that will serve as gateway to the surface
with lunar landers. Our presence on the moon will serve as a testing bed to develop new
technologies that will extend our footprint across the solar system, eventually taking us to
Mars in the 2030s [1]. While technology and computing power is much more advanced
today, returning to the moon and onward to Mars present a new set of obstacles.

1.2. The Challenges of Spaceflight

Mars, at its nearest distance from Earth is much further than the moon at between
57.6 million or 249 million km depending on the alignment with Earth. A Mars mission
that takes advantage of close orbital alignments would involve a ~200 day transit there,
a proposed ~500 day stay and a ~200 day return journey [2]. The long duration of these
missions with increased distance from earth and prolonged exposure to environmental
stressors impose new technical and physiological challenges that must be countered to
warrant a successful mission while ensuring crew health and safety. Two of the key
obstacles for long-term space exploration include accessibility of food, water and oxygen
and exposure to high radiation levels [3,4]. Accessibility of food, water and oxygen becomes
challenging for longer term interplanetary travel as resupply missions are made difficult
by the changing orbital distances between planets. These missions must therefore be less
dependent on Earth. They will require provision for enough resources for the duration of
the mission. Alternatively technologies that can mitigate the need for resupplies must be
developed [5]. Studies evaluating the efficacy of different shielding materials against space
radiation have found secondary radiation is produced upon impact and can contribute to
radiation exposure. While these studies revealed that lower atomic mass materials such as
hydrogen reduced the number of secondary radiation particles, shielding poorly attenuates
high energy galactic cosmic rays [6].

Therefore, emphasis needs to be placed on developing viable countermeasures against
the harmful effects of ionising radiation during space travel. At the cellular level, irradiated
cells enter the DNA damage-dependent cell cycle arrest in an attempt to re-establish chro-
mosome integrity [7]. Ionising radiation also produces short-lived free radicals including
reactive oxygen and nitrogen species as well as changes in redox signalling linked to
disruption of metabolic processes that persist long after the radiation exposure [8].

1.3. Effects of Radiation on the GIT

Cells of the GIT are particularly radiosensitive, a quality arising from their rapid
proliferation rate [9]. The key event in the pathophysiology of intestinal radiation toxicity
is enterocyte depletion, with possible vascular damage at higher radiation doses [10]. In
the longer term, tissue remodelling after the radiation damage alters the structure, motility
and absorption of the gut, while fibrosis renders it more rigid and susceptible to adhesions,
stenosis and perforation [11,12]. These changes can alter GIT functionality and increase
susceptibility to disease-causing nutrient deficiencies. Moreover, the principal effect of
radiation exposure is an increased risk of cancer [13]. This highlights the emphasis that
should be placed on improving our understanding of the risks of radiation on astronauts’
health to develop appropriate, viable and innovative countermeasures in tackling the
outstanding challenges of space travel.
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1.4. Torpor

In mammals, torpor is characterised by lowering the metabolic rate and body temper-
ature, which results in a reduced need for nutrients, oxygen and water [14,15]. The artic
ground squirrel for example, achieves torpor by lowering its body temperature to −3 ◦C
and simultaneously decreasing its metabolic rate by approximately 90% [16]. Hibernating
animals utilise this state as a survival mechanism to conserve energy during periods of
food scarcity or cold temperatures and has therefore been associated with conferring a
survival advantage. The idea that hibernation confers protective effects prompted studies
of radiation exposure in hibernating squirrels which showed that irradiated hibernating
squirrels had increased mean survival times compared to active controls however the
molecular mechanisms remain to be elucidated [17]. The induction of an induced torpor-
like state in humans, which has been suggested as a countermeasure for space travel as far
back as the 1960s [18] would therefore effectively address both of the challenges outlined
above, by minimising nutrient, O2 and H2O consumption for long-term space travel and
protecting against radiation damage [3,19]. Interestingly, a recent study of the bones of
early humans shows evidence of seasonal variation in bone growth and patterns of lesions
that are consistent with those found in hibernating mammals indicating that our ancestors
may have adapted to hibernating during extreme cold periods [20]. While modern humans
have ceased to employ hibernation as a survival mechanism, controlled therapeutic hy-
pothermia has been used in medicine to successfully lower mortality rates and improve the
neurological function of patients that have suffered from acute trauma, cardiac arrest or
stroke [21]. This highlights the conferred protective effects and their application to broader
human health and wellbeing and supports the viability of induced torpor during space
travel. However, further work is needed to explore cooling methods and the effects of
maintaining hypothermia long term.

1.5. Induced Torpor as a Countermeasure for Low Dose Radiation Exposure in a Zebrafish Model

Our overarching hypothesis is that induced torpor could minimise the damage
caused by exposure to space radiation. To test this hypothesis, the body temperature
and metabolism of zebrafish (Danio rerio) were lowered via ambient temperature reduction
coupled with the addition of melatonin to induce a torpor-like state. The fish were ex-
posed to low dose radiation (~0.3 Gy) similar to what would be experienced on a 6-month
journey to Mars to allow assessment of the potential protective properties of torpor. More
specifically, transcriptomic profiling enabled exploration of the implications that space
travel might have on GIT functionality. Zebrafish were used in a model of induced tor-
por as they are poikilothermic and vary their body temperature based on their ambient
temperature by modulating their gene expression and metabolism [22,23]. While they
have been found to inhabit a range of temperatures, 28.5 ◦C has been cited as the optimal
temperature [24]. Additionally, Malek, et al., [25] detailed the reduction and maintenance
of the effect of reducing ambient temperatures from 28 ◦C to 18 ◦C for 1 year. Studies
have shown that a reduction of 10 ◦C in body temperature in heterotherms reduces their
metabolic rate by 50% of basal levels [19]. Moreover, zebrafish were also chosen as the
modulatory neurotransmitters in their brain are similar to humans; exposure to a wide
range of concentrations (10–100 nM) of the hormone melatonin promotes a sleep-like state,
reducing locomotor activity and elevating the arousal threshold [26]. While melatonin is
a potent antioxidant and regulator of the circadian rhythm [27], it was used primarily to
increase sedation and reduce activity, to replicate the inactivity seen in hibernating animals.
Zebrafish further offer unique advantages as a model organism as approximately 70% of
their genes are orthologous with human genes, 84% of which are implicated in human
disease [28]. Finally, the availability of a high-quality reference genome makes it an ideal
model for rapid genomic and phenotypic assessment [29].
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2. Materials and Methods
2.1. Zebrafish Husbandry

The zebrafish (AB strain) were obtained from the Zebrafish International Resource
Centre and maintained and crossed according to standard housing methods. Adult ze-
brafish were housed at a maximum 6 fish per 1 L glass beaker with lid (allowing air flow
but preventing fish mortality from jumping out of the beaker) in an incubator at 28.5 ◦C
with a light cycle of 14 h ON (light) and 10 h OFF (dark). Zebrafish were fed Gemma Micro
300 standard diet every other day (Skretting, Westbrook, ME, USA) early in the morning,
and 20 min after feeding, debris was aspirated from the beaker bottom and 75% of the
water was changed using reservoir water (Reverse Osmosis water supplemented with
Instant Ocean salts, sodium bicarbonate and Stress Coat, maintained at pH 7.4) to increase
water life support capability. Beakers used to house fish were previously cleaned and
autoclaved. All procedures were performed in accordance with The Medical University of
South Carolina (MUSC), Institutional Animal Care and Use Committee (IACUC) guidelines
(IACUC-2018-00278). All animals were treated humanely and with regard for alleviation
of suffering.

2.2. Locomotion Assay for Activity Score

A locomotion assay analysis was employed to determine if the addition of melatonin
and the reduction of ambient temperatures induced a resting-state with reduced movement.
Locomotor activity in the zebrafish was therefore recorded using a Basler acA1300-60 gm
GigE camera and tracked using the movement tracking Ethovision XT 14 software (Noldus
Information Technology, Inc., Leesburg, VA, USA) [30]. Briefly, one zebrafish was trans-
ferred to a new beaker with water in a temperature that matched its previous beaker, after
allowing 5 min to acclimatise, a 15-min video was recorded. The EthoVision software
tracked the fish movement to calculate the total distance travelled and to determine the
regions the animal occupied the most. Videos of swimming behaviour recorded for the
locomotion assay along with raw data showing distance moved and time spent in different
zones, that were used to calculate the activity score can be found in the Supplementary
Materials (Supplemental Video Trial 1—12.mp4 and Supplementary Table S1, respectively).
A combination of active swimming time, and time spent at the bottom or at the upper part
of the beaker was used to calculate an activity score for the fish allowing for behavioural
profiling of the animals as outlined by Nishimura et al. [31]. Hence, a higher activity score
indicates a more balanced use of space, with more frequent movement between the bottom
and upper part of the beaker, whereas a lower activity score indicates less movement. An
ANOVA test was performed to test for statistical differences between the groups with
subsequent post-hoc testing using Tukey’s HSD.

2.3. Development of the Induced Torpor Model and Radiation Protocol

Developing models of induced torpor and radiation exposure required a series of
experimental groups described in Table 1 with different variables to assess their effects
and facilitate comparisons. A control group was maintained at an ambient temperature
of 28.5 ◦C (28.5-Ctrl). A melatonin group (28.5-mel) received melatonin daily for 10 days
at a concentration of 24 µM to reduce locomotion and arousal. To maintain levels of
melatonin and protect against metabolism and degradation [32], 75% of the water was
replaced daily with a mixture of saline water and melatonin. Melatonin was purchased
from Sigma-Aldrich (St. Louis, MI, USA) with ≥98% purity, it was maintained at −20 ◦C
in powder and dissolved in DMSO prior to use. A reduced temperature group (18.5-Ctrl)
was kept at 18.5 ◦C to decrease their metabolism. The reduction in ambient temperature
was carried out in weekly decrements of 2.5 ◦C over the course of 4 weeks to avoid thermal
shock, as previously described [25]. An induced torpor group (18.5-mel) was maintained
at 18.5 ◦C with 24 µM melatonin. Again, fish were acclimatised over a 4-week period and
melatonin was added for 10 days once the water temperature reached 18.5 ◦C. A radiation
group was exposed to a total whole body dose of 32.68 cGy. Prior to radiation exposure
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adult zebrafish were anaesthetised with 0.02% tricaine. They were then placed one at a
time on 60-mm × 15-mm Petri dishes containing water and placed atop a 3-inch spacer
ready for irradiation. Radiation exposure occurred for 6 s at 163.40 cGy/min resulting
in total exposure of 16.34 cGy. Fish were exposed to radiation on the 2nd and 8th day
resulting in a combined whole-body dose of 32.68 cGy. Irradiation was carried out at MUSC
in accordance with IACUC-2018-00278 using the following irradiator; Shepherd Model
143-68, Serial Number 8020, (JL Shepherd and Associates, San Fernando, CA, USA), with a
Caesium 137 radiation source. After radiation exposure, fish were placed in a temporary
tank free of tricaine to recover, and then transferred back into the main tank with other fish
from the same experimental group. A torpor + radiation group was also established using
a cold acclimatised group with melatonin that was also subject to the radiation protocol.
Fish were sacrificed on the 10th day of the experimental timeline (starting from the end of
the acclimatisation protocol), represented schematically in Figure 1.

Table 1. Overview of the experimental groups showing the experimental group names,
key, sample number per condition, values of radiation exposure, ambient water temperature
and melatonin treatment.

Group Key Sample
(N)

Radiation
(cGy)

Water
Temperature (◦C)

Melatonin
(µM)

Control Ctrl 6 0 28.5 0

Melatonin 28.5-mel 6 0 28.5 24

Temperature 18.5-Ctrl 6 0 18.5 0

Torpor 18.5-mel 6 0 18.5 24

Radiation 28.5-rad 6 32.64 28.5 0

Torpor +
radiation 18.5-mel-rad 6 32.64 18.5 24
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2.4. RNA Extraction and Sequencing

Total mRNA was extracted from GIT tissues using the miRNeasy Qiagen kit (Qiagen,
Hilden, Germany). To prepare mRNA-Seq libraries the TruSeq RNA Sample Prep Kit
(Illumina, San Diego, CA, USA) was utilised; 100–200 ng of total input GIT RNA was
used in accordance with the manufacturer’s protocol. High through-put sequencing was
performed at the University of North Carolina-Chapel Hill High Throughput Sequencing
Facility, Chapel Hill, NC and the Queens University Belfast, Genomics Core Technology
Unit. RNAseq was performed on Illumina Next SEQ 500 and HiSeq4000 instruments with
each mRNA library sequenced to a minimum depth of 25 million reads. RNA-Seq data
have been submitted to the NCBI Gene Expression Omnibus, accession number GSE169522.

2.5. RNA-seq Data Processing and Differential Expression

Sequence quality was assessed with FastQC [33] to identify the over-represented
sequences and low-quality reads which were removed using Cutadapt [34]. The STAR
aligner [35] was utilised to align the RNA-Seq reads to the zebrafish genome (GRCz11)
and HTSeq [36] to determine the number of reads per transcript. DESeq2 [37] allowed the
determination of differentially expressed (DE) genes which were subsequently used in
downstream pathway analysis according to their absolute fold change (linear FC of 1.5,
or log2FC of 0.58) and a FDR adjusted p-value (q ≤ 0.1), calculated using the Benjamini-
Hochberg multiple testing adjustment procedure [38]. Hierarchical clustering and principal
component analysis (PCA) plots were used to explore the patterns in sample variation.
Additionally, Ensembl human orthology [39] was determined in order to leverage human
annotation for more comprehensive data analysis in system level analysis which benefit
from the greater annotation of human genes, as demonstrated by Huff et al., [40].

2.6. Experimental Validation

Validation of the genes outlined in Supplementary Table S2 was performed by means
of qPCR. Briefly, a total of 0.5 µg of RNA from 28.5-ctrl, 18-mel, 28.5-rad and 18.5-mel-rad
was used to synthesise cDNA employing the iScript Reverse Transcription Supermix (Bio-
Rad). Next, two replicates were used in the quantification of gene expression performed
using SYBR Green qPCR (ThermoFisher, Waltham, MA, USA) on a Roche LightCycler
480 Instrument II (Roche Diagnostics, Rotkreuz, Switzerland). Intron spanning primers
(Supplementary Table S2) were designed using Primer-Blast [41]. The relative induction
of gene mRNA expression was then calculated using actn2b expression for normalisation
and values for the experimental groups were compared with values from the control group
(28.5-ctrl). T-Tests were performed to test for significance and results were plotted using
GraphPad Prism (San Diego, CA, USA).

2.7. Pathway Analysis

The differentially expressed (DE) zebrafish genes (q < 0.1, FC > 1.5) for the radia-
tion (28.5-rad), torpor (18.5-mel) and torpor + radiation (18.5-mel-rad) group measured
in comparison to the control group (28.5-Ctrl) were subject to over-representation with
Webgestalt [42] as zebrafish and human using the respective gene symbols. Next path-
way impact analyses were performed in iPathwayGuide (Advaita Bioinformatics, Ann
Arbor, MI, USA) [43] using human gene symbols. Webgestalt was employed to define en-
riched gene ontologies and KEGG pathways (q ≤ 0.05) taking either up- or downregulated
genes as input to gain insights on affected cellular processes. Enriched gene-ontologies
and impacted pathways identified using iPathwayGuide were used to supplement the
results taking advantage of a topology-based approach which considers the type, function,
position and interaction between genes in each pathway to help reduce false positives.

2.8. Network Analysis

A zebrafish functional gene network (ZFGN) was kindly provided by Olga Troyan-
skaya [44]. The top 500 upregulated and 500 downregulated genes (FC > ±1.5) for the
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radiation (28.5-rad) and torpor + radiation (18.5-mel-rad) were analysed by NetNC [45]
in ‘Functional Target Identification’ (FTI) mode using the network formed from all ZFGN
edges that had edge weight >0.5. The resulting networks for each condition were merged
and subsequently visualised using Cytoscape v3.7.2 [46] and a gene ontology analysis was
performed on distinct clusters using the Cytoscape plugin ‘BiNGO’ [47].

3. Results
3.1. Temperature and Melatonin Reduce Zebrafish Activity

Reduced temperature alone (HSD q = 0.030) or in combination with melatonin
(q = 0.002) significantly reduced the activity levels in zebrafish compared to the
28.5-Ctrl (Figure 2). However, melatonin alone did not lower the activity score significantly
(q = 0.538). Our data validated the torpor-like model in zebrafish, showing that it is
possible to increase the resting phase exploiting the combination of melatonin treat-
ment, and reduced temperature. Raw video data are available in Supplemental Material
(Supplementary Videos S1–S12) showing swimming behaviour for the fish from each
experimental group.
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Figure 2. Activity Scores. The control group (28.5-Ctrl) inhabited all areas of the beaker. The torpor
group (18.5-mel, q = 0.002) had a significantly lower activity score than either control or temperature
group (28.5-Ctrl, 18.5-Ctrl, q = 0.030). Lowering temperatures alone (18.5-Ctrl, q = 0.030) reduced
activity while the melatonin group (28.5-mel, q = 0.538) did not significantly reduce activity.

3.2. Transcriptomic Characterisation of Induced Torpor Model Reveals a Reduction in Metabolism

Differential expression analysis on the transcriptomic data of the torpor group
(18.5-mel vs 28.5-Ctrl) revealed the upregulation of 3602 genes and the downregulation of
2413 genes in the GIT (q ≤ 0.1, FC ± 1.5) (Supplementary Table S3). Over-representation
analysis (ORA) and impact analysis are found in Supplementary Tables S4–S6.

The results suggest that the induced torpor leads to an upregulated mitosis with an
increased expression of chromosome organisation genes (GO:0051276), cyclins (CCNB1,
CCNL1, CCNT1) and cyclin-dependent kinases (CDK11B, CDK12, CDK13) which drive
progression through the cell cycle [48]. In agreement, they also show both an increase
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in pro-survival signals including BCL3 [49] and TRAF1/2 [50] as well as a decrease in
pro-apoptotic signals (Casp8, Casp10) [51]. Perturbation analysis also showed a decrease
in pro-apoptotic genes such as Bid and TRAILR2, as well as an increase in Bcl-2, a pro-
survival gene [52]. Quantification of gene expression was performed on BCL-3 using qPCR:
and while not significant (p = 0.107), the expression levels as seen in Figure 3 agree with DE
analysis which showed a significant upregulation (q 1.65 × 10−15) compared to the control,
supporting the idea of anti-apoptotic signals.
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Figure 3. Gene expression in the torpor (18.5-mel) group compared to that in the control (28.5-Ctrl)
group. The figure shows the relative increase in expression of HSPA5 (p = 0.013) and while not
significant BCL3 expression (p = 0.107) is also increased. It also demonstrates an almost significant
decrease in expression of SDHD6 (p = 0.05) compared with control, supporting the results from DE
analysis. * p < 0.05.

We reported an increase in RNA splicing (GO:0008380, GO:0000375, GO:0006397),
with an upregulation of transcripts encoding spliceosome subunits (CACTIN) [53], and
associated spliceosome proteins (CWC22, CWC25) [54,55]. Additionally, several GO terms
relating to protein targeting to the ER (GO:0045047) were enriched with an overall decrease
in expression for these pathways. However, genes involved in detecting misfolded proteins
(HSPA5) [56] and targeting for degradation (DERL2, UBXN4) [57,58] were upregulated
as seen in Figure S2. Quantification of HSPA5 in qPCR also showed a relative increase
in expression (p = 0.013) compared with the control (28.5-Ctrl) as seen in Figure 3. These
pathways, namely, RNA splicing [59], protein folding and mitosis are also found to be
adaptive response in cold acclimatised fish such as the Antarctic toothfish [60].

As expected, torpor also reduced the metabolism of key macronutrients such as lipids
(GO:0006629) and proteins (GO:0006518) with a decrease in expression of key lipolytic
(ACSL5, DGAT2) [61,62] and proteolytic (DPP4) [63] genes. Similarly, we found downregu-
lation of a number of genes involved in metabolic pathways (Supplementary Figure S1)
including glycolysis (GAPDH) [64], the tricarboxylic acid (TCA) cycle (SDHD, ACO1 and
IDH2) [65–67] and oxidative phosphorylation (Ndufs3, SDHD and Cyt1) [65,68,69] (shown
in Figure 4). In agreement with the DE analysis, sdhd6 quantification in qPCR showed a rel-
ative decrease (p = 0.05) in expression compared with the control (28.5-Ctrl) (Figure 3). Our
analysis also points to a decrease in lipid, glucose and amino acid uptake with downregu-
lation of specific transporters such as CD36, SLC5A1 and SLC6A19 [70–72], respectively.
Furthermore, a decrease in protein synthesis was suggested by the downregulation of
ribosomal subunits including RSP20, RSL3, RPL4, RPS3, RPL23 [73].
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downregulation of several key subunits of electron transport chain proteins such as NADH dehydrogenase, succinate
dehydrogenase and cytochrome c oxidase, indicating reduced energy production. RED: upregulated, BLUE: downregulated.

3.3. Low Dose Radiation Affects Metabolism and Absorption in the GIT

We compared the radiation (28.5-rad) and control group (28.5-Ctrl) to define how low
dose radiation, as may be experienced during long-term space travel (~0.3Gy), affects the
GIT. Differential expression analysis revealed that 146 genes (q ≤ 0.1) were significantly
impacted, 99 upregulated, and 47 were downregulated compared to the control group
(28.5-Ctrl) (Supplementary Table S7). ORA in Webgestalt and impact analysis in iPath-
wayGuide results can be found in Supplementary Table S8–S10. They revealed that low
dose radiation affected stress-related pathways such as circadian rhythm (GO:0048511,
hsa04710) (Figure 5), and glucocorticoid receptor signalling pathway (GO:2000322) with
several shared genes dysregulated in each pathway (CLOCK, CRY1, PER1, CRY2 and
ARNTL) [74]. Cell cycle changes were suggested by the negative regulation of DNA tran-
scription (GO:1903507) and RNA biosynthesis (GO:1902679), indicating growth arrest, a
response typical of radiation exposure used to repair damage and prevent transduction of
DNA mutations to daughter cells [75].
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downregulated. (B) Bar chart showing fold change of differential expression of the key clock genes. 

Figure 5. Perturbation of circadian rhythm pathway genes from exposure to low dose radiation compared to control group.
This reveals upregulation of Per and Rev-Erba, and the downregulation of Cry, Clock, Bmal and Arntl in comparison
to the control group (28.5-Ctrl), suggesting low dose radiation perturbs the circadian rhythm. (A) Pathway topological
diagram showing position and regulation of differentially expressed circadian rhythm genes. RED: upregulated, BLUE:
downregulated. (B) Bar chart showing fold change of differential expression of the key clock genes.

Results point to radiation-induced changes to protein digestion and absorption
(GO:0043171, hsa04974) (as seen in Figure 6) involving peptidase enzymes (DDP4) which
have previously been reported to be induced by low dose radiation exposure [76]. Upreg-
ulation of SLC15A1 and SCL6A19 also supports increased in amino acid uptake [76–78].
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Similarly, these genes may also affect the balance of anions/cations such as chloride, bi-
carbonate or sodium [77]. Moreover, the genes involved in the renin-angiotensin system
(RAS) including ACE, ACE2 and ANPEP were upregulated and have been implicated
in bicarbonate secretion, absorption of sodium, water and glucose absorption as well as
digestion of peptides and secretion [79]. Validation of an increase in expression levels of
SLC6A19 (p = 0.041) and ACE (p = 0.022) by qPCR (Figure 7) support the DE analysis and
the theory of radiation-induced changes to absorption and secretion.
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Figure 6. Topological diagram of the protein digestion and absorption pathway showing the upregulation (28.5-Rad vs
28.5-Ctrl) of peptidases and amino acid transporters on the brush border membrane in response to low dose radiation
exposure RED: upregulated, BLUE: downregulated.
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(Figure 8) reinforce the theory that torpor confers pro-survival signals, and continue too 
during stress. Again, we also see the enrichment of RNA splicing (GO:0008380) consid-
ered to be induced in a temperature-dependent manner [91].  

Figure 7. Gene expression in the radiation (28.5-Ctrl) group compared with control (28.5-Ctrl). The
figure shows the increase in expression of SLC6A19 transporter (p = 0.041) and the angiotensin
system gene ACE (p = 0.022) while GCGa involved in increasing blood sugar levels is downregulated
(p = 0.032) compared to the control. * p < 0.05.

Increased lipid transport is also indicated by the upregulation of ALP, involved in
the regulation of lipid absorption in the GIT [80] as well as increased transporter activity
involving ABCB1, ABCD4, ABCC4 and STRA6 which contribute to barrier function, lipid
transport [81], bile secretion [82] and have been linked to excess sodium loss, diarrhoea,
dehydration and death after irradiation [83].

The results also suggest that low dose radiation is reducing glucose availability in the
GIT due to the downregulation of GCK and DLAT involved in glycolysis [84]. A glucagon
precursor (GCG) is also downregulated which plays a role in increasing blood sugar levels.
The downregulation of GCGa (p = 0.032) was also validated using qPCR (Figure 7). Similarly
the upregulation of SREBF1 which is known to modulate insulin sensitivity [85] is in line
with the literature showing that radiation exposure can lead to insulin resistance [86]. In
addition, the upregulation of KLF7 might suggest a decrease in insulin secretion [87]. This
is consistent with previous work that demonstrated intestinal radiation exposure leads to
a decrease in both glucose absorption and the glucose transporter proteins, GLUT4 and
SGLT1 [88].

3.4. Pathway Analysis of Induced Torpor with Radiation Reveals Stress Response with
Pro-survival Signals

We compared the torpor + radiation group (18.5-mel-rad) with the control group
(28.5-Ctrl) and noted 1436 genes DE genes (q ≤ 0.1, FC ± 1.5), 749 upregulated and
690 downregulated relative to the control group (Supplementary Table S11). ORA and
impact analysis results are in the Supplementary Tables S12–S14. Like that of the radiation
group, the results indicate a response to stress (GO:0006950) which involved p53-mediated
growth arrest (GO:0072331, GO:0000075), steroid hormone signalling (GO:0048545) and
ferroptosis: programmed cell death caused by cytotoxic levels of lipid peroxidation [89].
We also observed upregulation of the immune response (GO:0002446) involving activation
of the inflammatory NF-kB signal transduction pathway (GO:0038061) and release of pro-
inflammatory cytokines such as TNF (GO:0033209). Moreover, glutathione metabolism was
also indicated with an increase in expression of genes such as gclm (p = 0.011), an increase
of which was validated using qPCR, suggesting a response to oxidative stress (Figure 8).
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Figure 8. Validation of gene expression in the torpor + radiation (18.5-mel-rad) group compared
with control (28.5-Ctrl). The figure shows the increase in expression of GCLM (p = 0.011), PSMB7
(p = 0.004), HSPA5 (p = 0.035), CCNA2 (p = 0.036) and BCL3 (p = 0.001911), relative to the control
(28.5-Ctrl) involved in glutathione metabolism, proteasome complex, protein refolding, cell cycle and
anti-apoptosis, respectively. * p < 0.05, ** p < 0.001.

In line with the growth arrest, the halting of protein synthesis was also suggested from
the downregulation of ribosomal subunits as well as the upregulation of SRP9 which has
previously shown to be essential for elongation arrest [90]. Like that of the torpor group
we also seen the enrichment of genes involved in the ER-associated degradation pathway
(GO:0036503) including the proteasome (GO:0010498) with a notable increase in expression
of ubiquitin ligase complex genes, as seen in Figure 9. Moreover, validation of an increase
in expression in PSMB7 (p = 0.004) and HSPA5 (p = 0.035) via Q-PCR as shown in Figure 8
support the idea of detection and removal of misfolded proteins in the ER.

We also see results such as an increase in mitosis (GO:1902850, GO:0044772, GO:0007059)
and anti-apoptotic signals with the upregulation of anti-apoptotic genes, BCL3. Similarly,
detection of increased levels of gene expression in qPCR of genes involved in cell cycle
progression (CCNA2, p = 0.036) and anti-apoptosis (BCL3, p = 0.001) (Figure 8) reinforce
the theory that torpor confers pro-survival signals, and continue too during stress. Again,
we also see the enrichment of RNA splicing (GO:0008380) considered to be induced in a
temperature-dependent manner [91].

Regarding metabolism, the combination of torpor and radiation exposure also pro-
duced mixed results. As seen in supplementary Figure S3, results like that seen in the
radiation group demonstrate indications of an increase in lipid metabolism (GO:0055088)
and biosynthesis (hsa00061) as reserves that are mobilised during stress. Similarly, the
Peroxisome pathway is enriched, which is known to play a role in fatty acid oxida-
tion [92]. However, given the torpor variable, results also show a decrease in glucose
metabolism (GO:0006109), TCA cycle and oxidative phosphorylation (hsa01100). In ad-
dition, we noted downregulation of the metabolism of substrates such as amino acids
(GO:0006520), coenzymes (GO:0006732), aldehydes (GO:0006081), ketones (GO:0042180)
and esters (GO:0046434).
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Figure 9. Perturbation of genes encoding proteins involved in ER-associated protein degradation showing an increase in 
expression of chaperones involved in detecting misfolded proteins (NEF, BiP, Hsp40), as well as those involved in the ER-
associated degradation pathway (Derlin, UBx). This also shows an increase in anti-apoptotic genes (BCL2) and a decrease 
in pro-apoptotic genes (Casp12). RED: upregulated, BLUE: downregulated. 

3.5. Network Analysis of the Radiation and Torpor + Radiation Groups Reveal Differential 
Regulation of Radio-Resistant Genes 

NetNC [45] analysis of DE genes for the radiation (28.5-rad vs 28.5-Ctrl) and torpor 
+ radiation (18.5-mel-rad vs 28.5-Ctrl) groups produced two networks for each condition 
(28.5-rad_NET_UP, 28.5-rad_NET_DOWN, 18.5-mel-rad_NET_UP, 18.5-mel-
rad_NET_DOWN). Merging of the networks in Cytoscape produced an integrated net-
work (as seen in Figure 10) (cytoscape network available in supplementary network S1) 
revealing considerable overlap in the NetNC results for each condition and producing 
two networks that reveal common response mechanisms. BiNGO [47] analysis of the 
merged upregulated clusters defined in comparison to the control group were annotated 
with GO terms and included oogenesis, development terms and the regulation of tran-
scription, biosynthetic and metabolic processes. The merged downregulated clusters were 
annotated with a response to stimulus, coagulation, wound healing response, comple-
ment response and development.  

A comparison of networks across conditions was undertaken to inform the effects of 
torpor upon radiation response (Figure 10, Table 2). Four genes were present in 28.5-
rad_NET_UP but absent from the NetNC results for 18.5-mel-rad (radNET_only, Table 2). 
These included Mpz, a myelin sheath component that is induced by axon injury [97], sug-

Figure 9. Perturbation of genes encoding proteins involved in ER-associated protein degradation showing an increase
in expression of chaperones involved in detecting misfolded proteins (NEF, BiP, Hsp40), as well as those involved in the
ER-associated degradation pathway (Derlin, UBx). This also shows an increase in anti-apoptotic genes (BCL2) and a decrease
in pro-apoptotic genes (Casp12). RED: upregulated, BLUE: downregulated.

Our findings also showed a response to hypoxia (GO:0001666), consistent with de-
creased oxygen and a reduced metabolism. The results additionally point to changes in
GIT absorption with an upregulation of ABC transporters and those involved in mineral
absorption of the SLC family (hsa04978) suggesting that torpor does not mitigate changes
to absorption or secretion.

A meta-analysis was performed in Advaitas iPathwayGuide [43] to find genes shared
between the radiation group (28.5-Rad vs 28.5-Ctrl) and torpor + radiation group
(18-mel-rad vs 28.5-Ctrl) with a focus on those that were differentially regulated between
the two experimental groups. Genes including PSMD3, TXN, GSTP1 and HMGB1&3
were downregulated in the radiation group and upregulated in the torpor + radiation
groups. PSMD3 is a component of the proteasome involved in removing damaged or
unfolded proteins, consistent with the reported enrichment of ER-associated degradation
pathway [93]. Additionally, TXN has previously been shown to confer radio-resistance
and mitigate radiation-induced lethality [94]. Similarly, GSTP1 has been associated with
increased radiation resistance [95] while HMGB1 has been shown to promote cell survival
and decrease apoptosis [96]. This highlights further genetic mechanism through which
torpor may confer protective effects.
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3.5. Network Analysis of the Radiation and Torpor + Radiation Groups Reveal Differential
Regulation of Radio-Resistant Genes

NetNC [45] analysis of DE genes for the radiation (28.5-rad vs. 28.5-Ctrl) and torpor +
radiation (18.5-mel-rad vs. 28.5-Ctrl) groups produced two networks for each condition (28.5-
rad_NET_UP, 28.5-rad_NET_DOWN, 18.5-mel-rad_NET_UP, 18.5-mel-rad_NET_DOWN).
Merging of the networks in Cytoscape produced an integrated network (as seen in
Figure 10) (cytoscape network available in Supplementary Network S1) revealing con-
siderable overlap in the NetNC results for each condition and producing two networks
that reveal common response mechanisms. BiNGO [47] analysis of the merged upreg-
ulated clusters defined in comparison to the control group were annotated with GO
terms and included oogenesis, development terms and the regulation of transcription,
biosynthetic and metabolic processes. The merged downregulated clusters were annotated
with a response to stimulus, coagulation, wound healing response, complement response
and development.
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Figure 10. Integrated networks of the radiation (28.5-rad) and the torpor+radation group (18.5-mel-rad) generated by
NetNC analysis. Fold change values for the radiation group are shown by node fill colour, values for torpor + radiation
are represented by the shape border colour. Node shapes indicate: NetNC-predicted coherent genes in both groups
(rectangular), in the radiation group only (oval), in the torpor + radiation group only (diamond) and changed in opposite
directions (triangular). Results from each condition show very substantial overlap, with some notable differences being the
upregulation of genes in the torpor + radiation group (18.5-mel-rad vs. 28.5-Ctrl) that confer radio-resistance (TXN, GSTP1)
and promote survival (HMGB1).

A comparison of networks across conditions was undertaken to inform the effects
of torpor upon radiation response (Figure 10, Table 2). Four genes were present in
28.5-rad_NET_UP but absent from the NetNC results for 18.5-mel-rad (radNET_only,
Table 2). These included Mpz, a myelin sheath component that is induced by axon in-
jury [97], suggesting that torpor might protect against radiation-induced demyelination.
A GABA symporter (SLC6A1B) important for gut motility and Rho, a GTPase involved in
stress fibre formation [98,99] was also part of radNETonly.
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Table 2. Genes found to be dysregulated between the radiation group and torpor + radiation group
as determined from the integrated NetNC network.

radNET_Only OPP_13 torpor_NET_Only

rho
mpz

slc6a1b
hoxb1b

mpx
hmgb3a
fabp7a
myh7
mylk
ins

epha4b
sst1.1
foxj1b
tnni1b
sulf2a
actn2b
sncga

msx2b
lmx1bb
wnt11f2

myl7
tbx5a

smyd1b
pomca
sox19a
wnt4

gbgt1l4
emx3
pcp4a
irx2a
foxi1

Thirteen genes showed opposite regulation profiles, occurring in both 18.5-mel-
rad_NET_UP and 28.5-rad_NET_DOWN (OPP_13, Table 2). For example, Mpx upregulated
in 18.5-mel-rad is a gene involved in myelopoiesis which is a process that has previously
been reported to increase resistance to infection when induced prior to radiation [100].
OPP_13 also contained developmental (HMGB3a, Foxj1b, tnni1b) [101–103], proliferation
(epha4b) [104] and, neuron development (sulf2a) [105] genes. Furthermore, we also observed
upregulation of Mylk, which is important for gut motility [106] and epithelial survival [107]
however as it also has roles in stress fibre formation [108] through rho signalling, further
work should assess whether torpor regulates fibrosis.

Pathway analysis of the radiation group suggests exposure reduces the availability
of glucose in the GIT, whereas the NetNC results for the torpor + radiation group shows
the upregulation of ins, involved in glucose uptake. Additionally, we also noted the
upregulation of a fatty acid binding protein (fabp7a) expressed in CNS development [109]
as well as the upregulation of sst1.1 which has been observed to inhibit locomotion [110]
and may therefore play a role in the reduced activity seen in the torpor model.

Fourteen genes were present in 18.5-mel-rad_NET_UP and not in the NetNC results
for the 28.5-rad (torpor_NET_only, Table 2). Several of these function in development,
morphology (wnt4, wnt11f2, irx2a, msx2b, sox19a, tbx5a) [111–116] and cell proliferation
(msx2b) [117]. Other genes belonging to torpor_NET_only function in neurogenesis (Foxi1,
irx2a, sox19a) [118,119], neuron differentiation (emx3, lmx1bb) [120,121], synaptic func-
tion (sncga) [122] and plasticity (pcp4a) [123,124] which may be globally upregulated in
response to the melatonin which has previously been associated with promoting neuroge-
nesis [125,126]. Upregulation of stem cell, developmental and proliferative genes might
offer protective affects by increasing cell survival and ensuring correct morphology during
cell replacement responses, while those genes involved in neuronal development should
be investigated further for signs of neuroprotective affects in situ.

4. Discussion
4.1. Induced Torpor Reduces Metabolism

Our work demonstrates a reduction in metabolism upon exposure to reduced am-
bient temperatures and melatonin as evidenced by the downregulation of key metabolic
pathways namely, fatty acid degradation, glycolysis, oxidative phosphorylation and the
TCA cycle. As reported in previous studies of cold acclimatisation, a hypometabolic state
leads to an increase in energy stores. This has been associated with conferring a better
physical condition, enabling cells to cope better with an increase in stress-associated energy
demands and may therefore represent one way in which inducing torpor may confer
protection against radiation stress [22]. Additionally, reduced temperatures have also
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been associated with a longer lifespan suggesting a slowing of the aging process in a
hypometabolic state [127]. On the contrary, unsuccessful acclimatisation can cause thermal
shock and cold stress leading to the depletion of lipid energy stores [128] as the main
energy reserve mobilised during stress in zebrafish [129].

The torpor + radiation group also showed a downregulation of energy producing
pathways including glycolysis, TCA cycle and oxidative phosphorylation while like that
of the radiation group we see an increase in fatty acid metabolism. The induction of
lipid metabolism is likely stress induced from radiation exposure; however, given that
the experimental design included the use of torpor prior to radiation exposure which
would increase in lipid stores, their depletion is less likely than without the use of torpor.
Further work is needed to define energy expenditure and energy stores during torpor with
the addition of stress. Furthermore, the suggested increase in lipid stores during torpor
prior to radiation exposure is supported by and provides a rationale for the indications of
ferroptosis, as an increase in lipid content would fuel an increase in peroxidation. While
an increase in lipid energy stores leads to a better physical condition and by virtue a
better ability to deal with stress, it is not yet known whether the benefits of increased
energy supplies outweigh the increase risk of programmed cell death and this warrants
further investigation.

4.2. Low Dose Radiation Perturbed Key Circadian Rhythm Genes

Our results suggest that low dose radiation causes perturbation of circadian rhythm
given that all zebrafish were housed using the same light/dark cycle. Several factors
associated with spaceflight influence circadian rhythms such as microgravity, lighting
conditions, workloads and shift work [130]. However, while the effects of low dose
radiation on circadian rhythm (CR) have not been well characterised in the context of
spaceflight, this work suggests that radiation itself may be a contributing factor to its
perturbation. Additionally, and more specifically, the CR also plays a role in the normal
functioning of the GIT [131]. Circadian clock disruptions have been linked to various
GIT-related disorders including constipation, IBS, peptic ulcers, metabolic syndrome or
cancer [132]. These disorders alter the GIT functionality and represent major obstacles to
maintaining astronaut health during long-term space travel. While these results reveal a
radiation-induced increase in the CR gene, Per3, its expression in the torpor group was
downregulated. Similarly, the absence of the enrichment of the CR in the torpor + radiation
group suggests that its perturbation is not as pronounced during torpor which may mitigate
its contribution to disease. Although, this may be a function of the addition of melatonin
which may or may not feature in future models of induced torpor. Previous work has
also shown that the CR can influence mouse GIT cell survival after radiation depending
on when they were irradiated, which show increased apoptosis during waking hours
(06:00–09:00) [133] and may suggest a therapeutic role for circadian altering drugs during
solar particle events. Additional work is needed to further understand the role of circadian
rhythm in the abnormal physiological effects of long duration spaceflight.

4.3. Low Dose Radiation Induced a Glucocorticoid Stress Signalling Response

Our results indicate that radiation exposure is leading to glucocorticoid (GC) signalling
which occurs in response to stress [134]. Given that our results represent a cell state
48 h after the last radiation exposure this suggests a prolonged stress response and is
strengthened by the evidence showing that radiation produces a persistent stress response
in space radiation studies of mouse intestine [135]. Sustained systemic GC levels have been
implicated in pathologies such as osteoporosis, myopathy, reduced serum vitamin D levels
and cataracts [136,137] which are already known to occur in spaceflight [138–140]. This
points to a role for radiation-induced GC levels being a contributing factor. Furthermore,
the link between GC signalling and the CR has long been known. The literature shows
that rhythmic GC release is under circadian control via the hypothalamic-pituitary-adrenal
axis [141], although, the expression of some peripheral clock genes are also induced by
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GCs (PER2 for example) [142]. GCs are therefore considered to act as peripheral circadian
co-ordinators [143]. These results therefore provide evidence that stress signalling can
alter peripheral clock gene expression and provides a mechanism for radiation induced
circadian perturbation in peripheral tissues such as the GIT. Given the wide-ranging roles
in regulating homeostatic processes in the body and the disease-causing potential, further
work should focus on the role of the CR and GC signalling during spaceflight.

4.4. Low Dose Radiation May Affect Nutritional Status of Astronauts

Nutrient uptake is an essential function of the GIT and its normal functioning during
space travel is important to ensure the adequate nutritional status of astronauts during
and post long-term missions. However, the GIT is a radiosensitive organ and space-related
radiation and ROS is known to cause injury to the epithelial cells [135,144]. Radiation
exposure has been observed to stimulate nutrient uptake by altering the expression of
important nutrient transmembrane transport proteins in the gut epithelium [88]. Indeed,
these results also show that a change in transporters in the GIT cells could affect gut
functionality and the nutritional status of astronauts. For example, the increase in lipid
uptake is consistent with a radiation-induced stress response given that lipids are the
primary fuel source in times of stress in zebrafish [145]. Similarly, increased lipid and
protein uptake may be a homeostatic measure to correct imbalances caused by ROS damage
or replace energy stores depleted by a shift to their metabolism. The torpor + radiation
group also had a dysregulation of genes involved in absorption and anion transport, which
may suggest a lack of protection against changes to gut functionality. However, it has
been suggested that future models of induced torpor in humans could deliver nutrients
intravenously via Total Parental Nutrition, which is used in medical practice, contains all
necessary nutrients and bypasses the digestive system mitigating the need for absorption
in the GIT [146].

4.5. Torpor May Protect against Radiation through Increased Pro-Survival Signalling

One indication that torpor confers a radio-protective effect was the presence mitotic,
pro-survival and anti-apoptotic signals. This feature is also backed by previous studies
showing an increase in cell division in cold-acclimatised zebrafish attributed to the over-
expression of CDC48 [147]. These pro-survival signals were also apparent in the torpor
+ radiation group and were notable given that radiation is known to halt the cell cycle.
Progression through the cell cycle might therefore indicate that compared to the radiation
group, these cells received less damage, repaired it and overcame the cell cycle arrest phase.
It might also be that an increase in mitogenic signals imparted from the torpor variable has
swayed cell fate decisions to push through the cell cycle. It is important however to consider
that this could lead to the passing on of harmful mutations to daughter cells, so more work
is needed to define if there is a change in rate of mutations and diminished efficiency of
repair mechanisms at colder temperatures. A summary table (Table S15) conveys the most
notable and non-redundant biological themes impacted in each experimental condition.

4.6. Torpor May Reduce Radiation-Induced Oxidative Stress

The radiation and the torpor + radiation group were both experiencing a stress re-
sponse which was likely induced by radiation-induced ROS. This was indicated in the
torpor + radiation group by the enrichment of glutathione metabolism, suggesting an
antioxidant response. However this is not to say that oxidative stress is only occurring in
this group. In fact, we posit that this group is experiencing less oxidative stress due in part
to the reduction in metabolic pathways which generate ROS, and the ‘oxygen effect’. This
phenomenon states that less radiation-induced ROS is generated by low oxygen concentra-
tions in a cell, which normally positively correlates with the amount of damage received
during irradiation [148]. Given that a hypoxic environment in the torpor + radiation group
is supported by the enrichment of a response to decreased oxygen levels, radiation expo-
sure in this group could be generating less ROS compared to the radiation-only group,
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at the same dose. The oxygen effect could therefore provide a plausible mechanism for a
conferred radioprotective effect. In addition, the use of melatonin to increase sedation in
this torpor model is also likely providing additive protection against the radiation exposure
as an antioxidant which has previously been shown to attenuate gamma-ray-induced
intestinal damage [149]. However, further functional work is needed to validate the results.

4.7. Torpor May Lead to Removal of Radiation Damaged Proteins

Where one might expect an increase in protein degradation following radiation ex-
posure previous work has shown counterintuitively, that low dose ionising radiation has
an inhibitory effect on proteasome activity [150], explaining the absence of its enrichment
in the results from the radiation group. In both the torpor-only and torpor + radiation
group however, we see an increase in ER-associated protein processing pathways including
ubiquitin-mediated degradation and refolding responses. The presence of this response in
these groups suggests it is a response to reduced temperatures and is backed by studies in
cold-adapted Antarctic fish showing elevated levels of protein ubiquitylation thought to
protect cells from cytotoxic build-up of misfolded proteins [151,152]. We therefore suspect
this to be the case in zebrafish, as a cold-tolerant species and suggest it may be beneficial in
removing radiation-damaged proteins, although additional study is needed to assay the
quality of cellular protein content.

4.8. Considerations for Inducing Torpor in Mammals

It has been suggested that zebrafish enable cold-tolerance through the production
of specific isozymes through RNA processing and Spliceosome pathway (found to be
enriched in our work) producing enzymes that are functional under colder tempera-
tures [153–155]. Further work is needed to determine if this adaptive response to cold
temperatures is conserved or needed in mammalian systems given that the induction of
an appropriately designed synthetic torpor would mitigate the need to maintain normal
physiological processes.

Studies on the mechanisms of torpor induction in rodents have revealed biochemical
controls of reducing metabolic rate by downregulating the electron transport chain, or a re-
duction in body temperatures via neuronal circuits in the hypothalamus in rodents [156,157].
In contrast studies into the induction of synthetic torpor in non-hibernating mammals
have focused on molecules such as iodothyronamines [158], adenosine and α2 adrenergic
agonists which confer metabolic suppressing traits [159]. While this study exploits the
ability of zebrafish to reduce their metabolism and body temperatures in response to
changing ambient temperatures [19], it is recognised that an important step to successfully
inducing torpor in homoetherms will involve bypassing thermogenesis, a mechanism used
to maintain a stable body temperature. Future research will therefore involve drugs that
show promise in suppressing shivering such as meperidine (pethidine), clonidine and
doxapram. These drugs are shown to be most effective without significant respiratory
depression [21]. Further research will address how animals that utilise torpor have evolved
to make it tolerable for long periods of time without sustaining injury, to elucidate the
underlying mechanisms that would make it more tolerable in humans.

5. Conclusions

The reinvigoration of space exploration and interest in interplanetary manned mis-
sions to Mars will create both challenges and opportunities. For example, long-duration,
Earth-independent missions will require sufficient food, water and oxygen to sustain a
crew for long periods of time while maintaining quality and nutritional content, as well
as exposing the crew to harmful galactic cosmic rays and potential solar flares. There is
therefore an urgent need to develop innovative countermeasures to ensure crew health.
This study showed that low dose radiation exposure, likely to be experienced on a 6-month
journey to Mars can trigger a stress response involving, disruption of the circadian rhythm,
cell cycle arrest, changes to metabolism and transporters that could impact nutrient up-
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take and digestion of lipids and proteins. However, an induced torpor state may confer
protection by the induction of mitogenic, pro-survival signals, reducing apoptotic signals,
lowering metabolism, increasing energy stores; enabling cells to meet energy demands.
Similarly, a reduction in oxygen content in cells may decrease the amount of ROS that
can be generated from the same dose of radiation, therefore leading to less cellular dam-
age. While continuing work will validate the results, this detailed preview of the GIT
transcriptome of an induced torpor model provides compelling evidence for a conferred
radio-protective effect and promising clues for its exploitation during space travel.
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Abbreviations

DE Differentially expressed
FC Fold change
FTI Functional Target Identification
CR Circadian Rhythm
GC Glucocorticoid
GIT Gastrointestinal Tract
IACUC Institutional Animal Care and Use Committee
IMP Integrative Multi-species Prediction
MUSC Medical University of South Carolina
ORA Over-Representation Analysis
PCA Principal component analysis
RAS Renin-Angiotensin System
ROS Reactive oxygen species
TCA Tricarboxylic acid
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